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Abstract

In order to reduce the difficulties in using nodal pricing, the notion of price zone is widely adopted
in actual pricing scheme. The key for establishing simple and efficient zonal pricing scheme is
to accurately partition transmission network in the presence of congestion. Unfortunately, in actual
power market operation, operators usually establish price zones based on their experience, considering
the locations of congested lines, without mathematical analysis. In order to achieve accurate price
zone partition without any a priori partition knowledge, this paper firstly extracts the sensitivities
of nodal power injections to power flows on all congested lines as cluster features of nodal price.
Secondly, the scale-space theory simulating human visual system is introduced, and further a scale-
space-based hierarchical clustering method for price zone partition is proposed. Finally, test results
on IEEE 118-node system show the validity and feasibility of this proposed method.
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1. Introduction

In 1988, SCHWEPPE et al. first proposed the nodal pricing (i.e. spot pricing) theory,
which has become the chief instrument of electricity pricing in many countries or
areas, such as Argentina, Chile, New Zealand, PJM (Pennsylvania-New Jersey-
Maryland) and NY (New York) in USA. Nodal price reflects the marginal cost of
supplying the next kwh load at a particular node. According to microeconomic
price theory, it can provide right price signals for power market [1].

Transmission congestion is an operating condition where there is no sufficient
network transfer capacity to simultaneously deliver all traded transactions owing
to network constraints. When there is no congestion in transmission (nodal prices
are solved based on DC power-flow-model implemented in many actual power
markets), all nodal prices are identical. During congestion (transmission constrains
are active in the model), different nodes have obviously different prices, that is,
the nodal prices at the sending end area of a power-flow on congested line, where
abundant generation resources are available, are lower than those at the receiving
end area where there is a shortage of generation resources [2].

In actual power system operation, transmission congestion usually frequently
occurs between some zones, while within these zones congestion is relatively in-
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frequent and of low cost to relieve, and the difference between nodal prices is
small. Therefore, the zonal pricing scheme is proposed, in which every node within
a zone has the same price, while nodes belonging to different zones are priced
differently [3]. This pricing scheme is a simple method of the nodal pricing, it
can simplify congestion charge settlement, improve market liquidity encouraging
bilateral/multilateral trades and increase market price certainty on the premise of
providing efficient and accurate price signals. Up to now, the zonal pricing has
been widely adopted in many actual power markets, such as Norway, Australia,
California, ERCOT and PJM in USA [4].

Price zone partition is the important first step to establish the zonal pricing
scheme. The transmission network should be divided into some zones in the pres-
ence of congestion based on the principle of nodes with the same or similar prices
clustered into a zone. In the actual power market, the number of zones and size
of each zone (number of nodes within a zone) are determined based on the topol-
ogy of transmission network, the frequency and degree of congestion. In a power
market where congestion is slight and not frequent, there are a few zones, each of
which includes many nodes, for example, the number of zones ranges from two to
five in Norwegian transmission system [5]. In contrast in a power market where
congestion is severe and frequent, there are many zones, each of which includes
a few nodes, even if each node close to congested lines is an individual zone, for
example, there are some zones with few nodes (such as hubs and load zones) and a
lot of individual nodes in PJM and NY pricing scheme [4].

The key for establishing a simple and efficient pricing scheme is to accurately
partition the price zone in the presence of congestion. Inaccurate price zone partition
will distort electricity prices and increase the frequency of congestion. For example,
in the Californian power market, there are a series of problems, electricity prices
are distorted and intrazonal congestion is severe due to the use of three invariable
zones in the long term. For currently operated power markets, price zone partition
is usually established based on the operator’s experience and judgment, without
analytical tools [5, 6]. However, because transmission network is large and complex,
it is difficult for the operator to establish an accurate partition only by experience.
Reference [7] described a partition method where zonal boundaries are defined by
congested lines in a radially connected network. However, in practice, transmission
network is never truly radial, using congested lines as zonal boundaries alone does
not allow to achieve network partition. In reference [8], a price zone partition idea
was proposed based on the similarity of nodal prices, but the detailed algorithm was
not reported to put it into practice.

In order to achieve an accurate and rational price zone partition without any a
priori partition knowledge, this paper firstly extracts the sensitivities of nodal power
injections to power flows on congested lines as cluster features of nodal price, and
then forms cluster samples. Secondly, the scale-space theory simulating human
visual system is introduced, and further a scale-space-based hierarchical clustering
method for price zone partition is proposed. In this method, as scale ranges from
small to large, the sample point set is merged gradually, and consequently a hierar-
chical structure of clusters in the scale-space is generated, and then based on human
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visual perception, a set of clustering selection rules are proposed by integrating price
zone partition problem.

2. Cluster Features of Nodal Price

Price zone partition is essential to cluster nodes according to the similarity of nodal
prices, i.e., nodal price used as cluster feature to cluster nodes. However, directly
using nodal price as cluster feature has the following disadvantages:

1. The calculation of nodal prices is complicated because there are a great lot
of nodes in the transmission network.

2. The time-varying characteristics of nodal prices lead to the instability of zonal
boundaries, which damage the stability of the power market.

Therefore, it is not perfect to use nodal price as cluster feature. So based on
the DC power-flow-model, we obtain cluster features that not only reflect nodal
prices, but also have relatively stable (not time-varying) characteristics.

Based on DC power-flow, the optimal dispatch problem can be set up as
follows:

min eT · c(p) + cN (pN ) s.t. H · p ≤ zmax, eT · p + pN = 0, (1)

where p denotes a (N − 1) × 1 nodal active power injection vector (excluding
the reference node N) and H denotes the transfer admittance matrix (dimension
L × (N − 1)) that represents the sensitivities of the nodal power injections to line
power flows; e is a vector of all ones; zmax is the L ×1 vector of power flow limits; ci
is the net cost/benefit function at node i that can be obtained by the bidding curves
of market participants; N is the total number of nodes, L is the total number of
lines.

The Lagrangian for the optimization problem (1) can be written as:

L =
∑

i

ci (pi ) − λ(eT · p + pN ) − µT (H · p − zmax)

Differentiating the Lagrangian with respect to the power injections, that is, ∂L/∂pi =
0, the nodal prices are given:

ρN = c′
N = λ, (2)

ρ = c′ = λ · e + H T µ, (3)

where ρN is the nodal price at the reference node N , ρ is the (N − 1) × 1 nodal
price vector (excluding the reference node N).

If line l is congested, the inequality constraint becomes active, whose La-
grangian multiplier µl �= 0. If line l is not congested, the inequality constraint is
not active, whose Lagrangian multiplier µl = 0. From (3), the nodal prices relate
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the marginal cost (i.e. the nodal price) of the reference node, the shadow prices
(i.e. the Lagrangian multiplier) for congested lines and the sensitivities of the nodal
power injections to power flows on congested lines. The difference between nodal
prices at any two nodes is:

ρi − ρ j =
∑
l⊂�

µlhli −
∑
l⊂�

µlhl j =
∑
l⊂�

µl(hli − hlj ) (i �= j), (4)

where � denotes the set of congested lines, hli , hlj are the li−, l j -th terms of the
matrix H .

From (4), the difference between nodal prices is proportional to the difference
between the sensitivities of the nodal power injections to power flows on congested
lines. As long as the difference of the sensitivities between the nodes is very small,
the nodal prices are always similar no matter what the shadow prices for congested
lines are, though the similarity of nodal prices changes like the different operating
conditions of the system and the different shadow prices for congested lines. Thus,
the sensitivities of the nodal power injections to power flows on congested lines as
cluster features can effectively lead to aggregate nodes with similar nodal prices.
In addition, the sensitivities do not vary with the operating condition of the system,
and are only sensitive to major changes in topology of transmission network. Thus,
using the sensitivities of the nodal power injections to power flows on congested
lines as cluster features can provide relatively stable price zone partition in a period
of time.

3. Price Zone Partition Based on Scale-Space Hierarchical Clustering

3.1. Scale-Space Theory [9]

In recent years, physiological discoveries and researches on computer-aided neu-
roanatomy have developed several quite accurate computational models of primary
visual system, each modelling some parts of the human visual system at a particular
level of details. Among them is the scale-space theory, which models the blurring
effect of lateral retinal interconnection.

In the process of human perception, human eye images an outer scene onto
retina, then transmits it to visual ganglia in brain through retina ganglion cells
with multi-scale receptive fields (called the front-end visual system). The image
perceived by the receptive fields with different scales is equivalent to that perceived
by receptive field with certain scale in different distances. So the image perceived
in the brain is a multi-scale representation.

The image perceived can be regarded as the set of light points in the space.
As scale increases, the image is blurred gradually, each light point merging into
smaller blobs, and then into larger ones until the whole image contains only one
light blob at a large enough scale. The blobs obtained for the image at different
scales form a hierarchical structure: large blobs are made up of small blobs; each
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blob has its own survival range of scale, which will split into multiple smaller blobs
if scale is smaller than this range and merges into a larger blob with other blobs if
scale is greater than this range.

For a given d-dimensional light point set:

X = (xi ∈ Rd : i = 1, · · · , N).

A light point xi can be mathematically expressed as a δ function, that is,

δ(x − xi ) =
{

0, x �= xi
+∞, x = xi ,

∫ +∞

−∞
δ(x − xi ) dx = 1

So the image p(x) formed by the light point set is:

p(x) = 1

N

N∑
i=1

δ(x − xi )

Based on the scale-space theory in the front-end visual system, the multi-scale
presentation P(x, σ ) for image p(x) is the convolution of p(x) with the Gaussian
kernel [9], i.e.

P(x, σ ) = p(x) ∗ g(x, σ ) = 1

N

N∑
i=1

1

2πσ 2
e− ‖x−xi ‖2

2σ2 , (5)

where g(x, σ ) is the Gaussian function g(x, σ ) = 1
2πσ 2 e− ‖x‖2

2σ2 , σ is the scale para-
meter, (x, σ )-plane is the scale-space.

At a given scale σ , the blob center x∗ is defined as the local maximum of
P(x, σ ) with respect to σ , the corresponding light blob as being a region specified
as follows:

B(x∗) =
{

x0 ∈ Rd : lim
t→∞ x(t, x0) = x∗ , (6)

where x(t, x0) is the solution of the gradient dynamic system:



dx

dt
= ∇x P(x, σ )

x(0, x0) = x0.

(7)

At a given scale σ , testing whether x0 belongs to the light blob B(x∗) can be
accomplished by solving (7).

Recently, some scholars regarded the clustering process as an analogy to the
way human eye perceives objects, and by using the scale-space theory of front-end
visual system, they proposed a scale-space-based hierarchical clustering algorithm
[10]. This algorithm has a series of advantages: the initial partition and global
minimum are not needed and the optimal number of clusters and cluster centers can
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be determined efficiently, and so on. It overcomes the shortcomings of partitional
clustering algorithms like k-means and fuzzy c-means clustering algorithm, such as
difficulty of deciding initial price zone partition, inability to find a global minimum
and difficult of estimating the validity of clusters. Therefore, the scale-space-based
hierarchical clustering algorithm provides a new approach to efficient solution of
the price zone partition problem.

3.2. Price Zone Partition Based on Scale-Space Hierarchical Clustering

3.2.1. Cluster Sample

Before partitioning price zone, all potentially congested lines are firstly determined
in a period of time based on actual operating conditions of the system (these con-
gested lines can be determined by using the Monte Carlo simulation method to
analyse the congestion probability of transmission network considering uncertainty
in the power market, the detailed procedure is not described here). Secondly, the
sensitivities of nodal power injections to power flows on congested lines, i.e. the
cluster features of nodal price are calculated. Then, the features for all nodal prices
are respectively mapped into high-dimensional space (dimension is the number of
congested lines), forming a sample point set for clustering. By clustering the sam-
ple point set, nodes are aggregated effectively according to the similarity of nodal
prices, and further to achieve accurate price zone partition.

3.2.2. Scale-Space-Based Hierarchical Clustering

Introducing the scale-space theory to clustering nodes of the transmission network,
the sample point set is considered as an image with each light point located at a
sample point position, that is,

X = (xi ∈ Rd : i = 1, · · · , N)

where xi = (h1i, · · · , hdi), hli(l = 1, · · · , d) denotes the sensitivities of the power
injections at node i to power flows on line l; d is the total number of congested
lines.

As scale increases, the light points merge gradually into blobs until all light
points are contained only by one light blob at a large enough scale, and each blob is
equated with a cluster, which consists of all light points in the blob and is charac-
terized by the blob center. So, the merging process for the sample points generates
a family of clusters along the hierarchy.

The blob center or cluster center is characterized by the local maximum of
P(x, σ ) with respect to σ and the membership of each sample point is determined
by the gradient dynamical system in (7). Since the solution of the initial problem
of (7) cannot be found analytically, some numerical methods should be used. If the
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Euler difference method is used to the solution of (7), x(t, x0) is then approximated
by the sequence {x(n)} and the magnitude of P(x, σ ) is scaled by the logarithmic
function, the iteration formula for the corresponding blob center or cluster center
is expressed as follows:




x(n + 1) = x(n) + h · ∇x ln P(x(n), σ ) = x(n) + h
σ 2

N∑
i=1

(xi−x(n))e
−‖x(n)−xi ‖2

2σ2

N∑
i=1

e
− ‖x(n)−xi t‖2

2σ2

x(0) = x0

(8)

where h is the step length, and is usually taken as σ2 in the proposed scale-space hi-
erarchical clustering algorithms so that the iteration process has better convergence
characteristic [10].

Integrating the above merging procedure for sample clustering, the scale-
space-based hierarchical clustering algorithm is described as:

step 1) Let the iteration number i = 1. Initialize σ to a small enough value σ0, let
each sample point be a cluster and its cluster center is itself.

step 2) Find the new cluster center at σi for each cluster center obtained at scale
σi−1 by the iterative scheme in (8). Merge the clusters whose cluster centers
arrive at the same cluster center into a new cluster.

step 3) If there is more than one cluster, increase σ by a constant factor, i.e. σi+1 =
kσi , let i = i + 1, go to step 2).

step 4) Stop when there is only one cluster.

3.2.3. Cluster Validity

In the hierarchical clustering process for the sample point set, a hierarchical structure
of clusters is generated. In the different scale, different clusters are formed, and
further a series of price zones with different sizes is obtained. In order to obtain the
best price zone, the cluster validity problem is solved on the basis of human visual
perception and actual price zone partition.

(1) Lifetime

Each cluster has its own survival range of scale. When scale goes beyond this range,
it will merge or split into another cluster. The Witkin’s empirical observation ‘that
survive over a broad range of scale tend to leap out at the eye…’ [9], leads us to
adopt the notion of lifetime of a cluster as its validity criterion: A cluster with a
longer lifetime is preferred to one with a short lifetime. Lifetime of a cluster is
defined to the range of logarithmic scales over which the cluster survives, i.e. the
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logarithmic difference between the point when the cluster is formed and the point
when the cluster is absorbed into or merged with other clusters.

life = ln σ2 − ln σ1,

where life is the lifetime of a cluster; σ1 is the scale when the cluster is formed; σ2
is the scale when the cluster disappears.

(2) Compactness and Isolation

Intuitively, a cluster is good if the distances between the sample points inside the
cluster are small and those outside are large. To make this ideal operational, two
measures for the identification of good clusters, i.e. compactness and isolation of a
cluster are defined. For a cluster Ci , they are given as follows:

compactness =
∑

x∈Ci

e−‖x−x∗
i ‖2/2σ 2

∑
x∈Ci

∑
j

e−‖x−x∗
j ‖2/2σ 2 , isolation =

∑
x∈Ci

e−‖x−x∗
i ‖2/2σ 2

∑
x

e−‖x−x∗
i ‖2/2σ 2 ,

where x∗
i is the cluster center of cluster Ci ; For a good cluster, the compactness and

isolation are close to one.
Hierarchical clustering provides a sequence of clusters. Using the above three

validity criteria and integrating the actual price zone partition, the following proce-
dure is given to choose good clusters (i.e. optimal price zone) from the sequence
of clusters in hierarchy.

step 1) Let C = {C1, . . . , CK } be the set of all clusters in hierarchy which has the
following properties:

a. Its compactness and isolation is greater than a certain threshold;
b. It has at least n sample points (i.e. nodes);
c. The distance between its sample points is less than a certain value,

that is, the price difference at any two nodes in the cluster is less than
a certain value, which is expressed as:

|ρi − ρ j | =
∣∣∣∣∣

d∑
l=1

µl(hli − hlj )

∣∣∣∣∣ ≤ ε

where µl is the expected value of the shadow price for congested line
l; ε is the highest acceptable price difference within a zone. In the ac-
tual power market operation, µl is taken as the average of the shadow
prices in all possible operating conditions; ε can be determined by
consultation between the system operator and market participants ac-
cording to the marginal cost of the system.
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step 2) Initialize the set of real clusters U to be an empty set.
step 3) Pick the cluster Ck in C with the longest lifetime and put it into U . Remove

Ck itself plus the clusters in C that are contained in Ck and the clusters in
C that contain Ck .

step 4) Go to step 3) until C is empty.

4. Numerical Results

Two examples are provided on the IEEE 118-node system to test the proposed price
zone partition method based on scale space hierarchical clustering.

4.1. Case 1

Suppose lines 64–65, 69–77 possibly congested in the period of time, the sensi-
tivities of the power injections at each node to power flows on these two lines are
calculated, and further mapped into two-dimensional space, generated a sample
point. The plot of the 118 sample points is shown in Fig.1.

The scale-space-based hierarchical clustering algorithm clusters this sample
set with 118 two-dimensional points, where σ0 = 0.01, k = 1.025. Fig. 2 shows the
evolutionary plot of the cluster centers in the scale-space. By using the clustering
selection procedure, we pick good clusters from a sequence of clusters, and then
obtain 6 good clusters (shown in Table 1), i.e. 6 price zones (shown in Fig. 3).
The corresponding parameters for the clustering selection procedure are taken as
follows: the threshold of the compactness and isolation is 0.9; the cluster has at
least 5 sample points; the shadow prices for two congested lines are 10 $/MWh and
5 $/MWh, respectively; the highest acceptable price difference is 5 $/MWh.

Fig. 1. Plot of sample point set



192 H. YANG

Fig. 2. Evolutionary plot of cluster centers

Table 1. Clusters of nodes

Cluster Nodes in cluster Cluster center

1 1–43, 113–115, 117 (0.1356, −0.3689)
2 44–50 (0.2362, −0.2028)
3 51–58, 67 (0.4317, −0.2010)
4 59–64 (0.7050, −0.2034)
5 65–68, 68-76, 81, 116, 118 (0.0166, −0.1922)
6 77–80, 82–112 (0.0059, −0.5078)

4.2. Case 2

If congestion is more severe compared with that of Case 1, lines 64–65, 69–77,
37–38 and 69–70 are congested, and their shadow prices are 10 $/MWh, 5 $/MWh,
10 $/Mw and 5 $/MWh, respectively. The sensitivities of the nodal power injec-
tions to power flows on these four lines are mapped into four-dimensional space
and further 118 sample points are generated. The scale-space-based hierarchical
clustering algorithm clusters this sample set. The parameters for the cluster selec-
tion procedure are set the same as those in Case 1 (excluding the shadow prices for
congested lines).

By using the clustering selection procedure, we obtain 5 efficient clusters and
a lot of individual nodes (shown in Table 2 and Fig. 3). From Table 2 and Fig. 3,
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Fig. 3. Partitioning transmission network with 6 price zones

as the degree of congestion increases, the size of price zone is smaller than that of
Case 1, the nodes far from these congested lines are clustered into 5 zones, and each
node close to these congested lines becomes an individual zone so as to provide
right price signals.

Table 2. Clusters of nodes

Cluster Nodes in cluster

1 1–32, 113–115, 117
2 46–50
3 51–58, 67
4 59–64
5 77–80, 82–112

Remark each other node is an individual cluster
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Fig. 4. Partitioning transmission network with 5 price zones and some independent nodes

5. Conclusion

The scale-space theory simulating human visual system is introduced, and further
a scale-space-based hierarchical clustering method for price zone partition is pro-
posed in this paper. This proposed method is successfully applied to the 118-node
system in two congestion cases. As indicated above, the following conclusions are
made:

1. The sensitivities of nodal power injections to power flows on congested lines
are extracted as cluster feature, which can not only reflect nodal price but also
do not vary with operating condition so as to provide relatively stable price
zone partition in a period of time.

2. The scale-space-based hierarchical clustering simulates human visual system.
With the range of scale from small to large, the sample points are merged
gradually, and consequently a hierarchical structure of clusters in the scale-
space is generated.

3. A set of clustering selection rules is proposed on the basis of human visual
perception and actual network partition problem. In the application of this
proposed method, the cluster selection rules are still modified according to
knowledge about power market operation.
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