
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 48, NO. 3–4, PP. 197–218 (2004)

DIFFERENCE SEQUENCE COMPRESSION OF
MULTIDIMENSIONAL DATABASES

István SZÉPKÚTI

ING Nationale-Nederlanden Hungary Insurance Co. Ltd.
H-1061 Budapest, Andrássy út 9, Hungary

e-mail: szepkuti@inf.u-szeged.hu

Received: August 31, 2002

Abstract

The multidimensional databases often use compression techniques in order to decrease the size of the
database. This paper introduces a new method called difference sequence compression. Under some
conditions, this new technique is able to create a smaller size multidimensional database than others
like single count header compression, logical position compression or base-offset compression.

Keywords: compression, multidimensional database, On-line Analytical Processing, OLAP.

1. Introduction

1.1. Motivation

In this subsection, the relevance of multidimensional database compression is dis-
cussed. For the time being, it is enough to think of the multidimensional database
as an n-dimensional matrix or array. Let M denote an n-dimensional matrix and
M(i1, i2, . . . , in) a cell of it (i1 ∈ D1, i2 ∈ D2, . . . , in ∈ Dn). Dj is the j th dimen-
sion of M, while the elements of Dj are called dimension values (j = 1, 2, . . . , n).

The total number of cells in a multidimensional database is the product of
the number of dimension values for all dimensions = ∏n

j=1

∣∣Dj

∣∣. On the other
hand, these databases are often sparse, that is there are a lot of empty cells in them.
Fortunately, there are several compression techniques which are able to remove a
part or all of the empty cells from the multidimensional database.

Why should we compress multidimensional databases?

• The memory operations are significantly faster than hard disk operations,
often by several orders of magnitude.

• The smaller the database, the more likely it will fit into the physical memory.

• In a virtual memory environment, the smaller the database, the more it will
fit into the physical memory and the fewer virtual memory pagings will be
necessary.

198 I. SZÉPKÚTI

1.2. Results

The results of this paper can be summarized as follows:

• A new compression technique called difference sequence compression (DSC)
is presented here.

• It is demonstrated that DSC results in a smaller database size than other
compression techniques like single count header compression (SCHC), log-
ical position compression (LPC) and base-offset compression (BOC), after
making certain necessary assumptions.

• It is verified, using experiments on benchmark databases (TPC-D and APB-
1), that DSC outperforms BOC.

• Even in the case of the APB-1 benchmark database, the multidimensional
representation with DSC generally results in a smaller size than the corre-
sponding table representation version compressed with different compression
programs. There are only two exceptions: bzip2 and WinRAR.

1.3. Related Work

Several papers deal with the multidimensional model of databases and the com-
pression of multidimensional databases. In this subsection, the most relevant ones
are mentioned which are related to our subject in a way.

A thorough survey of logical multidimensional data models can be found in
[15]. It does not concern itself with the possible compression of the multidimen-
sional databases because it is more related to the physical representation than the
logical model.

A variation of SCHC is described in [11]. In addition to this variation, the
paper introduces two other compression techniques: LPC and BOC. With LPC,
the size of the header can be decreased by 50%, when the size of SCHC header
is maximal. BOC is able to decrease the header still further. In this paper, a
new compression technique called DSC is introduced which is able to decrease the
header even further in some circumstances. Table1 and Table 2 are also from [11],
except lines of the tables that show additional data on DSC and SCHC.

SCHC was introduced in [1], and this paper was also cited by several others,
e.g. in [2, 3, 5, 8, 9, 13].

GOLDSTEIN et al. [2] introduce a page-level compression technique. Their
basic observation is as follows. If we consider the actual range of values that appear
in a given column on a given page, this is much smaller than the range of values in
the underlying domain. If we know the range of potential values, we can represent
any value in this range by storing just enough bits to distinguish between the values
in this range.

The key ideas in the paper of GRAEFE et al. [3] are to compress attributes
separately, to utilize the same compression scheme for each attribute of a domain,
and to perform data manipulations before decompressing the data. In a simple

DIFFERENCE SEQUENCE COMPRESSION OF MULTIDIMENSIONAL DATABASES 199

performance comparison they showed that for data sets larger than the available
memory, performance gains greater than the compression factor could be obtained
as a larger fraction of the data could be retained in the workspace allocated to a query
processing operator. With a compression factor of two, they obtained performance
gains of a factor of three or better.

NG and RAVISHANKAR [5] present and then discuss three block-based data-
base compression techniques. Two of them, BIT and ATS, are adaptations of
conventional data compression techniques. The third one, TDC, exploits the re-
dundancy among tuples in a different way to achieve compression. The idea of BIT
is to compact every attribute value so that the entire tuple is bit-compressed (e.g.
the values in the attribute A = {0, 1, . . . , 899} are represented in 10 bits instead of
being represented by 3 ASCII characters). In the case of adaptive text substitution
(ATS), if a sequence of symbols has occurred previously, it is replaced by a pointer
to that previous occurrence. In [5] they employ ATS to compress and decompress
a block of tuples.

In tuple differential coding (TDC), instead of storing tuples explicitly in tab-
ular form as conventional databases do, we may capture and store the differences
among them. If these differences require less space for storage on average than
the original tuples, compression is achieved. Given a tuple t , it is converted to a
unique integer ϕ(t), which represents its ordinal position. Then all tuples are or-
dered by their ϕ(t) values. The relation is partitioned into blocks (subsets). Within
the blocks, using the first tuple as a reference, each successive tuple is replaced by
its difference (in ordinals) with respect to its preceding one. In general, if ti and t j

are consecutive tuples in a block, the latter tuple is replaced by ϕ−1(ϕ(t j) − ϕ(ti)).
Since the differences are numerically smaller than the tuples, they require fewer
bytes of storage. The variable size differences are encoded by using run-length
encoding to encode the number of leading zero components in each difference, thus
achieving compression. The most important differences between TDC and DSC
are listed below:

• TDC converts the entire tuple into an integer number (ϕ(t) values), whereas
with DSC only the primary key (logical positions) is converted.

• In TDC, the differences within a block are converted back to tuples, which are
then compressed using run-length encoding. In DSC, differences are stored
in the difference sequence without converting them back.

• The compressed difference tuples of TDC vary in size. Nevertheless, each
element of the difference sequence occupies the same number of bits.

The study of RAY et al. [8] shows that attribute level compression is the best in
a query processing perspective, but it has a poor compression ratio. They presented
a modified attribute level compression algorithm based on non-adaptive arithmetic
compression called COLA, which simultaneously provided good query processing
and reasonable compression ratios. In the case of attribute level compression such
as COLA, every attribute is compressed separately. DSC compresses each attribute
in the primary key together to form a sequence of logical positions, which is then
compressed still further.

200 I. SZÉPKÚTI

In [9], SHOSHANI briefly mentions single count header compression in its
original form as an example.

TOLANI and HARITSA [13] propose a new compression tool for XML doc-
uments called XGrind which directly supports queries in the compressed domain.
A special feature of XGrind is that the compressed document retains the structure
of the original document, permitting reuse of the standard XML techniques for
processing the compressed document. XGrind simultaneously delivers improved
query processing times and reasonable compression ratios.

The ITU-T Recommendation H.261 is specified in [4]. This video compres-
sion scheme uses two types of frames: I -frames (or intra-frames) and P-frames (or
inter-frames). These frames might follow each other like the sequence:

I P P P I P P P P . . . (1)

The same sequence can be written as a regular expression: (I P∗)∗. The P-frames
are pseudo-differences. The I -frames are related to the jumps of DSC, while the
P-frames are associated with the positive elements of the difference sequence. In
fact, DSC was inspired by the H.261 video compression method. The differences
between H.261 and DSC are the following:

• H.261 is employed to compress video data, whereas in DSC a strictly increas-
ing sequence of integer numbers is compressed.

• H.261 forms an alternating sequence of I -frames and P-frames. DSC uses
a ‘jump’ sequence and a ‘difference’ sequence. A ‘0’ in the difference se-
quence indicates that a jump is coming. For every nth jump, a pointer to the
corresponding 0 element of the difference sequence is stored.

DSC may be viewed as a form of differential encoding, which is a kind of
source encoding. (See [12] for example.) The source encoding is usually lossy,
which is not a problem if, say, we want to compress a sound sample with differential
encoding. However, there are a lot of applications of multidimensional databases
where lossy compression is unacceptable. DSC was designed to be lossless. This is
important because DSC compresses the header. We have to decompress the header
without any losses in order to be able to determine the necessary physical position
exactly.

Another multidimensional database compression method, called conjoint di-
mension, appeared in Express. Express was the first multidimensional analytical
tool and dates back to 1970 [7]. Now it is a product of Oracle.

Let us suppose that the finite relation R ⊆ D1 × · · · × Dn has a special
property: some given elements of D1 × · · · × Dh (1 ≤ h ≤ k ≤ n and the unique
primary key ofR is constituted by D1 , . . . , Dk) cannot be found in the corresponding
projection of R. So, in order to eliminate empty cells from the multidimensional
array representation, we can define an equivalent R′ relation:

R′ = {((d1, . . . , dh), dh+1, . . . , dn) | ((d1, . . . , dh), dh+1, . . . , dn) ∈
∈ Conjoint × Dh+1 × · · · × Dn such that (d1, . . . , dh, dh+1, . . . , dn) ∈ R}

DIFFERENCE SEQUENCE COMPRESSION OF MULTIDIMENSIONAL DATABASES 201

where

Conjoint = πD1,...,Dh (R)

Here, π denotes the projection operation of relations.

We have to be careful with conjoint dimensions. Consider, for example, the
case when h = k, that is, all elements of the unique primary key are put into
Conjoint. One can readily see that we could eliminate all empty cells this way and
the multidimensional representation would become identical with the table-based
one. (The multidimensional representation of a relation is a multidimensional array
or matrix, whereas the table-based representation is nothing more than a table in
a relational database.) Hence, we must exclude this extreme case of Conjoint,
because it probably degrades the overall performance.

The paper of ZHAO et al. [16] introduced chunk-offset compression. In [16],
the compressed multidimensional array occupied less space than the corresponding
table representation of it. Moreover, at the same time, the compressed multidimen-
sional array resulted in a faster operation than the table-based physical representa-
tion.

First, the n-dimensional array is divided into small n-dimensional chunks.
Then the dense chunks (where the density ρ > 40%) are stored without any mod-
ification. Sparse chunks are condensed using ‘chunk-offset compression.’ Here,
just the existing data are stored using (offsetInChunk, data) pairs. This is the key
idea behind the technique. In this compression method, not all the sparse cells
are removed from the array. In the worst-case scenario when all chunks are just
slightly denser than 40%, nearly 2.5 times more space is needed to store the cell
values because all empty cells are also stored in this case. This may result in up
to 2.5 times more disk input/output operation than absolutely necessary, when the
chunks are read or written.

1.4. Organization

The rest of the paper is organized as follows. Section 2 describes three previously
published compression techniques: single count header compression, logical posi-
tion compression and base-offset compression. Section 3 introduces an improved
method, that of difference sequence compression. The different compression tech-
niques are compared with each other in Section 4. The theoretical results are then
tested in experiments described in Section 5. Section 6 rounds off the discussion
with a number of conclusions and suggestions for future study. Lastly, for com-
pleteness, we have the Acknowledgements, an appendix section and a references
section.

202 I. SZÉPKÚTI

2. Compression Techniques

Throughout this paper we employ the expressions ‘multidimensional representa-
tion’ and ‘table representation,’ which are defined as follows.

Definition 1 Suppose we intend to represent relation R physically. The multidi-
mensional (physical) representation of R is as follows:

• A compressed array, which only stores the nonempty cells, one nonempty
cell corresponding to one element of R;

• The header, which is needed for the logical-to-physical position transforma-
tion;

• One array per dimension in order to store the dimension values.

The table (physical) representation consists of the following:

• A table, which stores all elements of relation R;
• A B-tree index in order to speed up the access to given rows of the table,

when the entire primary key is given.

�
As it will be shown later, difference sequence compression (DSC) improves

single count header compression (SCHC), logical position compression (LPC) and
base-offset compression (BOC). These latter methods will be outlined in this sec-
tion.

Single count header compression. By transforming the multidimensional
array into a one-dimensional array, we obtain a sequence of empty and nonempty
cells:

(E∗F∗)∗ (2)

In the above regular expression, E is an empty cell and F is a nonempty one.
The single count header compression (SCHC) stores only the nonempty cells and
the cumulated run lengths of empty cells and nonempty cells. In [10], we used
a variant of SCHC. The difference between the two methods is that the original
method accumulates the number of empty cells and the number of nonempty cells
separately. These accumulated values are placed in a single alternating sequence.
The sum of two consecutive values corresponds to a logical position. (The logical
position is the position of the cell in the multidimensional array before compression.
The physical position is the position of the cell in the compressed array.) In [10],
instead of storing a sequence of values, we chose to store pairs of a logical position
and the number of empty cells up to this logical position: (Lj , Vj). Just one pair
is stored per E∗F∗ run, and L j points to the last element of the corresponding run.
Let us suppose that we want to find the physical position P(L) of logical position
L and L j−1 < L ≤ L j . Then the physical position

P(L) =
{

L − Vj , if L j−1 + Vj − Vj−1 < L;
undefined, otherwise. (3)

DIFFERENCE SEQUENCE COMPRESSION OF MULTIDIMENSIONAL DATABASES 203

P(L) is undefined if and only if the cell at logical position L is empty. Now let us
assume that the physical position P is given and Lj−1 − Vj−1 < P ≤ L j − Vj . We
can compute its logical position L(P) from the following simple formula:

L(P) = P + Vj . (4)

In the rest of the paper when we mention SCHC we refer to the variant of this
compression scheme defined in [10].

Definition 2 The array storing the (L j , Vj) pairs of logical positions and number
of empty cells will be called the SCHC header. �

The following two compression techniques improve SCHC when the SCHC
header is maximal.

Logical position compression. The size of the SCHC header depends on the
number of E∗F∗ runs. In the worst case there are N = |R| runs, where R is the
relation which is represented multidimensionally using SCHC. Then the size of the
SCHC header is 2N ι. (We assume that L j and Vj are of the same data type and each
of them occupies ι bytes of memory.) But in this case it is better to build another
type of header. Instead of storing the (Lj , Vj) pairs, it is more convenient to store
just the L j sequence of each cell (that is not the Lj sequence of runs).

The logical-to-physical position conversion part is carried out through a sim-
ple binary search. The physical position P(L) of a logical position L is defined as
follows. The physical position

P(L) =
{

j, if there exists an L j such that L = L j ;
undefined, otherwise. (5)

The physical-to-logical position conversion is just a simple lookup of an array
element:

L(P) = L P, (6)

where L(P) denotes the logical position of physical position P .

Definition 3 The compression method which uses just the sequence of logical po-
sitions will be called logical position compression (LPC). The Lj sequence used in
logical position compression will be called the LPC header. �

The number of E∗F∗ runs is between 1 and N = |R|. Let ν denote the
number of runs. Because the size of Lj and Vj is the same, the header is smaller
with logical position compression if N

2 < ν. Otherwise, if N
2 ≥ ν, the logical

position compression does not result in a smaller header than the single count
header compression. The header with logical position compression is half the size
of SCHC header in the worst case, that is when ν = N .

Base-offset compression. In order to store the entire Lj sequence, we may
need a huge (say 8-byte) integer number. However, the sequence is strictly increas-
ing:

L0 < L1 < · · · < L N−1. (7)

204 I. SZÉPKÚTI

Here, N denotes the number of elements in the Lj sequence. The difference se-
quence, �L j , contains significantly smaller values. Based on this observation, we
may compress the header still further.

Suppose that we need ι bytes to store one element of the Lj sequence. In
addition, there exists a natural number l such that for all k = 0, 1, 2, . . . the

L (k+1)l−1 − Lkl (8)

values may be stored in θ bytes and θ < ι. In this case we can store two sequences
instead of L j :

(i) L0, Ll, L2l, L3l, . . . , L⌊
N−1

l

⌋
l
,

(ii) L0 − L0, L1 − L0, . . . , Ll−1 − L0,

Ll − Ll, Ll+1 − Ll, . . . , L2l−1 − Ll,

. . . ,

L⌊
N−1

l

⌋
l
− L⌊

N−1
l

⌋
l
, L⌊

N−1
l

⌋
l+1

− L⌊
N−1

l

⌋
l
, . . . , L N−1 − L⌊

N−1
l

⌋
l
,

where �x� means the integer part (floor) of x : �x� = max{y | y ≤ x and y is
integer}.
Definition 4 Sequence (i) will be called the base sequence, and sequence (ii) will
be called the offset sequence. For convenience, let

Bk = Lkl, (9)

Oj = L j − B⌊
j
l

⌋, (10)

where k = 0, . . . ,
⌊

N−1
l

⌋
and j = 0, . . . , N − 1. The compression method based

on these two sequences will be labelled base-offset compression (BOC). The base
and the offset sequences together will be called the BOC header. �

From the definition of the offset sequence, the following formula for the
logical position follows immediately:

L j = B⌊
j
l

⌋ + Oj . (11)

Using this equation, we candefine the logical-to-physical and the physical-to-logical
position conversions as we did for LPC.

Now, let us compare the size of the LPC header to the BOC header. One
element of the base sequence occupies ι bytes, while one offset sequence element
requires θ bytes. The number of elements in the Lj sequence is N . Thus, the space
requirements of the two techniques are the following:

LPC: N ι,

BOC:

(⌊
N − 1

l

⌋
+ 1

)
ι + Nθ.

DIFFERENCE SEQUENCE COMPRESSION OF MULTIDIMENSIONAL DATABASES 205

If N tends to ∞, one can clearly see that the multidimensional representation with
BOC will occupy less space than that with LPC, if

ι

l
+ θ < ι. (12)

More details about these three compression techniques can be found in [1, 10, 11].

3. Improvements

The main new idea we propose here is that more flexibility is possible when an
absolute address is stored, namely in case the relative address (offset) might be too
large to store on given s bits.

The sequence of logical positions is strictly increasing:

L0 < L1 < · · · < L N−1.

In addition, the difference sequence �Lj contains smaller values than the original
L j sequence. This property was utilized by the base-offset compression and will
be used by the difference sequence compression, as well.

During the design of the data structures and the searching algorithm, the
following principles were used:

• Compress the header so that the decompression is quick.
• It is not necessary to decompress the entire header.
• Searching can be done during decompression, and the decompression stops

immediately when the header element is found or when it is demonstrated
that the header element cannot be found (that is, when the corresponding cell
is empty).

Definition 5 Let us introduce the following notations.

N is the number of elements in the sequence of logical positions (N > 0);
L j is the sequence of logical positions (0 ≤ j ≤ N − 1);
�L0 = L0;
�L j = L j − L j−1, j = 1, 2, . . . , N − 1;

The Di sequence (Di ∈ {0, 1, . . . , D}, i = 0, 1, . . . , N − 1) is defined as follows:

Di =
{

�Li , if �Li ≤ D and i > 0;
0, otherwise;

(13)

where D = 2s − 1 and s is the size of one Di sequence element in bits.

206 I. SZÉPKÚTI

The Jk sequence will be defined recursively in the following way:

Jk =
{

L0, if k = 0;
L j , otherwise, where j = min{i | �Li > D and Li > Jk−1}. (14)

Here the Di sequence is called the overflowdifference sequence. There is anobvious
deviation between �Li and Di , but the latter will also be called the difference
sequence, if it is not too disturbing. As for Jk , it is called the jump sequence.
The compression method using the Di and Jk sequences will be called difference
sequence compression (DSC). The Di and Jk sequences together will be labelled
as DSC header. �

Definition 6 We are going to use the following: We say that y is an x-bit unsigned
integer, if y ∈ {0, 1, . . . , 2x − 1}. �

Using this notion we may assert that the elements of the Di sequence are s-bit
unsigned integers.

Notice here that �Li and Di are basically the same sequence. The only
difference is that someelements of the original difference sequence�Li are replaced
with zeros, if and only if they cannot be stored in s bits.

The difference sequence may also be called relative logical position sequence
and we shall call the jump sequence the absolute logical position sequence.

From the definitions of Di and Jk , it can be seen that, for every zero element of
the Di sequence, there is exactly one corresponding element in the Jk sequence. For
example, let us assume that D0 = D3 = D5 = 0, and D1, D2, D4, D6, D7, D8 > 0.
Then the aforementioned correspondence is shown in the following table:

D0 D1 D2 D3 D4 D5 D6 D7 D8 …

J0 J1 J2 …

From the previous definition, the recursive formula below follows for Lj .

L j =
{

L j−1 + Dj , if Dj > 0;
Jk, otherwise, where k = min {i | Ji > L j−1}. (15)

In other words, every element of the Lj sequence can be calculated by adding zero
or more consecutive elements of the Di sequence to the proper jump sequence
element. For instance, in the above example

L0 = J0;
L1 = J0 + D1;
L2 = J0 + D1 + D2;
L3 = J1;
L4 = J1 + D4;

DIFFERENCE SEQUENCE COMPRESSION OF MULTIDIMENSIONAL DATABASES 207

and so on.
Now we will show that there is a simple algorithm which is able to find L in

the L j sequence if the corresponding cell is not empty. In order to do this we need
Ak sequence of pointers which is defined as follows.

Definition 7 For all k, Ak = j , if and only if Jk = L j . We will refer to the Ak
sequence as the accelerator sequence. �

Corollary 1 Suppose Jk is an element of the jump sequence. Then the correspond-
ing difference sequence element is DAk , which equals zero by definition. Thus, the
accelerator sequence can be used to find the corresponding difference sequence
element of a jump quite quickly.

int find_header(L)
{

define and initialize variables;
with binary search, find the jump element jump[k], for which
L <= jump[k], and, if k-1 >= 0, jump[k-1] < L;
if (L equals jump[k])

return accelerator[k];
else
{

if (k equals 0)
{

j = 0;
decomp = jump[0];

}
else
{

j = accelerator[k-1];
decomp = jump[k-1];
while (decomp < L and j < size of the difference array - 1)
{

j = j + 1;
decomp = decomp + difference[j];

}
}
if (decomp equals L)

return j;
else

return -1;
}

}

Fig. 1.

The algorithm can be found in Fig. 1. In this algorithm, the previously de-
fined sequences are denoted as follows: jump[k] = Jk , difference[j] = D j ,

208 I. SZÉPKÚTI

accelerator[k] = Ak . During decompression, in the variable decomp, the sum
of one jump sequence element and zero or more consecutive difference sequence
elements is stored according to the recursive formula for Lj given in (15). The
algorithm returns a value of j , where L = Lj , if the cell at logical position L is not
empty. Otherwise, it returns a value of −1.

In order to save space, we can modify the above definition of Ak and store only
A0, An, A2n, . . . , that is just every nth element of the original accelerator sequence.
If we do so, the algorithm has to be altered slightly as well. For example, the else
branch containing the while loop has to be modified like in Fig.2.

...
else
{

k = k - 1;
k = k - k % n; /* this ensures that k is a

multiple of n */
j = accelerator[k/n]; /* only every nth element of the

original accelerator sequence
is stored in this sequence */

decomp = jump[k];
while (decomp < L and j < size of the difference array - 1)
{

j = j + 1;
if (difference[j] equals 0)
{

k = k + 1;
decomp = jump[k];

}
else

decomp = decomp + difference[j];
}

}
...

Fig. 2.

In this case, we have to expect zero difference sequence elements as well.
When a zero comes, we will take the next element of the jump sequence. However,
at the beginning of the algorithm it is enough to find L with a binary search among
the elements J0, Jn, J2n, . . . because the accelerator sequence only contains pointers
for these jumps.

The accelerator sequence is a useful method for speeding up the retrieval
(point query) operation for the following reasons:

• It is not necessary to store the accelerator sequence on the hard disk since it
can be populated easily based on the difference sequence in one pass. This
is needed only once, after the difference array is loaded from the hard disk
into the memory.

DIFFERENCE SEQUENCE COMPRESSION OF MULTIDIMENSIONAL DATABASES 209

• In practice it does not increase the memory requirements significantly, as it
can be seen from the argument below.

Now, we are going to compare the size of the accelerator sequence to the size
of the jump sequence. Let us suppose that the size of one jump sequence element is
ι, where one accelerator sequence element is α. The jump sequence has M elements
(i.e. there are M jumps). In addition, let us assume that only every nth element of
the accelerator sequence is stored, that is A0, An , A2n , …

size of the accelerator sequence

size of the jump sequence
=

(⌊
M−1

n

⌋ + 1
)
α

Mι
≤

(
M−1

n + 1
)
α

Mι
= (16)

=
(

1

n
+ 1

M
− 1

Mn

)
α

ι
→ α

nι
, if M → ∞. (17)

In the experiments performed the parameters had the following values: α = 32 and
n = 16. The third variable, ι, was 64 for the TPC-D benchmark database, and 32
for the APB-1 database. Hence the value of α

nι
was 3.1% or 6.3%. But the jump

sequence is just one part of the multidimensional representation, so the accelerator
sequence did not increase the memory requirements significantly.

4. Comparison of Compression Techniques

The difference between BOC and DSC is that

• the logical position L j is calculated as the sum of a base array element and
an offset array element in BOC, while

• L j is derived from the jump and the difference arrays for DSC.

It is easy to see that the number of elements in the offset array and the differ-
ence array is just the same, but are there fewer jumps than base array elements? The
answer to this question is that there are not more jumps than base array elements
in the case when the size of one offset array element (θ) is equal to or less than the
size of one difference array element (ζ) or, written in symbols,

θ ≤ ζ.

Throughout this section the sizes will be measured in bits. We assume that
we insert a jump only when it is absolutely necessary, that is when the difference
between two consecutive elements of the Lj sequence of logical positions is so large
that it cannot be stored in ζ bits. This assumption is really a direct consequence of
the definition of the jump sequence.

Theorem 1 There are never more jumps than base array elements if θ ≤ ζ .

210 I. SZÉPKÚTI

Proof. Assume that there are b elements in the base array, where b =⌊
N−1

l

⌋ + 1.
The base array elements partition the Lj sequence of logical positions into b buckets.
For example, let us take the following sequences:

B0 B1 B2 … Bb−1

L0 L1 L2 L3 L4 L5 L6 … L N−2 L N−1

With the above sequences, the buckets are defined as follows:

bucket0 = {L0, L1, L2},
bucket1 = {L3, L4, L5},

. . .

bucketb−1 = {L N−2, L N−1}.
Let us suppose indirectly that there are more jumps than base array elements (b).
It means that there is at least one bucket that has at least two jumps. Let us assume
that bucketi contains two jumps at L j and Lk (L j < Lk). The following inequality
obviously holds:

Bi ≤ L j < Lk . (18)

In addition to this, if i < b − 1, then

Lk < Bi+1. (19)

Bi , L j and Lk are in the same bucket: Bi, L j , Lk ∈ bucketi . It means that the
Lk − Bi value can be stored in θ bits. It also means that one ζ -bit unsigned integer
is sufficient to store all of these elements (ζ ≥ θ):

L j+1 − L j , L j+2 − L j+1, . . . , Lk−1 − Lk−2, Lk − Lk−1. (20)

That is at Lk , there must not be a jump, which is a contradiction. This implies that
there are never more jumps than base array elements if θ ≤ ζ . �

Corollary 2 The multidimensional representation with DSC does not result in a
bigger database size than with BOC if θ = ζ . (The size of one offset array element
is just the same as the size of one difference array element.)

If we decrease the size of one difference array element from ζ1 to ζ2 (ζ1 >
ζ2 > 0), then the number of jumps will increase in such a way that new jumps will
be inserted between old ones. How many new jumps will be inserted? We have to
insert a new jump for all difference sequence elements that do not fit into a ζ2-bit
unsigned integer.

On the one hand, the number of jumps will increase from M1 to M2 (M1 <
M2), but on the other, the size of one difference sequence element will decrease
from ζ1 to ζ2.

DIFFERENCE SEQUENCE COMPRESSION OF MULTIDIMENSIONAL DATABASES 211

Definition 8 Let us introduce the distribution function of �Lj as follows:

F(x) = P(�L j < x). (21)

�

Theorem 2 Assume that we store the difference array elements in ζi -bit unsigned
integers (i = 1, 2) and that we decrease the size of the difference sequence elements
from ζ1 to ζ2 (ζ1 > ζ2 > 0). The jump sequence elements are stored in ι bits (ι > 0).
If the slope of the F(2x) function between ζ2 and ζ1 is less than 1

ι
, then we are

going to obtain a smaller multidimensional representation after the decrease of the
difference array.

Proof. We store the difference array elements as ζi -bit unsigned integers (i = 1, 2).
This means that the number of jumps is

Mi = P(�L j ≥ 2ζi)N = (1 − F(2ζi))N . (22)

How many new jumps will be inserted if we decrease the size of one difference
sequence element from ζ1 to ζ2? The answer is

M2 − M1 = (1 − F(2ζ2))N − (1 − F(2ζ1))N = (F(2ζ1) − F(2ζ2))N . (23)

The cost of changing the size of one difference sequence element is (M2 − M1)ι
bits, because the size of the jump array will increase with this. On the other hand,
the benefit of this modification is N(ζ1 − ζ2). The latter formula stands for the size
difference of the old and the new difference sequence. Let us examine when the
benefit is larger than the cost:

N(ζ1 − ζ2) > (M2 − M1)ι (24)

N(ζ1 − ζ2) > (F(2ζ1) − F(2ζ2))N ι (25)
ζ1

ι
− ζ2

ι
> F(2ζ1) − F(2ζ2) (26)

1

ι
>

F(2ζ1) − F(2ζ2)

ζ1 − ζ2
(27)

That is, the benefit is bigger than the cost when the slope of the F(2x) function
between ζ2 and ζ1 is less than 1

ι
. �

Remark. The sizes were measured in bits. For efficiency reasons we may
not want to allow all the possible sizes. For example, we might restrict the domain
to 8, 16, 32 and 64. This is exactly what we did in our experiments because the
programming language had built-in support for 8-, 16-, 32- and 64-bit unsigned
integers.

212 I. SZÉPKÚTI

5. Experiments

We carried out experiments in order to check whether DSC is able to create a
smaller-sized database than the previously published BOC. We also tested how
quickly we could retrieve the contents of cells when the database was compressed
using DSC. The hardware and software components used for our experiments are
listed in Appendix.

In the experiments we made use of two benchmark databases: TPC-D [14]
and APB-1 [6]. One relation was derived per benchmark database in exactly the
same way as described in [11]. Then these relations were stored physically with a
multidimensional representation and table representation.

When we compare the difference sequence compression of the multidimen-
sional representation of relation R to compressions of the table representation of
relation R, we obtain an interesting result. (Here R is a relation derived from one
of the benchmark databases: TPC-D or APB-1.) Both Table1 and Table 2 show the
difference sequence compression results in a smaller multidimensional representa-
tion than base-offset compression. In the case of the TPC-D benchmark database,
the multidimensional representation with BOC turned out to be already smaller
than all those for alternative compression techniques of the table representation
(see [11]).

In the APB-1 benchmark database, BOC was less successful. It produced a
slightly bigger database than the compressions of the table representation. However,
with the exceptionof bzip2 andWinRAR,DSCoutperformed the other compressors.

Table 1. TPC-D benchmark database

Compression Size in bytes Percentage

Table representation
Uncompressed 279,636,324 100.0%
ARJ 92,429,088 33.1%
gzip 90,521,974 32.4%
WinZip 90,262,164 32.3%
PKZIP 90,155,633 32.2%
jar 90,151,623 32.2%
bzip2 86,615,993 31.0%
WinRAR 81,886,285 29.3%

Multidimensional representation
Single count header compression 145,256,792 51.9%
Base-offset compression 74,001,692 26.5%
Difference sequence compression 67,925,100 24.3%

It is worth making a comparison here with SCHC as well. In TPC-D, SCHC

DIFFERENCE SEQUENCE COMPRESSION OF MULTIDIMENSIONAL DATABASES 213

Table 2. APB-1 benchmark database

Compression Size in bytes Percentage

Table representation
Uncompressed 1,295,228,960 100.0%
jar 124,462,168 9.6%
gzip 124,279,283 9.6%
WinZip 118,425,945 9.1%
PKZIP 117,571,688 9.1%
ARJ 115,085,660 8.9%
bzip2 99,575,906 7.7%
WinRAR 98,489,368 7.6%

Multidimensional representation
Base-offset compression 125,572,184 9.7%
Difference sequence compression 113,867,897 8.8%
Single count header compression 104,959,936 8.1%

resulted in an almost twofold database size than BOC. Whereas with the APB-1
benchmark database, SCHC beat even DSC (but the multidimensional representa-
tion with SCHC is still bigger than the table representation compressed with bzip2
or WinRAR). The reason for this is that almost every run in the TPC-D database
contains just one nonempty cell. So the number of runs was almost maximal.
Whereas the tested relation in APB-1 is a time series, the runs containing at least 17
consecutive nonempty items. This kind of relation can be compressed much better
with SCHC than the other available methods.

The speed of retrieval was also tested in the two benchmark databases just
like in [11]. Random samples were taken from the tested relations. The sample
sizes were 100, 500, 1,000, 5,000, 10,000, 50,000 and 100,000 in the experiments.
Then, with point queries, we searched for these sample elements one by one in the
table representation with the help of the B-tree index, and in the multidimensional
representation using the DSC header. The elapsed time was measured in seconds.
Table 3 shows the results of the experiments in the case of DSC.

The first column shows the sample size. Columns 2 – 4 relate to the TPC-D
benchmark database, columns 5 – 7 to APB-1. Columns 2 and 5 tell us how long it
took to find the sample elements in the table representation. Columns 3 and 6 do
the same for the multidimensional representation with DSC. Columns 4 and 7 are
quotients. They demonstrate how many times faster the multidimensional repre-
sentation was than the table representation in our experiments. These quotients, as
functions of the sample size, are also depicted in Fig.3.

As it can be seen in Table 3 and Fig. 3, the multidimensional representation
with DSC was 1.3 – 18.8 times faster than the table representation. The reason
behind this is that, in an ideal situation, the entire DSC header can be loaded

214 I. SZÉPKÚTI

Table 3. The speed of retrieval in the case of DSC

TPC-D APB-1
Sample Table Array Quotient Table Array Quotient

100 3.0 1.4 2.1 4.6 1.8 2.5
500 9.9 6.3 1.6 13.0 7.0 1.9

1,000 15.4 11.6 1.3 23.1 13.6 1.7
5,000 123.0 48.8 2.5 189.5 63.4 3.0

10,000 308.8 87.0 3.5 420.4 115.5 3.6
50,000 1,489.6 150.5 9.9 2,115.9 416.2 5.1

100,000 2,891.8 154.1 18.8 4,231.1 794.7 5.3

Table 4. The speed of retrieval in the case of SCHC

TPC-D APB-1
Sample Table Array Quotient Table Array Quotient

100 4.7 6.2 0.8 5.3 1.9 2.8
500 23.9 25.4 0.9 15.3 7.3 2.1

1,000 40.7 44.0 0.9 26.1 14.2 1.8
5,000 173.4 161.4 1.1 223.0 62.2 3.6

10,000 329.3 311.9 1.1 442.6 106.0 4.2
50,000 1580.8 1644.5 1.0 2173.9 331.1 6.6

100,000 3196.5 4029.7 0.8 4344.5 620.7 7.0

into the physical memory. Then we have to read from the hard disk only once in
order to retrieve the content of the cell if we want to execute a point query in the
multidimensional representation. With the table representation, first we have to
find the record ID using the B-tree index. Afterwards we can retrieve the necessary
record. This process may need significantly more hard disk operations than the
previous one.

Table 4 and Fig. 4 show the results for SCHC in a manner similar to that of
DSC. Curiously, SCHC was unable to speed up the retrieval operation in the TPC-D
database. In APB-1, the speed-up factor was between 1.8 and 7.0. This behaviour
can be accounted for by the size differences between the two compressions: DSC
and SCHC.

DIFFERENCE SEQUENCE COMPRESSION OF MULTIDIMENSIONAL DATABASES 215

0

0 20,000 40,000 60,000 80,000 100,000

TPC−D APB−1

5

10

15

20

Fig. 3. The speed of retrieval for DSC as a function of the sample size

6. Conclusion

In this paper we introduced a new compression method called difference sequence
compression (DSC).

It has been shown that the difference sequence compression is able to cre-
ate a smaller multidimensional physical representation than other previously pub-
lished methods such as single count header compression (SCHC), logical position
compression (LPC) and base-offset compression (BOC) under certain conditions.
Difference sequence compression does not result in a bigger multidimensional rep-
resentation than base-offset compression if the size of the difference sequence is
exactly the same as the size of the offset sequence. Using the distribution function of
the original difference sequence (�Lj), a condition was given when it is beneficial
to change the size of the difference sequence elements to save space.

From experiments on benchmark databases (TPC-D and APB-1) we were
able to verify that difference sequence compression can beat base-offset compres-
sion, producing improvements of some 8 – 9% of the multidimensional database
compressed with BOC.

Even with the APB-1 benchmark database, the multidimensional representa-
tion with difference sequence compression resulted in a smaller size than the table

216 I. SZÉPKÚTI

0

0 20,000 40,000 60,000 80,000 100,000

TPC−D APB−1

5

10

15

20

Fig. 4. The speed of retrieval for SCHC as a function of the sample size

representation compressed with different compression programs. There were only
two exceptions: bzip2 and WinRAR.

The decompression algorithm of difference sequence compression seems
more complicated than the similar algorithm of base-offset compression. This
might cause performance degradation because of the increase in the number of
operations. In fact, the base-offset compression resulted in a 1.4 – 7.8 times faster
operation than the table representation, as shown in [11]. On the other hand, the
difference sequence compression was 1.3 – 18.8 times quicker than the table phys-
ical representation. Thus, the new method still performs much better than the
table-based solution.

DSC was compared with SCHC as well. In the case of the APB-1 benchmark
database, SCHC was more successful than DSC, because it resulted in a somewhat
smaller compressed multidimensional representation and faster operation. How-
ever, SCHC was much worse for TPC-D. We may infer from this that SCHC is
much more sensitive to the composition of runs (whether the runs contain a lot of
consecutive nonempty elements or not). This sensitivity does not exist in the case
of LPC, BOC or DSC since they store the logical positions of all nonempty cells
and not just one logical position per E∗F∗ run.

In several applications of multidimensional databases speed is extremely im-

DIFFERENCE SEQUENCE COMPRESSION OF MULTIDIMENSIONAL DATABASES 217

portant. Consider, for example, a decision support system that provides dynamic
reports and on-line analytical capabilities to its users. This system has to answer the
queries within seconds or a split second. Otherwise the users will become impatient
and lose their interest in the system. And a system without users is not of much
worth.

With multidimensional databases just like in many other databases, one im-
portant goal is to minimize the number of input/output operations in order to speed
up the application. In an ideal situation, a compressed multidimensional physical
representation is able to take the number of input/output operations close to the
absolutely necessary minimum. In order to achieve this, we have to find better and
better compression methods, which can make smaller and smaller databases, while
maintaining their speed advantage compared to the table physical representation of
databases.

Acknowledgements

I would like to thank Prof. Dr. János Csirik for his invaluable comments on earlier versions
of this paper and his very useful suggestions.

Appendix

The table below shows hardware and software used for testing. The speed of
the processor, the memory and the hard disk influences the experimental results
significantly, as so does the size of the memory. In the computer industry, all of
these parameters increase quickly over time. Just the rise of hard disk speed is
somewhat slower. Hence, it is expected that the presented results remain valid
despite the continuing improvement of the computers.

Computer Toshiba Satellite 300CDS
Processor Intel Pentium MMX
Processor speed 166 MHz
Memory size 80 MB
Hard disk manufacturer IBM
Hard disk size 11 GB
File system ext2
Page size of B-tree 4 KB
Operating system Red Hat Linux release 6.2 (Zoot)
Kernel version 2.2.14-5.0
Compiler gcc version egcs-2.91.66 19990314/Linux
Programming language C

218 I. SZÉPKÚTI

References

[1] EGGERS, S. J. – OLKEN, F. – SHOSHANI, A., A Compression Technique for Large Statistical
Databases, VLDB, 1981.

[2] GOLDSTEIN, J. – RAMAKRISHNAN, R. – SHAFT, U., Compressing Relations and Indexes,
ICDE, 1998.

[3] GRAEFE, G. – SHAPIRO, L. D., Data Compression and Database Performance, Proc.
ACM/IEEE-CS Symp. on Applied Computing, 1991.

[4] International Telecommunication Union/Line Transmission of Non-telephone Signals/Video
Codec for Audiovisual Services at p × 64 kbits/ITU-T Recommendation H.261
http://www.itu.org

[5] NG, W.-K. – RAVISHANKAR, CH. V., Block-Oriented Compression Techniques for Large
Statistical Databases, Knowledge and Data Engineering, 1995.

[6] OLAP Council/APB-1 OLAP Benchmark, Release II
http://www.olapcouncil.org

[7] PENDSE, N., The Origins of Today’s OLAP Products, (c) Business Intelligence Ltd., 1998.
http://www.olapreport.com/origins.html

[8] RAY, G. – HARITSA, J. R. – SESHADRI, S., Database Compression: A Performance Enhance-
ment Tool, International Conference on Management of Data, 1995.

[9] SHOSHANI, A., OLAP and Statistical Databases: Similarities and Differences, PODS, 1997.
[10] SZÉPKÚTI, I., Multidimensional or Relational? /How to Organize an On-line Analytical

Processing Database, Technical Report, 1999.
[11] SZÉPKÚTI, I., On the Scalability of Multidimensional Databases, Periodica Polytechnica Elec-

trical Engineering, 44 No. 1 (2000).
[12] TANENBAUM, A. S., Computer Networks, Third Edition, Prentice Hall, Inc., 1996.
[13] TOLANI, P. M. – HARITSA, J. R., XGRIND: A Query-Friendly XML Compressor, ICDE,

2001.
[14] TPC BENCHMARKTM D (Decision Support) Standard Specification, Revision 1.3.1.

http://www.tpc.org
[15] VASSILIADIS, P. – SELLIS, T. K., A Survey of Logical Models for OLAPDatabases, SIGMOD

Record 28 (4) (1999), pp. 64–69.
[16] ZHAO, Y. – DESHPANDE, P. M. – NAUGHTON, J. F., An Array-Based Algorithm for Simul-

taneous Multidimensional Aggregates, Proceedings of the ACM SIGMOD, 1997.

	Introduction
	Motivation
	Results
	Related Work
	Organization

	Compression Techniques
	Improvements
	Comparison of Compression Techniques
	Experiments
	Conclusion

