
PERIODICA POL\TECHNICA SER E L E N G . VOL 47. N O 1-2. PP. S-i6(2Q03)

U T I L I S I N G N E T W O R K E D W O R K S T A T I O N S T O A C C E L E R A T E
DATABASE Q U E R I E S

Mohammed A L H A D D A D and Martin C O L L E Y

Department of Computer Science
University of Essex

Colchester C04 3SQ. UK
e-mail: mjalha@essex.ac.uk, martin@esscx.ac.uk

Received: Sept. 5, 2003

Abstract

The rapid growth in the size of databases and the advances made in Query Languages has resulted
in increased SQL query complexity submitted by users, which in turn slows down the speed of
information retrieval from the database. The future of high performance database systems lies in
parallelism. Commercial vendors' database systems have introduced solutions but these have proved
to be extremely expensive.

This paper invcstagclcs how networked resources such as workstations can be utilised by
using Parallel Virtual Machine (PVM) to Optimise Database Query Execution. An investigation and
experiments of the scalability of the PVM arc conducted. PVM is used to implement palallelism in
two separate ways:

(i) Removes the work load for deriving and maintaining rules from the data server for Semantic
Query Optimisation, therefore clears the way for more widespread use.of SQO in databases
116,5].

(ii) Answers users queries by a proposed Parallel Query Algorithm PQA which works over a
network of workstations, coupled with a sequential Database Management System DBMS
called PostgreSql on the prototype called Expandable Server Architecture ESA [11,12,21,13].

Experiments have been conducted to tackle the problems of Parallel and Distributed systems such as
task scheduling, load balance and fault tolerance.

Keywords: PQA Parallel Query Algorithm, PVM Parallel Virtual Machine.

1. Introduction

Exploiting idle workstations has attracted researchers, due to the fact that large
portions of the workstations are unused for a large time and to the rapid growth in
the power of workstations. It has been observed that, up to 80% of workstations
are idle depending on the time of the day [8]. Commercially available Parallel
Processing servers arc expensive systems and do not present a viable solution for
small-size businesses, therefore we arc interested in trying to find alternative parallel
processing methods and query optimisation methods. Such methods as described
in this report utilise a network of workstations.

The goal of this research is to utilise any available computers in a data server's
local network to optimise database query processing. Parallel Virtual Machine

mailto:mjalha@essex.ac.uk
mailto:martin@esscx.ac.uk

6 M ALHADDAD and M COLLEY

(PVM) is a software that allows utilisation of networked workstations as a single
computational resource. The effective use of PVM in enhancing the performance
of Database Queries is presented. Experiments have been carried out and suggested
that the task performed on the cluster of networked workstations are almost from 2
to 12 times faster than one workstation as explained in detail in Section 2.

The project goal was pursued in two separate ways as in Fig. 1:

Fig. 1. the goal of the research

It is envisaged that these two separate ways to optimise query answering can
be combined in an operational system, in which one workstation receives clients
queries and chooses to answer each query cither by Semantic Query Optimisation
(SQO) and the original data server, or else by using the cluster of Expandable Server
Architecture (ESA) machines.

The significance of the 'Rule Derivation for SQO' component of our research
is that it greatly improves the applicability of semantic query optimisation tech
niques. The main objective of SQO is to use semantic knowledge (this knowledge
has been represented in a form called a 'rule') to transform an original query into
an alternative query that produces the same answer set but wi l l be processed more
efficiently by the data server and with lower-execution cost. In addition to the
importance of learning rules automatically and using the derived rules for query
optimisation, these rules also need to be maintained to keep the rules set accurate if
the database can change. Therefore SQO becomes complex because the workload
to derive and maintain rules can cancel the benefits of faster query processing.

Masltr
Work stal ion

Dala

Workstation Workstation Workstation

Fig. 2. Utilising Workstations for Semantic Query Optimisation

The demonstration of the performance of the systematic rule set derivation
algorithm, which utilises multiple workstations, removes this problem, see Fig. 2.

UTILISING NETWORKED WORKSTATIONS 7

This clears the way for more widespread use of SQO in databases, the detail is
shown in Section 3.

The proposed 'Expandable Server Architecture' (ESA) allows the data server
to spread from its original one workstation onto any other available computers in
the local network. The effect is to create a distributed database within that network,
and so gain the benefits of parallel processing, as described in Section 4. The set
of general-purpose computers in this Expanded Server Architecture can be used as
a separate data server from the original server from which the data was obtained.
Therefore two queries can now be simultaneously processed: one on the original
data server, and the other on the ESA cluster of workstations server. This latter
server executes its queries using the proposed parallel Query algorithm PQA. The
fault-tolerance problem has been tackled, i f one of those servers is crashed, the
current executed query wi l l switch to the other server.

In order to demonstrate the proposed ESA idea, a prototype system has been
built and experiments performed to measure execution times. A standard set of
database tables has been used and a standard collection of SQL queries, in order to
represent a realistic query processing environment. The TPC-H standard database
benchmark provided the data and the queries [10]. The authors do not claim to
draw any conclusions about performance on an actual TPC-H benchmark. This
database schema consists of 8 tables and was distributed statically into a cluster of
8 workstations in the experiments. These 8 workstations are the upper limit that
have been provided for this research.

The proposed Parallel Query Algorithm (PQA) works as an Interface Manager
over the ESA, which receives the users queries and decomposes them into sub-
queries as described in Section 4. In special cases where the sub-query has an error
from an early termination of the query execution, an error message is returned to the
user. The Query Processing Algorithm is developed by employing both inter- and
intra-operation parallelism. The proposed algorithm is able to perform adaptively
based on two methods: the Dynamic Rescheduling Method where the processors
arc allocated to tasks during runtime on the fly, and the Merge-Join Method. There
are two main factors that influence processor assignment: communication time and
load balancing [7]. Communication costs consist of the data transmission costs and
the overheads for co-ordinating multiple processors; it is an important component of
the total cost depending on the network environment and the database placement.
On the other hand, load balancing tremendously influences overall performance
because the overall query execution time or the individual phase execution time is
determined by the longest execution time over multiple processors. The experiments
in Section 5 represent the performance of the algorithm on only a single data set
and a few specific queries.

A huge amount of CPU and memory resources are required in order to effi
ciently process distributed N-way join queries on huge data sets. Therefore, one
main objective of this architecture is to utilize the computer resources of the clus
tered networked workstations to meet this demand. Thus, Parallel Query Algorithm
PQA [11] is implemented on client-server architecture with a configuration, where
a master process running at the query initiated site which manages a virtual pool of

i

8 M ALHADDAD ;md M COLLEY

lightly loaded slave workstations. Each slave workstation can dynamically join and
quit the pool, depending on its participating to answer the original query. At any
moment, the computing power of the virtual pool can be fully utilised to process
the original query. The master and slaves are interconnected via a fast local area
network.

The proposed 'Expandable Sewer Architecture' ESA allows the data server
to spread from its original one workstation onto any other available computer in
the local network by using Parallel Virtual Machine PVM [12]. The effect is
to create a distributed database within that network, and so gain the benefits of
parallel processing. The set of general-purpose computers in this ESA can be used
as a separate data server from the original server from which the data was obtained.
Therefore two queries can be .simultaneously processed now: one on the original
data server, and the other on the ESA cluster of workstations server. This latter
server executes its queries using the proposed PQA. The fault tolerance problem
has been tackled; if one of those servers is crashed, the current executed query wil l
switch to the other server.

The structure of the paper is as follows. In Section 2, an investigation of
using PVM to create a cluster of workstation is conducted. Section 3 explains
utilising cluster of networked workstations to create a rule set for Semantic Query
Optimisation. An overview of PQA. Data Placement. Dynamic Schedule Allocation
and fault tolerance in PQA are given in Section 4. The results of practical experiment
and method to measure the response time are demonstrated in Section 5. Finally,
Section 6 is the conclusion.

2. Parallel Virtual Machine PVM

PVM is u software system that allows the combination of a number of computers,
which are connected over a network into a parallel virtual machine. This machine
can consist of computers with different architectures, running different operating
systems and can still be treated as i f it were a single parallel machine. As the software
is public domain this means that many organisations which already have a network
of workstations can get a parallel machine for free and solve larger problems using
existing hardware resources. PVM is a small package about 1 Mbyte and easy to
install. It needs to be installed once in all machines that are desired to form the virtual
machine. PVM system uses the message-passing model. In this, sets of processes
are invoked. Each process has its own local memory. Processes communicate by
sending and receiving messages, and thus the transfer of data between processes
requires co-operative operations to be performed by each process (a send operation
must have a matching receive).

PVM communication model assumes that any task can send a message to any
other PVM task and that there is no limit to the size or number of such messages.
While all hosts have physical memory limitations that limits potential buffer space,
the communication model docs not restrict itself to a particular machine's limitations

UTILISING NETWORKED WORKSTATIONS 9

and assumes sufficient memory is available.
The PVM communication model provides asynchronous blocking send, asyn

chronous blocking receive, and non-blocking receive functions. A blocking send
returns as soon as the send buffer is free for reuse, and an asynchronous send does
not depend on the receiver calling a matching receive before the send can return.
There are options in PVM 3 that request that data be transferred directly from task
to task. In this case, i f the message is large, the sender may block until the receiver
has called a matching receive. A non-blocking receive immediately returns with
cither the data or a flag that the data has not arrived, while a blocking receive returns
only when the data is in the receive buffer.

2J. PVM Scalability

Some database tables are much too large to be distributed to ordinary workstations,
because the local storage capacity on these general-purpose computers is not large
enough to accommodate the database tables. Therefore, there is an upper size
limit for tables, beyond which the data distribution approach is not applicable.
Performance also declines with increasing table size, before that upper size limit is
reached. The time taken to send data from the master workstation to a set of slave
computers was investigated. Tables of progressively increasing size (from 32560
to 846585 rows, representing database tables up to 93 Mbytes) were sent to sets of
1, 2, 3 . . . 8 workstations and the total send time measured. The following graph
displays the results. They show that even these relatively small tables suffer from
performance degradation related to their size.

Each table size is shown as a curve on the graph. Small tables appear as hor
izontal lines near the bottom of the graph. Curves arc seen to deviate progressively
more from the horizontal as the table size increases, but all become approximately
horizontal when the number of hosts becomes 'sufficiently large'. Using more hosts
reduces the size of the data set that is sent to each computer, because the number
of hosts divides the table. The graph reveals that above a particular data size per
computer the time to transfer data between Master and slaves increases dramat
ically. A l l curves become horizontal when the number of table rows per host is
150 000 or less. So 150 000 rows for this 112-bytes-per-row table is the maximum
size per host (for these particular hosts) to avoid the delay. 150 000-112 bytes =
16 Mbytes. For FAST operation, the maximum table size is 16-// Mbytes, where H
is the number of workstations available for use. Larger tables can be processed, but
time wil l increase significantly because of the data transfer time component shown
in the graph.

Paging in the Receive Buffer memory space in the slave workstations causes
the large increase in data transfer time above 16 Mbytes per workstation. The next
physical limitation as table size increases beyond \6 H Mbytes is the size of the
swap file used for page-swapping, since our system operates in the virtual memory
of the workstations. The size of the swap file can be increased up to the limitation of

10 M ALHADDAD and M. COLLEY

Sending time plot for all data sets
Q 32560
• 65121
• 97682
• 130243
• 162804
S 195365
• 227926

u • 260487
• 293048

1 • 325609
• 358170

1 it • 390731
I
1 • 423292

• 455853
• 488414
• 520975
• 553536
• 586097
• 618656
• 651219
• 683780
• 716341
• 748902
• 781463
• 814024
• 846585

Fig. 3. Sending different size of data set over a cluster of 8 hosts

the available disk space accessible to each workstation. The swap file can be placed
on any mounted drive, but a computer can slow down dramatically i f a remote
(shared) disk is used for virtual memory swap space. A large network accessible
disk increases the maximum size of database tables that can be processed, but the
resulting slowdown of the workstation (which affects all programs running on it,
not just our background processes) is a clear drawback. The workstations used in
the experimental network are chosen as typical examples of ordinary PCs in current
use, not state-of-the-art machines. Their internal disks are of 10 Gbytes capacity.
They have Intel PHI 450 MHz processors, 128 Mbytes of main memory, Windows
NT or L I N U X operating system, and communicate by Fast Ethernet.

2.2. Virtual Machine vs Local Memory

The term Virtual Machine is used to refer to a logical distributed-memory com
puter. People usually run tasks not bigger than the physical memory due to the
performance gap between the processor and the disk by using the virtual memory
mechanism. Some of them prefer to buy more D R A M to fit the task. Or they might
get a bigger computer to hold the task. Virtual machines solve this problem. The
high-bandwidth network, fast network and PVM system can utilise all the resources

UTILISING NETWORKED WORKSTATIONS 11

efficiently. Fig. 4, shows the comparison of performance between the virtual ma
chine system and the single system for sending database table of various sizes. We
can see that the virtual machine system seems to perform better than the single
system for all sizes of database tables.

Fig. 4. Calculated elapsed time of different data set sent over a Virtual Machine System
and a Single System

To quantify the difference in performance between sending different database
(tables) to single system (one workstation) and to virtual machine system (cluster of
8 workstations) as shown in Fig, 5a-h, we can fit the two lines on the graph using
linear regression models and compare the estimated coefficients:

Single = -80.339 + 0.000378*

Network = -17.492 + 0.00008142*,

where x is the size of Database tables.
However, inspectig the virtual machine system line in Fig. 4, we can sec a

pronounced 'jump' at a database size of around 488414. This is due to the swap
paging

mechanism that comes into effect at this point. Therefore it seems reasonable
to compare separately the performance before and after this takes place.

In this case, comparing the two coefficients, the gradient tells us that as we
increase the database size, lime increases at a rate 4.6 times slower for virtual
machine system in comparison to single system (0.000378/0.00008142 = 4.6).

Table I tells us, on average (over all the database sizes), that the virtual
machine system (M = 23.6, N = 20, SD = 16.9) performs about 5 times faster
than the single system (M = 110.45, N = 20, SD = 73.765). The virtual machine
system is always at least 1.3 times faster, in fact, it can be up to 12 times faster than

12 M. ALHADDAD and M. COLLEY

Fig. 5. (a) Fitted for the Network R A M , (b) Fitted for the Single R A M

the single system. The performance of the two systems is significantly different
from each other at 0.001 level.

2.3. What is the Optimum Number of Workstations to Handle a Certain Size of DB

In conclusion, one can say that by expanding the network with more processors the
size of the database that can be handled in an optimum way, i.e with time ratio near
the optimum, wi l l increase.

Furthermore, as the decay in the performance of the network is due to excess
page-swapping, it is reasonable to assume that increasing the R A M on each node
wi l l again lead to larger databases being optimally handled by the network. This is
limited to the maximum capacity of R A M in each node.

Graph Fig. 6 shows the number of workstations against the database size
measured in units of 32561 rows of data (about 3.48 MB) . The data points give the
optimal number of workstations required to handle databases of increasing size.
These points are taken from the previous experiment see Section 2.1.

A line of best fit through the data points can be extrapolated to predict the
optimal number of workstations required to handle databases of any given size. For
example, a multiple of 60-(32561) rows of data wi l l require around 15 workstations
to be handled optimally.

3. Utilising Network Resources for Speeding up the Query Process

Query Optimisation is a part of the relational DBMS with speeding up queries

UTILISING NETWORKED WORKSTATIONS 13

Table I . Ratio of Virtual Machine System over Single System

Database Sizes Single System Virtual Machine
System

Ratio of Network
over Single

195365 8 6 1.333333333
227926 \5 5 3
260487 17 6 2.833333333
293048 25 7 3.571428571
325609 27 8 3.375
358170 41 8 5.125
390731 55 10 5.5
423292 73 8 9.125
455853 80 8 10
488414 100 8 12.5
520975 132 35 3.771428571
553536 145 35 4.142857143
586097 164 35 4.685714286
618658 169 37 4.567567568
651219 170 40 4.25
683780 180 40 4.5
716341 188 41 4.585365854
748902 195 43 4.534883721
781463 205 46 4.456521739
814024 220 46 4.782608696

Mean 110.45 Mean 23.6 Average 5.032002141

SD . 73.7645 SD 16.9 max 12.5

min 1.333333333

executions as the main goal. There are three main optimisation approaches to
improve the query processing: algebraic/graph-based, systematic, and Semantic
Query Optimisation. The authors focus on the third approach during this research.

. 3.1. Obstacles in Semantic Query Optimisation Approach

Semantic query optimisation uses semantic rules to transform a given query into
alternatives, and then selects the optimum query between the alternatives according
to their cost. These alternative queries can be different syntactically but must be
the same semantically.

There are various techniques for Semantic Query Optimisation. To the best of

14 M. ALHADDAD and M COLLEY

Fig. 6. Optimum Numbers of Workstations against DB Size

the authors' knowledge, there are no broad commercial implementations of SQO.
There are numbers of reasons for this lack of implementation. First and foremost,
because SQO has been associated for many years with cases designed for deductive
databases, it was not thought be useful for other uses such as relational database
technology [15]. Second, it has been commonly assumed that for an SQO to
be of benefit, many integrity constraints have to be defined for a given database.
Otherwise, queries could not be optimised semantically. Finally, the speed of the
CPU and the I/O at the time when the Semantic Query Optimisation was developed
was different than nowadays. S H E K E R in his paper [17] shows that the cost of
semantic optimisation could be comparable to the query execution cost.

Semantic Query Optimisation approach can use the previous queries to im
prove the future queries. Therefore, the first query wil l be executed straight away
because no rules exist in the rule set. The conditions in the second query wi l l add
up into rule derivation process, then to rules set. In other words, the system builds
its own rules, thus it would answer a certain query. Moreover, this rule would be
useless when any database changes.

In this paper, the authors used the attribute pair rule [16]. These rules are also
created automatically using Quicksort and Scan Bucket Algorithm for semantic
query optimization. Due to the space restriction, readers can see the details in [16].

UTILISING NETWORKED WORKSTATIONS 15

3.2. Sorting Data Subsets for Rules Set Derivation and Maintenance

The data in a Database table or view is partitioned by the Master workstation what
ever number of workstations is available. For an N-row table and H workstations,
eaeh Slave workstation receives N/H rows. Partitioning is done by counting rows
rather than examining data values, so it is fast. The Master workstation also tells
the Slaves which attribute to use as antecedent for the current rule set. Each slave
then sorts its sub-table on that attribute, extracts a rule set from the sorted data, and
sends the rule set to the Master workstation. The Master merges the sets of rules,
one from each slave, into a single set for that antecedent attribute. Receiving and
merging rule sets is much faster than merging data sets, because rule sets are small
(e.g. 100 rules per set). It takes less than one second to receive and merge rule sets
derived from a 400 000-row table, for example, for up to ten Slaves.

When the antecedent attribute is numeric, the master tells the Slaves how
many rules to derive. The Master also broadcasts the M I N and M A X values for the
attribute so that all Slaves use the same set of sub-ranges as rule antecedents. The
number of rules produced per slave is therefore constant for numeric antecedents.
Sorting the data makes it easy to extract a histogram rule set since the antecedent
attribute values are all arranged in order. It makes also rule maintenance easy.

Measured Time to Derive Rules from 130239 tuples
whose antecedent attribute is of String type

fig. 7. Measured time for rule set derivation shows better than linear speedup

No. of Hosts, H 1 2 3 4 5 6 7 8 9
Measured time (sec) 625 300 190 120 94 75 57 56 55
Expected 625/7/ (sec) 625 313 208 156 125 104 89 78 70
Math-Formula (sec) 267 134 91 68 57 49 43 39 35

L6 M. ALHADDAD anil M. COLLEY

Measured time means the observed time taken to create a set of rules (a
histogram rule set) from the 130239-row database table where each row is of 81
bytes. The roughly hyperbolic curve for measured time suggests xy = constant.
In this case we might expect the constant to be 625 seconds, the measured time
for one workstation; time to complete a task being inversely proportional to the
number of workers involved. Expected Time in the graph is therefore calculated
as 625 /H where H is the number of workstations used in the local network. The
measured experimental results show a close correlation to the predicted results, as
indicated in Fig. 7. As expected, the measured results are better than the expected
results. This is due to the 'fixed ratio' used by the estimation function, whereas
the actual measured time decreases by a 'variable ratio'. The explanation for this
better than expected predicted performance is partly the computational complexity
of the Quicksort algorithm used. It has a best case complexity of N log 2 A7 for
N data items, and a worst case of N2. We divide N by H and sort the smaller
subsets, without the need to recombine the sorted subsets (only the relatively small
sets of rules are merged). A second factor in the speedup is the amount of virtual
memory paging involved. Each page swap between disk and main memory is a
significant time delay. Large datasets do proportionately more page swapping. The
third trace shows the Mathematical Formula Time which we calculate by summing
the Computation Time with the Communication Time as can be seen in Table 2.
Computation Time = N + (N/H) • log 2 (W'/H) average processing time for a
single operation.

Computation Time — number of words to send over the network- time to
send 1 word. It is a simple phenomenological model to calculate the execution
time which does not take into account the factors listed for the Measured Time.

Table 2. Results for the Mathematical Formula Time Model

H N/H N -\-(N/H)-\og2(N/H) Communication Math_FormulaTime

1 10549359 256452361.3 10.55 267.00
2 5274679.5 128336389.6 5.27 133.61
3 3516453 87017052.99 3.52 90.53
4 2637339.75 65424431.49 2.64 68.06
5 2109871.8 54875072.49 2.11 56.98
6 1758226.5 47024979.52 1.76 48.78
7 1507051.29 41479019.89 1.51 42.99
8 1318669.88 37358777.05 1.32 38.68
9 1172151 34180774.97 1.17 35.35

Fig. 7 shows that when 9 workstations were used, it took only 55 seconds to
distribute and sort the data sub-sets, derive 9 separate histogram rule sets and merge
them into a single rule set in the master workstation. The same operation performed
on a single workstation is seen to take over 5 minutes. The practical significance of

UTILISING NETWORKED WORKSTATIONS 17

this acceleration is that rules can now be generated in response to a query and may be
available in time to be used to optimise the next query. This query-triggering of rule
set derivation is now a feasible alternative to speculative generation of sets of rules
from database tables before queries arrive. The experiments were repeated with
various database tables. They varied in antecedent type, table size, degree of prior
sorting and total number of workstations used. The graph above is representative of
the results to some extent, but larger database tables needed correspondingly larger
numbers of workstations to provide fast derivation. Furthermore, the minimum
time achievable increased with the size of the database table because data are sent
to computers before they start work on it. Data subsets must be sent one after
another on the local network until the whole table has been distributed. The network
bandwidth therefore imposes a time proportional to table size on the whole process.
(Some workstations wi l l have finished their tasks before the final data subset is
sent). This undesirable time penalty can be removed by distributing database tables
to workstations in advance. Then rule sets can be derived in a few seconds by
broadcasting only the derivation parameters. These include the identity of the
antecedent attribute, and i f it is a numeric attribute, the number of rules required in
the set plus the M I N and M A X values in that column of the whole table.

The master broadcasts to the slaves all data changes. The slaves then revise
their rules and notify the master of any changes. The master obtains an updated rule
set describing the changed database table in less than 2 seconds by this method.
Sorting data is usually a slow operation. This would be a disadvantage for the
current application, because rules are needed for query optimisation as soon as
possible after a query reveals user interest in certain columns of some virtual or
base relation. I f rules are not produced until the data is sorted, then sorting must be
done as fast as possible. Our experiments show sorting is significantly accelerated
by the parallelism in distributing data to multiple workstations.

3.3. Scan Bucket Algorithm to Derive Rules for SQO

Rules can also be derived using a more direct algorithm, which scans once through
the database table. During the scan each tuple is mapped to a bucket in a set of
buckets corresponding to the required set of rules. Buckets correspond to bars in
the histogram.

For numeric antecedent attributes, the number of bars and their sub-range
limits are known in advance. So mapping each tuple to its bucket is achieved by
matching its value for the antecedent attribute to the relevant sub-range. For string
antecedents a new bucket is added for each new value of the attribute encountered
during the scan. Each bucket has one rule associated with it, which describes all
tuples mapped to that bucket so far. The subset descriptor evolves as more tuples
are added to the bucket's subset. For example, at some point in the scan one subset
descriptor has the form:

(15 < a < 30) => c(71 < c < 94) a (101 < g < 156)

IS M. ALHADDAD and M COLLEY

This indicates that all tuples encountered so far whose attribute V value was in the
range 15 < a < 30 were found to have values of attribute 'c' in the range 71..94
and attribute ' g ' values in 101..156. I f the next tuple in the table has values a — 16,
c = 96 and g = 121, then the value of the antecedent attribute V maps it to the
bucket with antecedent range (15 < a < 30). The value c = 96 requires the range
in the assertion describing all V values to increase from (71..94) to (71..96), and
the value of ' g ' does not change the descriptor because 121 agrees with the assertion
that all values are in the range 101..156.

3.4. Measuring the Algorithms Performance

The scanning algorithm for rule set derivation has the advantage that a single pass
through the data generates a rule set. This is much faster than sorting. The disadvan
tage is that sorted data, to support subsequent rule maintenance, are not produced.
These measurements, as shown in Fig. 8, are for a 42 Mbyte table with 390731
rows. The scanning algorithm times form a horizontal line on the graph. Elapsed
time was 30.5 ± 3.5 sec, independent of H. The time to derive the same set of rules
by sorting the data subsets in the workstations varied from 4018 seconds for one
workstation down to 205 seconds for six machines.

Fig. 8. Comparing rule set Derivation times for Quicksort & Scan Algorithm

Since the scan times are fairly constant, independent of number of processors,
it is possible to derive multiple rule sets simultaneously, one in each host. Each rule
set has a different antecedent attribute. The whole data table is now broadcast to N
workstations so that the derivation time for N sets of rules is still about 30 seconds
for this 42 Mbyte table.

Two or more sets of rules can be produced during the scan in a single com
puter. A set of buckets are provided for antecedent attribute V and another set for

UTILISING NETWORKED WORKSTATIONS \9

antecedent *d\ say, in another rule set. Then in each tuple the value of attribute V
maps it to a bucket in the first rule set, and the value of attribute 'd1 maps it to a
bucket in the second evolving rule set.

3.5. Consistency of the Rules

The sorted data subsets in each workstation are useful for deriving rule. Moreover,
it's useful for rule maintenance as well. It makes rule maintenance easy. The master
broadcasts to the slaves all data changes. The slaves then revise their rules and notify
the master of any changes. The master obtains an updated rule set describing the
changed database table in less than 2 seconds by this method. For more details due
to space restriction, please consult [5, 12].

4. Utilising Network Resources for Answering Query

Query processing is the crucial part of the DBMS, which is responsible for gener
ating the best plan to execute the query. After receiving a query from the user, it
has to be transformed to a relational algebra expression and then parser during the
transformation. The next step is to generate Access Plans. From these plans the
optimal one wi l l be chosen, taking into consideration the methods of accessing this
data and the physical feature of these data. In general, query processing involves
the costs of processing Input/Output and communications.

Querying a database is the most important part of any database activities. The
purpose of querying the database is not only to satisfy the query but to minimise
the response time. Therefore, maintaining a reasonable level of performance is
essential. The response time of a query (the time difference between the time the
query arrives and is answered) is the sum of waiting time and execution time. The
overall response time essentially can be reduced by:

• Reducing the average waiting time of aquery: this refers to the time difference
between when a query arrives and when it starts being executed.

• Reducing the execution time of a query: this refers to the time difference
between the start and finish of the execution of a query

4.1. Expandable Server Architecture ESA

Applying parallel processing techniques, like Parallel Query Processing in database
systems, may improve the Database Query answering time and hence the overall
response time of a query. The need for this improvement has become apparent due
to the increasing size of the relational database as well as the support of high-level
query languages like SQL, which allows users to present complex queries.

20 M ALHADDADMitd tf. COLLEY

Expandable Sewer Architecture (ESA) has been designed to accomplish that
by utilising the resources of any Local Area Network (LAN) such as a small business.
This means that we are making use of the workstations that are connected in the L A N
and saving the small business from buying an expensive system. It is a special class
of parallel processing systems, which falls in the category of distributed-memory
architecture where a set of workstations are interconnected through a Local Area
Network and they communicate with each other by sending messages across the
interconnection network. Each workstation has its own private memory, disk. CPU
and local communication (between disk, memory, and act) and has access to a global
interconnection network.

However, using cluster of workstations for database query processing poses
several problems and performance issues. As in NOW [18] there is no central
control therefore it is impossible to distribute the database among workstations, the
database relations are stored in central workstation. Like Parallel Database Systems,
ESA with Parallel Query Algorithm PQA [12] has partially central control and the
database is partitioned across the clustered workstations, this reduces overhead as
the data docs not need to be sent to the other workstations.

4.2. Parallel Query Algorithm PQA

A main function of Query Processing is to transform a high-level declarative query
into an equivalent lower-level procedural query. The transformation must achieve
both correctness and efficiency [14J. The well-defined mapping from relational cal
culus to relational algebra makes the transformation correct, efficient and easy, but
producing an efficient execution strategy is more involved. The lower-level query
actually implements the execution strategy for the query. Since each equivalent
execution strategy can lead to a very different consumption of computer resources,
the main difficulty is to select the execution strategy that minimises resources con
sumption.

Query Process Algorithm

Fig. 9. The parallelism in E S A by PQA

UTILISING NETWORKED WORKSTATIONS 21

The combination of parallel processing and the database management gave
rise to the concept of Parallel Database. Parallel Query Algorithm PQA exploits
the parallelism available in ESA to bring high performance database, see Fig. 9.
In NOW [20] one workstation has control over the database and the others have
access to the database through this workstation. As a query indicates which rela
tions are involved and central database workstation transfers all required relations
to the workstation initiating the query. PQA represents partially central control,
therefore the database relations can be partitioned and distributed over the clus
tered workstations but deals with only read-query. By partially central control we
meant that PQA has metadata of how the database scheme is partitioned, the size of
each partition, data structure and location of the data partition. Due to the limited
number of workstations that small business might use and to limited number of
workstations that this study is dealing with, the non-query load (the back-ground
load) is not considered. The other problem is the work load as this study is not a
simulation study as in NOW, a real data about 2GB is being used from TCP-H and
Data Placement Algorithm (see Section 4.4) is used to tune static data distribution
among the cluster of workstations to achieve an optimal performance.

4.2.1. Parallel Query Algorithm Components

In this Section a description of PQA and all its components wi l l be presented. Fig. 9
shows all the components and processes, which are executed on all workstations at
the same time. Query Manager is one of the components (it's an arbitrary pro
cessing node) of PQA. At the initialisation stage, this process receives user's query
and reads the metadata, then it is responsible for undertaking the entire execution
plan and keeping up a correspondence between all nodes. Query Manager has
two sub-components (Scheduler, Information Policy and Decompose Query), these
sub-components co-operate with each other in order to schedule dynamically query
execution plan. Information Policy reads the information from the metadata. When
a query arrives, Decompose Query w i l l in turn divide up this query into sub-queries
as can be seen in Section 4.2.2. Scheduler w i l l receive these sub-queries and then
allocate each sub-query to a node based on the knowledge received from the In
formation Policy by spawning a process (Slaves) in those nodes, every node has a
unique processor identifier (PID) that is used by Scheduler and Slave to commu
nicate with each other. When one of the Slave processes finishes its task (fetching
data), it sends an acknowledgement to Scheduler with the structure of Intermediate
Relation IR and its size, Scheduler passes this information to Information Policy to
update its information, and makes a decision of the best optimal execution strategy
for the next operation, either to send it to available Slave for joining operation or
to sort IR based on the join attribute i f its not sorted (detailed analysis of Dynamic
Scheduler wi l l be discussed in Section 4.3). Slave is the other component of PQA,
it starts fetching data when it receives the sup-query from the Scheduler, then it
sends an acknowledgment to Scheduler telling it that the task is finished. Decision

22 M. ALHAODAD and M. COLLfV

TaWt J. Message Tags

Process Tag Identifier Tag

sub-query 10

how many partition 19
start join IR 14

Scheduler finish successfully 11
Start sort IR 13
Start send IR 18
Start receive IR 17

Finish joining 15
Finish sorting 20
Finish Concatenate 9

Final result 16
Fetch sub-query 12

Finish receive IR 22
Finish send IR 21
Commit_Sub-query 9

Description

Send sub-query to Slave to start fetching
data
Send to Slave how many partitions in table
Send the salve to start joining
Send to Slave to exit
Send to Slave to start sorting IR
Send to Slave to start send IR to peer Slave
Send to Slave to start receive IR from peer
Slave

Send to Scheduler, join is finished
Send to Scheduler, sorting is finished
Send to Scheduler, finishing concatenate
IR
Send to Scheduler, final result
Send to Scheduler, finished fetching sub-
query
Send to Scheduler, finished receiving IR
Send to Scheduler, finished sending IR
Finished fetching data.

is made by the Scheduler and sent to Slave telling it either to send IR to peer Slave
or to receive IR from peer Slave or sort its IR according to join predicate. Since the
behaviour of the components varies and they receive different acknowledgement
messages, a table of message tags is maintained, see Table 3. In addition, for better
understanding of the flow of interactions between processes, these message tags are
shown in Fig. 10.

4.2.2. Query Decomposition Algorithm

The query must be broken up into sub-queries to run on the separate workstations.
Two versions of this query decomposition process were investigated. First, to split
the initial query into sub-queries and then let the Join Manager manage the sorting
and joining of the intermediate relation results. Second; the decomposition routine
tries to speed up the Join procedure by sorting the Intermediate Relation. This is
done by using the advantage of having DBMS PGSQL installed in each site, which
allows adding ORDER BY clause to the sub-queries. Due to space restriction, more
details could be found in [5], [12], and [13].

UTILISING NETWORKED WORKSTATIONS 23

auipuas U S I U I J

I 3ui)cu3ic3U03 U S I U I J

s

60

Start Sending IR

<

Start Sorting IR

i
Start Receiving IR

Finish Successfully
• *
Start Join IR

«••• «
Sub-Query

*
Number Partition

3u|Ai333» qsiuij

0>
n
CA
t /)

u
u d '5b e
rt
•
K

5

i|nsay I E U I J

Suiuiof qsiui-]

-tianb-qng ittuuio;}

XjanQ-qngSuripiaj

3

<
a.

o
S

&0

n
• t«- fi

n

: o o
: 5
: ° 0
: U. u .

24 M. ALU ADDA D and Af. COLLEY

4.3. Dynamic Load Scheduling

A query evaluation plan is generated by the oplimiser. The task of the optimisation
is broken into phases, for example, scheduling, algebraic transformation, etc. The
decision of which step to apply next is based on cost estimations. Thus the quality
of the optimisation result depends on the accurateness of the cost prediction. The
problem that arises is how to predict the optimal cost. To solve this problem, many
information parameters can be obtained during the query execution, this gives the
accurate prediction needed. Consequently, pushing certain optimisation steps into
the execution phase can alleviate the problem of optimisation in parallel database
systems.

Query Manger User's Query

Information
Policy

C8: fina

C4:
Reading Info.

From
Metadata

<
C7: update
Information

esult C I : receive query from client

Scheduler

Metadata

C2

C3

C5: Exchanging

'Send Query to Decompose

Decomposed Query

Synchronous
Messages

Decompose
Query

Parallel Slaves Execution

Fig. 11. Parallel Query Algorithm

In the proposed algorithm PQA, the query is received by Query Manager pro
cess and then decomposed into sub-queries by using the Decomposition algorithm.
A process in the remote site in ESA handles retrieving the data by the algorithm
called Slave see Appendix A and B for the algorithms Slave and Query Manager
respectively.

When a new user's query arrives as shown in Fig. 11, an arbitrary processing
node 'Query Manager* receives it and becomes the co-ordinalor in charge of opti
mising and supervising this query (CI) and passes it to Scheduler. The Scheduler
first determines the degree of parallelism for the query by passing the main query to
Decomposing Query (C2), it returns sub-queries (C3). (C4) determines the number
of Processing Sites (PSs) and number of disks that hold the data partitions and
passes it to Information Policy. Through exchanged messages between Scheduler
and Slave, each operator can process the output of the previous one without delay,
by sending knowledge to the Scheduler telling it that the task has been finished

UTILISING NETWORKED WORKSTATIONS 25

and it is ready for next task (C5). Slaves start fetching data when they receive the
sub-query (C6). Accurate information such as size and structure of intermediate
relation w i l l be updated in (C7). The Query wi l l be considered to be answered when
the slave sends a final result to Scheduler (C8)

Message passing is used for transferring data and messages between the
Scheduler and the Slave processes. An accurate description of the data is sent
to the Scheduler such as the size of the intermediate result and which processes
have finished their work. The Scheduler, in turn, dynamically allocates the next
step. This step is either to send a command to slave process to sort their IR or to
send a message to available Slave to receive IR from the peer slave for joining or
concatenating.

A l l steps taken by the slaves are managed and controlled by the Scheduler. At
a given moment, the Scheduler wi l l order a slave to undertake a specific task. This is
achieved by exchanging messages as shown in Fig. 10. The dynamic scheduling of
tasks at run time begins when a slave receives the message 'FETCH SUBQUERY*
to fetch a sub-query, then the Intermediate Relation is obtained, known as IR. Subse
quently, the slave sends an acknowledgement message 'C0MM1T_SUBQUERY'
and the size of IR to Scheduler indicating that fetching has been completed. Sched
uler may, on one hand, send a message 'SEND_IR' of sending data to one slave
after commanding that Slave to sort IR according to Join Rule. On the other hand, it
gives a separate order 'RECEIVE_IR' for receiving IR from a peer slave, taking into
consideration that IR size wi l l be checked, then the smallest IR wi l l migrate to peer
slave to reduce the communication overhead. The peer slave receives a message
'JOIN_IR' from the Scheduler to begin the joining whenever it accommodates both
the local IR and the peer IR. Then Enhanced Sort Merge takes place. The continu
ous iteration stops only when the Scheduler sends the message 'FINAL_RESULTS'
to slave. Then the slave w i l l send the final IR to the Query Manager, for better
understanding of the flow of interaction between processes, these message tags are
shown in Fig. 10.

An example of query execution procedure based on the Parallel Query Al
gorithm, which divided the initial query into six sub-queries, is shown in Fig, 12.
The execution of such procedures is susceptible to delays that arise when retriev
ing data from workstations because of the different workload on each host and the
overload is not constant because those hosts are not dedicated hosts. PQA reacts
to such delays by dynamic rescheduling when a delay is detected using Scheduler
and Slave algorithms [11] which exchange messages at run time [13].

For example the initial execution procedure for Q5 is shown in Fig. 12a, but
Fig. 12b shows a different execution procedure for Q5. Relation C_ is not ready
to send their intermediate result but relation N _ is finished then PQA received the
acknowledgment form that host and at the run time sends a command to the host
which holds S_ (as N _ is smaller then that would reduce the communication cost)
to receive the IR from N _ .

26 M. ALHADDAD and M. COLLEY

S_ C_ R_ N_ 0^ L S_ C_ R_ N 0_ L

(a) Execution plan for Q5 (b) other Execution plan for Q5

Fig. 12.

4.4. Data Placement Algorithm

Data placement in ESA shows similarities with data fragmentation in distributed
databases. An obvious similarity is that fragmentation can be used to increase
parallelism.

Another similarity is that since the data is much larger than applications, ap
plications should be executed as much as possible where the data resides. However,
there are two important differences with the distribution database approach. First,
there is no need to maximise local processing (at each node) since users are not
associated with particular nodes. Second, load balancing is much more difficult to
achieve in the presence of a large number of nodes, (e.g. one node ends up doing
all the work while the other remains idle). Ndiaye YAKHAM et al. in [14] says that
parallel DBMS offers at present only static partitioning schemes.

Adding a storage node is then a heavy operation that typically requires the
manual redistribution of data. The aim of Data Placement algorithm, see Fig. 13,
is to avoid data skew which deteriorates the system performance by partitioning
the relations horizontally into equal sizes, then allocating them to different ESA
environments which might be 3, 4, 5, 6, 7 or 8 clustered workstations to achieve
maximum performance and minimum utilisation of the resources

4.5. Fault Tolerance in PQA

Robustness in PQA is clarified by having fault-tolerance feature. As explained in
[11], the cluster of general-purpose workstations (ESA) in any small organization
can be used as separate data server from the original server which the data was
obtained from.

There are many types of failures that can occur. For example, a host can fail,
a network connection could fail, or a disk could fail. The master host is responsible

UTILISING NETWORKED WORKSTATIONS 2 7

Assumption:
P i s t h e number of w o r k s t a t i o n s
Nj t h e s i z e of t h e r e l a t i o n , where i 1 t o K
Nt t h e t o t a l s i z e of t h e r e l a t i o n s
RF t h e chunk amount of t h a t f i t s i n t h e w o r k s t a t i o n
LCT t h e L a r g e s t C u r r e n t T a b l e
RFF R e c o r d s t o T r a n s f e r
CW C u r r e n t W o r k s t a t i o n s

L e t L C T = 0 / / i n i t i a l i z a t i o n variable
F o r (CW=I t o P) // s t a r t i n g loop

RTT = RF
// move the r i g h t chunk of data i n to variable

I F (L C T = 0) THEN
LCT = t h e l a r g e s t c u r r e n t a v a l i l a b l e r e l a t i o n

// g e t t h e l a r g e s t t a b l e s from t h e DB scheme
WHILE (CW not f u l l) DO

I F (S i z e (LCT >= RTT) THEN
A l l o c a t e RTT r e c o r d s t o CW

// place the data i n t o current workstation
D e c l a r e CN a s f u l l
S i z e (L C T) = S i z e (LCT) - RTT

// g e t the remained data from the l a r g e s t table
BREAK

E L S E
I F (S i z e (LCT) < RTT) THEN

A l l o c a t e S i z e (LCT) t o CW
// place the data i n t o current workstation

RTT = RTT - S i z e (L C T)
// g e t the remained data to f u l l the workstation

LCT = t h e nex t l a r g e s t a v a l i l a b l e r e l a t i o n
ENDIF
END WHILE

ENDFOR

Fig. 13. Data Placement Algorithm

for detecting the failure of a slave and invoking the appropriate recovery actions.
Therefore, PVM wi l l detect it, and send a notification message to PQA (which exists
in the master host and is controlling all the clustered hosts in Master-Slaves fashion)
by using pvm_notify(). When a task is spawned, the TID (task identifier) is kept and
passed to pvm_notify(). P V M then sends a massage back to the caller i f a failure
has been detected. This message has a tag 'msgtag' to be used in notifications such
as 'PvmTaskExit, PvmHostDelete' which identifies that the task is killed or the host

28 M. ALHADDAD and M. COLLEY

LAN

Fig. 74. Fault Tolerance in PQA

has crashed, respectively, as it is explained in [13] in more detail. Fig. 15 explains
the procedure of monitoring ESA, when the failure or crash occurs in ESA. PVM
wi l l notify the master where the pvm_notify() exist, then the master wi l l divert the
query execution to the original data sever as shown in Fig. 14.

W h i l e
i

i < = NUMHOST \\ Number of h o s t s
h

cc=pvm_spawn (slaveName, 0, PvmTaskHost,
h o s t s [i] , 1 , & t i d [i l) ; i f (c c == 1)

pvm_notify (PvmHostDelete,TASKDELETE,1,
& t i d [i]) ;

I

While
r

i < = NUMHOST \\ Number of h o s t s
1

b u f _ i d = p v m _ r e c v (- l , - 1) ;
pvm_bufinfo (buf_id,&msg_len,msg_tag,&msg_src);
i f (msg_tag == TASKDELETE)

{
''here t h e msg_£ag t e l l s t h e PQA (m a s t e r)
t h a t a h o s t i s d e l e t e d or c r a s h e d ,
t h e n d i v e r t q uery e x e c u t i o n t o t h e
o r i g i n a l d a t a s e r v e r . ' '

)

Fig. 15. Implementation of Fault-Tolerance in PQA

UTIUSINO NETWORKED WORKSTATIONS 29

5. Experimental Environment and Performance

The graph shown in the following Section tends to exhibit the performance of the
PQA approach. The graphs were generated as follows:

First, the TPC-H benchmark databases sets and some of their queries Q3 Q5,
were used. Second, POSTGRES is used because it is well suited for handling mas
sive amounts of data. Moreover, it also supports large objects that allow attributes to
span multiple pages and contains a generalised storage structure that supports huge
capacity storage devices as tertiary memory and also it's free, it can be downloaded
from [19]. Third, The commercial parallel systems are very expensive, thus in this
experiment a Virtual Parallel Machine (PVM) is used to create a cluster of eight
workstations. This provides a cost-effective solution for small businesses. Fourth,
the experiments were performed in two different environments:

• The Expandable Server Architecture (ESA).
• Data Server which is a single workstation with imbedded Postgresql.

In order to effectively measure queries performance in a distributed envi
ronment, it is necessary to have a reasonably accurate method that measures the
response time.

5.1. Method for Measuring the Response Time

In this experiment, static data distribution is being used in ESA and dynamic
scheduling as in PQA. The cost model we used was the response time [I] . The
response time of a query is defined to be the time elapsed from the initiation of
query execution until the time that the last tuple of the query result is completed. I f
all operators of a plan are executed sequentially, then the response time of a query
is added up into the total cost. However, when parallelism is exploited, then the
response time of a query can be lower than the one in sequential execution. In this
Section, the calculation of response time for entire query is introduced.

Query evaluation in Parallel Database System (PDBS) is quite different from
evaluation in sequential systems. Exploitation of parallel systems requires addi
tional tasks and concepts like inter-process communication, scheduling, load bal
ance and parallel implementation of algebra operator [11].

In order to effectively measure queries performance in a distributed environ
ment it is necessary to have a reasonable accurate measuring model. Response
time for query-: the response time of a set of parallel operators is that of the longest
one.

When a query is decomposed into sub-queries for example, consider a query
that involve five different base relations allocated at five different sites, such as
the one in Fig. 14. The query is decomposed into sub-queries as described in
Section 4.2.2. There are 4 parts for that query, and they consist of PS1, PS2 and
PJ1 in part one. In part two there are PS3, PS4 and PJ2. Part three has part two and

30 M. ALHADDAD and M. COLLEY

Fig. 16. Measuring the Response Time

PS5, PJ3. Part four consists of part three and pan one. PS, is defined as the time for
scanning the disk where j = 1 to 5 and PJ; is the time for joining two intermediate
results where (' = 1 to 4. Tk is the elapsed time to finish the task where k = 1 to
9. The response time: In the example shown in Fig. 16, there are four parts and
the response time Res_Time can be calculated by starting with part one and ending
with part four including the root operation. Thus we have

Time = T r o o l + Max(T i i f t , T r i g h t)
T r o o t = Max{ IRi-[Log 2(IRi)] , IRj -fLog2(IRj)] } + IRi + IRj
Tiif(or Tright = Time for Local Processing + Time Communication +

Time for Joining Intermediate Relation.
Time 10 = (number of tracks per cylinder • Sectors per track • 5 1 2) / (2 •

Number of surfaces- Latency + (Number of surfaces - 1)•
Head Switch Time + Cylinder Switch Time).
Time for Joining IR = Max{ IRi [Log2(R i) l , IRj • [Log2(IRj)] }
+ IRi + IRj

5.2. Performance Evaluation

The performance of PQA over queries Q3 and Q5 on different ESA environments
has been measured. ESA environments for Q5 are 6, 7 and 8 hosts and for Q3 4,
5, 6 and 7 hosts. For the performance comparison Q3 and Q5 are applied on the

UTILISING NETWORKED WORKSTATIONS 31

original data-server. Fig. 17 shows the summery of the experiments. The response
time is decreased when the number of the hosts is increased because the workload
is being tuned.

Fig. 17. Query 5 & 3 applied on data-server and different ESA environments

The execution procedure of Query 5 on ESA_1 is outlined below, query 5 is
5-way join query of large and small tables, with selection on table Region, Order,
Lincitem and Customer.

SELECT NJMAME, L_EXTENDEDPRICE, L_DISCOUNT
FROM C_, 0_ , L _ , S~_, N__, R_
WHERE C_CUSTKEY = O.CUSTKEY

A N D O^ORDERKEY = L .ORDERKEY
A N D C_NATIONKEY = S_NATIONKEY
A N D S.NATIONKEY = N_NAT!ONKEY
A N D N . R E G I O N K E Y = R.REGIONKEY
A N D R_NAME = 'ASIA'
A N D 0_ORDERDATE > = ' 1994-01-01*
A N D 0_ORDERDATE < * 1994-10-01*
A N D L_SHIPDATE 1995-03-15*
A N D C_CUSTKEY > 82000
A N D C _ C U S T K E Y < 84000

Query execution environment consists of six different tables C_, 0_, L _ , S_,
N _ and R_ allocated into six different workstations. An example of query execution
procedure was based on the Decompose algorithm, which divided the initial query

32 M. ALHADDAD and M COU.EY

into six sub-queries, showed in Fig. 18.

S_ C_ R_ N_ 0_ L_ S_ C_ R_ N_ 0_ L

Fig. 18. (a,b) Query execution procedures (Plan) for Q5

The execution of such procedures is susceptible to delays that arise when
fetching data from workstations because of the different workload on each work
station. PQA reacts to such delays by dynamic reschedule when a delay is detected
using Query Manager and Slave algorithms which exchange messages at run time.
For example the initial execution procedure forQ5 is shown in Fig. 17a, but Fig. 17b
shows a different execution plan for Q5 by the time when Q5 has executed it, due
to delay that occurs and the dynamic scheduling takes place.

The workstations memory is used to temporarily store the intermediate sub-
queries resulting in structure of arrays and then ship them to the corresponding
workstation. For example, the intermediate result of workstation 6 (P6), which
holds the relation S_, is 10000 tuples with size of 4 bytes each, about 40000 bytes.
And workstation 5 (P5) which holds the relation C_. is 1999 tuples with size of 8
bytes each, about 15992 bytes. Workstation 8 (P8) which holds the relation R_, is
only have one tuple with size of 29 bytes. As for workstation 7 (P7), which holds
the relation, N _ , are 25 tuples with size of 8 bytes, about 200 bytes. Workstation
4 (P4), which holds the relation 0_, is 170378 tuples with size of 8 bytes each,
about 1363024 bytes. As for the largest relation L _ which exists in workstation
3 (P3), are 2756911 tuples with size of 22 bytes, about 66165864 bytes. Due to
different workload in the workstations and some other reasons, which are discussed
in Section 4.3, PQA dynamically reschedules the plan.

Paging in the Receive buffers memory space in the workstations causes the
large increase in data transfer time above 16 Mbytes per workstation. The next
physical limitation as the intermediate result size increases beyond 16 Mbytes is
the size of the swap file used for page-swapping, since our system operates in the
virtual memory of the workstations. The size of the swap file can be increased up
to the limitation of the available disk space accessible to each workstation. The
swap file can be placed on any mounted drive, but a computer can slow down
dramatically i f a workstation is used for virtual memory swap space. Therefore,
data-server performance is slower than any ESA environment due to time spent by
the data-server optimiser trying to find the best execution plan and to sequential
data retrieval.

UTILISING NETWORKED WORKSTATIONS 33

6. Conclusion

The progressively increasing computing power and memory space of successive
generations of general-purpose workstations is creating a potential hardware re
source for parallel processing. The parallel virtual machine (PVM) system is a
software package which enables message passing between computers and so helps
to create a 'Parallel Virtual Machine' out of these hardware resources. (PVM) is
easy to install and use and supports heterogeneity both at the machine and network
levels. PVM is a dynamic configuration; it can add and delete processes at execu
tion time and at any point in the execution of concurrent applications, the processes
may communicate with and synchronise each other. But a main disadvantage of
(PVM) is the lack of an accurate debug facility.

The scalability of message passing in (PVM) was investigated by sending
database tables of progressively increasing size to a virtual machine system (a
cluster of eight workstations) and then to a single workstation. The results of
the investigation showed that the virtual machine system was faster than the local
system but the speed varied with database size.

Performance also declines with increasing table size, t i l l certain data size is
reached. The study revealed that over a particular data size the performance of
transferring database tables decreased due to the page-swapping mechanism taking
place.

Workstations in the same local network as the data server can provide a dy
namically extensible and reconfigurable computing resource for rule derivation and
maintenance for Semantic Query Optimisation. This additional resource is pro
vided by utilizing existing hardware, workstations which are used for computation
ally undemanding tasks which form the usual workload of desktop computers. The
work involved in rule derivation and maintenance is thus removed from the data
server onto other workstations, described in Section 3. The master workstation
can measure the workload on each workstation in the network by spawning a short
program on the workstation, and measuring the time it takes to finish. Its runtime
under various computer workloads is known. So the measured time indicates the
workstation's current workload and thus its suitability as a place to run a new rule
derivation task.

Deriving histogram rule set is a way to detect subset dependencies in data.
The ability to rapidly derive rule sets from data therefore makes this aspect of data
analysis easier. It allows the potential usefulness of rules to be quickly recognized
and prevents fruitless attempts to produce rules from data which does not support
them. The scanning algorithm discussed in Section 4 is amenable to parallel im
plementation by either horizontal or vertical partitioning of database tables. The
effect, in either case, is the simultaneous derivation of N histogram rule sets by
partitioning to N workstations. Vertical partitioning, assigning different pairs of
columns to different workstations, gives slightly slower rule set derivation. But it
also has the more significant drawback that i f the data is subsequently sorted, the
operation wi l l be very slow. It requires the one-workstation time rather than the

34 M. ALHADDAD and M COLLEY

N-workstation time described in Section 3.2.
Experimental results for sorting data on multiple workstations show a useful

sublinear speedup. The effect of sorting by antecedent attribute value is to cluster
tuples for each rule antecedent; therefore sorted data allows direct access to the
data subset selected by a rule's antecedent condition. Descriptors for that subset
can be revised, following data changes. A choice must be made about whether to
derive rules by the sorting or the scanning algorithm. For 'small* tables, the sorting
algorithm can be completed rapidly, i f enough workstations are used, so sorted data
as well as a rule set is immediately available. However, the scanning algorithm is
faster than the sorting algorithm and the difference becomes increasingly significant
as the amount of data per workstation increases. The experimental results suggest
that the scanning algorithm should do the initial derivation of each set of subset
descriptor rules, unless the table is small (less than 150 000 rows) and at least 9
slave workstations are available. This makes rules available for query optimisation
as quickly as possible at the time they are needed.

Data in the slaves can be sorted after rule derivation, to support rule mainte
nance.

In an ordinary local network bandwidth is limited and data transfer is neces
sarily sequential. Distributing subsets to workstations therefore takes an amount of
time related to the size of the database table. It is not possible to send different sub
sets simultaneously from the master workstation. Therefore the time to create a rule
set must increase to some extent as table size increases, because of the time needed
to copy the table into the workstations. The sorted raw data in multiple workstations
can also provide rapid data retrieval for database queries or sub-queries, and this
facility can be utilized by the 'master' workstation query interface when deciding
the quickest way to answer each query. Some queries wi l l be re-written by semantic
query optimisation methods using the information provided in the subset descriptor
rules. These re-written queries wi l l then be sent to the DBMS server to answer.
Other queries wi l l be decomposed into sub-queries for distributed query processing
on some combination of workstations and DBMS data server. Therefore, parallel
query algorithm (PQA) was designed and developed along with expandable sewer
architecture (ESA), described in Section 4.

The performance of the parallel query processing algorithm (PQA) was ex
amined on a single computer and (the ESA_*), where x is different environment
of ESA results) and found to give better query processing speed than executing the
same query without the parallel algorithm.

The architecture of the Expandable Server L A N system is conceptually and
behaviorally between that of a multi-processor database server and a wide area
network Distributed Database. A l l three architectures have multiple processors, but
the character of the interconnection network affects the way they can be used. Data
transfer time on an Ethernet L A N can become significant i f large data sets are being
transferred. This affects the ways that the expandable server architecture can be
used. Tasks can be allocated to computers, which contain the data tables relevant to
that task. Computers must contain the data before tasks are allocated to them, unless
the data set is small, because the time required to transfer data between machines

UTILISING NETWORKED WORKSTATIONS 35

can outweigh the time benefits provided by parallel processing. Therefore, Data
Placement Algorithm tune the workload the initial strategy for allocating data sets
to computers w i l l affect the scope for workload in ESA environments, described
in Section 4.4. Replication of data sets is desirable, and pairs of subsets should be
allocated to the same computer i f they are to be joined (so that network traffic is
reduced). The execution of a query plan is susceptible to delays that arise when
retrieving data from workstations because of the different workload on each host,
and the overload is not constant because those hosts are not dedicated hosts. PQA
reacts to such delays by dynamic rescheduling when a delay is detected using
Scheduler and Slave algorithms which exchange messages at run time, described
in Section 4.3. When failure or crash occurs in ESA, PVM wil l notify the master
where the pvm_notify() exists, then the master w i l l divert the query execution to
the original data server. There is clearly a limit to the size of database that can
be distributed to desktop computers, because of the limited storage space usually
available on general-purpose computers. The number of gigabytes per machine is
steadily increasing, but Data Warehouse table sizes, for example, are by orders of
magnitude larger, so that even when partitioned to a number of machines the table
fragments are too large.

References

[1] C H E N , W. K., Applied Graph Theory. New York: American Elsevier Publishing Co., and
Amsterdam. The Netherlands: North-Holland Publishing Co., 484 pp.. 207 illustrations, 1971.

[2] D E W I T T , D. J. - G R A Y . J . . Parallel Database Systems: The Future of High Perfomance
Database Systems, Communications of the ACM, 35 (6) (June, 1992).

[3] GEIST, A . - B E G U E L I N , A . - D O N G A R R A , J. - JlANG, W. - M A N C H E K . R . - S U N

D E R A M , V., , PVM.: Parallel Virtual Machine A users' Guide and Tutorial for Net
worked Parallel Computing, ed. J Kowalik, MIT Press (1994) Also available on-line:
'http://www.nellib.org/pvm3/book/pvm-book.htmr or via anonymous FTP from ftp.nctlib.org.

[41 L u . H. - 001, B . - C . - TAN, K. L . , Query Processing in Parallel Database Systems, I E E E
Computer Society Press, Los Alamitos, CA, USA, 1994.

[5] R O B I N S O N . J. - L O W D E N , B. G . T. - A L H A D A D D , M . . Distributing the Derivation and Main
tenance of Subset Descriptor Rules, The 5 l h World Multi-Conference on Systemics, Cybernetics
and Informatics. SCI 2001. July 22-25. 2001. Orlando. Florida USA.

[6] L A K S H M I , M. S. - Y u , P. S., Effectiveness of Parallel Joins, /EEETransactions on Knowledge
and Data Engineering, 2 (4) (December 1990).

[7] Liu K. H. - J I A N G , Y. - LEUNG. C. H. C , Query Execution in the Presence of Data Skew in
Paral lei Databases, Australian Computer Science Communications. 18 (2) (1996), pp. 157-166.

[8] M U T K A , M. - L I V N Y , M., The Available Capacity of a Privately Owned Workstation Envi
ronment, Performance Evaluation, 12 (4) (July 1991), pp. 269-284.

[9] O L S O N , M. A . - H O N G , W. M . - S T O N E R B R A K E R , M . , Query Processing in a Parallel Object-
Relational Database System. Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, I E E E 12/1996.

[10] P O E S S , M. - F L O Y D , C , New TPC Benchmarks for Decision Support and Web Commerce,
ACM SIGMOD Record. 29 (4) (December 2000).

[11] A L H A D D A D , M . - R O B I N S O N , J . , Using a Network of Workstations to Enhance Database
Query Processing Performance. Proc. 8th European PVM/MPI 2001 Conference, Page 352¬
359, Lecture Notes in Computer Science LNCS 2131.

http://'http://www.nellib.org/pvm3/book/pvm-book.htmr
ftp://ftp.nctlib.org

36 M ALHADDADznd U COLLEY

[12] A L H A D A D D , M . - R O B I N S O N , J. - C O L L E Y . M . , Extending Database Technology by Expand
ing Data Server, the 6th World Multi-Conference an Svstemics, Cyberntic.s and Informatics, S C I
2002, July 14-18 2002, Orlando, Florida USA.

[13] AXHADDAD, M . - C O L L E Y , M . . Parallel Query Algorithm Performance and Fault Tolerance,
DATAKON 2002 Database Conference, October 19-22. Czech Republic.

[14] Y A K H A M , N. - DlENE, W. - L I T W I N . A. - RiSCH. W , AMOS-SDDS: A Scalable Distributed
Data Manager for Windows Multicomputer To be presented at the ISCA 14th Intl. Conf. on
Par. and Distr. Computing Systems, Texas, U S A , August 8-10, 2001.

[15] C H E N G , Q. - G R Y Z . J. - Koo, F . - L E U N G . C . - L iu , L . - Q I A N . X . - S C H I E F E R , B..

Implementation of Two Semantic Query Optimization Techniques in D B 2 Universal Database.
Proc. ofVLDB, pp. 687-698.

[16] R O B I N S O N , J. - Low D E N . B. - M O H A M M E D . A . . Utilizing Multiple Computers in Database
Query Processing and Descriptor Rule Management, Dcxa'01 September 3 -7 2001, LNCS
2113, page 897.

[17] S H E K A R , S . - S T R I V A S T A V A , J . - D U T T A , S. , A Formal Model of Trade-off Between Opti
mization and Execution Costs in Semantic Query Optimization, Proc. 14ih VLDB, Los Angeles,
C A . pp. 457^167.

[18] D A N D A M U D I , S . P. - J A I N , G., Architectures for Parallel Query Processing on Networks
of Workstations. Proc. Int. Conf. Parallel and Distributed Computing Systems, New Orleans.
(October 1997).

[19] L O C K H A R T , T. The PostgreSQL Administrator's Guide, The Administrator's Guide , 2001¬
04-13. The PostgreSQL Global Development Group, http://postgresql.readysetnet.com/devel-
comer/docs/postgres.

[20] A N D E R S O N , T. T. - C U L L E R , D . - P A T T E R S O N . D., A Case for Networks of Workstations:
NOW. IEEE Micro, Feb. 1995.

[21] A L H A D D A D , M. . Utilising Networked Workstations to Accelerate Database Queries, The Third
Conference of PhD Students in Computer Science CSCS 2002. Szeged, Hungary, July 1-4. 2002.

http://postgresql.readysetnet.com/devel-

