
PERIODICA FOLYTECHNtCA SER. E L ENG. VOL 47. NO 1-2. PP. 57-70(2003)

FAST AND E F F I C I E N T M U L T I - L A Y E R CNN-UM E M U L A T O R
USING F P G A

ZoltSn N A G Y and P6ter SZOLGAY 1

Department of Image Processing and Ncurocomputing
University of Vcszprcm

Egyetem u. 10, H-8200 VeszpnJm, Hungary
e-mail: nagyz@almos.vcin.hu

Received: August 30, 2002; Revised: May 27, 2003

Abstract

A new emulated digital multi-layer CNN-UM chip architecture called Falcon has been developed.
Simulation running time can be hundred limes shorter using the Falcon processor array compared to the
software simulation. This huge computing power makes real time image processing possible. In this
paper the main steps of the FPGA implementation and optimization arc introduced. The Distributed
Arithmetic technique is used to optimize the architecture on FPGAs. Using this technique, smaller
and faster arithmetic units can be designed than using conventional approach where multiplier cores
and adder trees are used to compute the state equation of the CNN array.

Keywords: cellular neural networks, reconfigurablc computing.

1. Introduction

A Cellular Neural Network is a non-linear dynamic processor array. Its extended
version, the CNN Universal Machine (CNN-UM) was invented in 1993, []] . The
main application area of this architecture is 2D signal or image processing. The most
effective implementation of the C N N - U M architecture seems to be analog VLSI .
The latest analogue CNN chip has a 128 x 128 pixel resolution and its equivalent
computing power is 4 tera operation/second but its computational precision is about
7 or 8 bits [2]. In many applications these parameters are not high enough. I f the
resolution is higher we do not need to slice the images. I f the precision is higher,
less robust or more sophisticated analogical algorithms can be used [3],

A multi-layer CNN array can be used to solve the state equation of complex
dynamical system. Currently the only method to solve the state equation of multi­
layer CNN array is software simulation. I f every layer has different time constant
very small simulation step size must be chosen, thus software simulation is very
slow. To achieve affordable runtimes the simulations have to be accelerated. This
motivation came from the analysis of a retina model [4].

1 Also affiliated to Analogic and Neural Computing Laboratory, Computer and Automation Insti­
tute of HAS, Kende u. 13-17. H-1111 Budapest, Hungary

mailto:nagyz@almos.vcin.hu

38 Z NAGY and P. SZOIGAY

The Falcon emulated digital CNN chip was designed to reach these goals.
Special flexible emulated digital CNN-UM was developed where the accuracy,
template size, cell array size and the number of layers can be configured. This
paper describes the synthesis, implementation and optimization methods used to
implement the Falcon processor array on FPGA.

2. Problem Statement

The Falcon architecture is designed to solve the full range model of a CNN cell (1).

2-n 2-n 2-n 2-n

hj (') = ^ J] Ak-' ' X<+k-n.j+l-n 0 0 + X! Z Bk-1 ' "i+k-n.j+t-n 0) + kj (1)
k=0 1=0 k=0 1=0

Where x, u and / are the state, input and the bias values of the CNN cell, n is the
neighbour value, A is the feedback, B is the feed forward template. The templates
are (2n + 1) x (2n + 1) sized matrices. At the edges of the CNN array we use
zero-flux boundary conditions, e.g. the value of the edge cells are duplicated.

The state equation of the CNN array is solved by forward Euler discretization.
The h time step value can be inserted into the templates A and B, these modified
templates denoted by A' and B\ Usually the input values do not change for several
time steps so the state equation (1) can be broken into two parts: the feedback (2)
and the input part (3), which is computed once at the beginning of the emulation.

, 2-n 2-n

Xij(m + 1) = ^ ^ 4 ; • XHt-Hjw-nW+gu (2)
*=0 /=0

2-n 2-n

Slj = X] Z BU ' "i+k-njM-n + h • lij (3)

k=0 1=0

In the case of the multi-layer CNN we have the following set of state equations:

r - l 2-n 2-n

Xp.i.jiO ~ Z Z Z Ap.q.k,l • Xq,i+k-n,j+l-n(t)
q=0 k=0 1=0

r - l 2-n 2-n

" uq,i+k-n,j+l-n
q=0 k=0 1=0

where r is the number of layers, x, u and / are the state, input and the bias vectors
of one multi-layer cell. After discretization the following set of equations can be

MULTI-LAYER CNN-UM EMULATOR 59

r - l 2-n 2-n

£ £ £ ^ , ? . A . * • ^ . i + t - « . j + / - n (m)+g p , / ,y (5)
9 = 0 *=0 /=0
r - l 2-R 2-n

E Z Z B/».?.U ' Uq.<+k-n,j+l-n + '/>,/,, (6)
9 = o *=0 /=0

3. The Falcon CNN-UM Architecture

3.1. I/O Requirements

The first issue, which must be considered at design time, is the I/O requirements
of the processor core. Even in the simplest case (when the neighbourhood n = 1)
we need to load 9 template, 9 state and 1 constant values to update a cell: this is
19 values altogether. It is obvious that we cannot provide all these values from an
external memory real time. On the other hand we cannot store the whole picture
on the chip because of the memory limitations of the FPGAs. When the number
of templates is low, it is evident to store the templates on the chip and this solution
cuts the input requirements by half. But we still have to load 10 values to update
one cell which requires very high bandwidth, so we must analyze the data-flow of
Eq-(2).

When updating the cell array, the state value x,,y(m) of a cell must be loaded,
when the upper left neighbour of the cell _ j , , _ i (m - H) is computed, the state value
Xjj (m) is still required for the next two updates ; t y _ i (m + 1) and (m + 1) , in
the following two lines Xij (m) appears 3 times per line. Because xtj appears when
we update lines / — 1, j and j; + 1 the simplest way to reduce memory bandwidth
is to store these three lines of the picture on the FPGA, see Fig. 1. Similarly, i f we
used higher neighbourhood values we got the same result but we must store 2n + 1
lines. The only drawback of this method is that we have to store the constants on
the FPGA, fortunately, only n + 1 lines have to be stored. After these optimizations
the I/O requirements of the processor are reduced to two input (one state and one
constant) and two output operations per cell update. The memory size required to
store the belt can be computed by the following equation:

((2 • n + 1) - sm + (rt + 1) • cw) • w, (7)

where n is the neighbourhood value, sw and cw are the width of the state and
constant value in bits and w is the width of the cell array.

derived:

xP,ij(m + 1) =

Spj.j —

60 Z NAGY and P SZOLGAY

•4
it i - * * * * * 1 *

Fig. / . The hell of the array stored on the

• • • • • .
• • C O C C

E a o n c n .

c a n t i n g
• i i i i i

in case of 3 x 3 and 5 x 5 templates

Table I . I/O and memory requirements of the processor after optimization (assuming 256
cell wide array and 150 MHz clock frequency)

State and constant width (bit)
4 6 8 12 16 24 32

Input bandwidth (GB/s) 0.15 0.225 0.3 0.45 0.6 0.9 1.2

On-chip memory
requirements (kbit)

3 x 3 5 7.5 10 15 20 30 40
On-chip memory

requirements (kbit)
5 x 5 8 12 16 24 32 48 64 On-chip memory

requirements (kbit) 7 x 7 11 16.5 22 33 44 66 88

3.2. Conventional Arithmetic Unit

After successful reduction of the I/O requirements of the processor cores, the next
question is how to organize our computing resources in the arithmetic unit. How
many multipliers can we use efficiently? To achieve the highest performance,
(2n + 1) x (2n - f 1) multipliers can be used in the arithmetic unit. An adder tree
is also required to sum the multiplied values. Using this arithmetic unit, one clock
cycle is required to update a cell value. Unfortunately, this arithmetic unit is very
huge because the multipliers require a large area, see Table 2.

This huge area can be reduced i f the number of multipliers is decreased and a
new cell value is computed serially, for example, in a row-wise order. In this case,
In + 1 multipliers, an adder tree and an accumulator register to store the partial
results arc used. The template operation is computed in 2n + 1 clock cycles. A new
block, called mixer, should be used between the memory and the arithmetic unit
to simplify the control and the architecture of the memory unit. The mixer holds a
vertical stripe of the cell array belt from the memory unit (dark grey area in Fig. J).
Storing these values in a small memory allows to use the same memory unit as in
the previous case. The I/O requirements of the processor core arc also reduced by
this solution according to the clock cycles required for the cell update.

3.3. Distributed Arithmetic

Distributed arithmetic is a bit level rearrangement of a multiply accumulate to hide
the multiplication [5]. It is a powerful technique for reducing the size of a parallel

MULTI-LAYER CNS-UM EMULATOR 61

Table 2. Area requirements of a 3 x 3 arithmetic unit in Virtex slices

Template
width
(bit)

! inulliplk-rs 9 multipliers Template
width
(bit)

State and constant width (bit) State and constant width Ibiti
Template

width
(bit) 4 6 8 12 1ft 24 32 4 6 8 12 1ft 24 32

4 66 87 102 138 174 246 3 IS 211 276 323 435 547 771 995

6 87 135 165 219 273 381 4S'> 276 422 514 680 846 1178 1510

s 102 165 192 252 312 432 552 323 514 597 781 965 1333 1701

12 138 219 252 396 486 666 846 435 680 781 1217 1491 2039 2587

If. 174 273 312 486 603 819 1035 547 846 965 1491 1 S4ft 2502 3156

hardware multiply-accumulate that is well suited to FPGA designs. Distributed
arithmetic is widely used in FIR filter implementations on FPGAs [6].

The conventional FIR filter computes the following convolution sum:

y(*) = (8)
n=0

where y(k) is the response of the tiller at time k, a{n) are the filter coefficients,
x(k — n) is the input sample of the filter and N is the number of filter coefficients.
The input sample can be written in the following fractional format:

B-2

(9)
6=0

where Xff is a binary variable, B is the width o f * and p is the position of the radix
point. If Eq. (9) is substituted into Eq. (8), the following equation can be derived:

/v-i

y{k) = £ -a(n)xB-i(k - ft) • 2 f l - ' ' - , +J2a(n)xB-2(k - «) • 28-"-2

n=0 n=0

• V - l A ' - l

+ a(n)x{ (k - n) • 2 ^ ' + 1 + £ a(n)x0{k - n) • 2~p (10)
n=0 n=0

Eq. (10) can be computed serially by the architecture depicted in Fig. 2, which
contains only look up tables, shift registers and one scaling adder.

If the input samples are represented with B bits of precision, B clock cycles
arc required to complete the calculation. Additional speed can be achieved by using
two or more partial product LUTs and a scaling adder tree to sum partial products
[7]. To achieve maximum performance, fully parallel distributed arithmetic FIR
filter can be built which can compute the new result in a single clock cycle. The
only drawback of the architecture is that space variant CNN templates cannot be

62 Z NACY tnd P. S7.0LGAY

Scaling
accumulator

N-1 shift registers

<(n) - | PSC
Parallel to serial

converter

Partial
products

2' Partial
products

2" R
word e
LUT fl

B-blt shift registers
A d d ' s u b t r a c t

Fig. 2. Serial distributed arithmetic FIR filter

used because the coefficients in the partial product L U T cannot be changed when
emulation is running. The cycle length of the arithmetic unit is determined by the
parallelism of the FIR filters. Trade off can be made between speed and area, by
using a fully serial or fully parallel FIR filter.

According to Eq. (2) this FIR fitter architecture should be extended to 2
dimensions. This can be done by slightly modifying the shift register section and
using larger partial product L U T as shown in Fig. 3. Inputs of the 2 dimensional
FIR filter are connected to the cell memory which store a belt of the cell array.
Increasing the number of inputs of the partial product LUT greatly increases its
size. Using 3 x 3 sized templates the partial product L U T has 9 inputs and the area
requirement is 9 slice for every bit of the partial product. This area requirement can
be reduced to 3 slices/bit by using the architecture in Fig. 3, were the coefficients
arc grouped to fit into a 4 input FPGA L U T and adders are used to calculate the
final partial products. Area requirements of the arithmetic unit built by various
distributed arithmetic FIR filters are summarized in Tabic 3.

LUT
J

xjn) H PSC LUT LUT

e - i - y(rt)

A d d ' s u b t r a c t

Fig. 3. 2 dimensional serial distributed arithmetic FIR filter

The main advantageof this approach is its easy scalability, while using the con­
ventional arithmetic unit, the scalability is limited to 3 cases when (2n + 1) x (2n +1)
or 2n + I or just one multiplier is used. In the case of distributed arithmetic, the cy­
cle length is determined by the width of the state value, for example, in a 12 bit case
the cycle length can be 1,2,3,4,6 or 12 clock cycles/cell. The area requirements of
the distributed arithmetic units are usually smaller than the conventional approach,
especially when the template width is high.

MULTI-LAYER CNN-UM EMULATOR 63

Table 3. Size of the 3 x 3 arithmetic unit in Virtex slices

Template
width
(bit)

2 clock cycle/cell 1 clock cycle/cell Template
width
(bit)

State and constant width (bit) State and constant width (bit)
Template

width
(bit) 4 6 8 12 16 24 32 4 6 8 12 16 24 32

4 113 149 174 259 324 504 649 148 216 266 412 520 824 1069
6 129 171 202 299 376 580 749 175 255 317 487 619 971 1264
8 145 193 230 338 428 655 849 202 293 368 563 719 1118 1459

12 177 237 286 418 532 807 1049 256 371 470 713 918 1412 1849
16 209 281 342 498 648 959 1249 309 449 572 863 1116 1706 2239

3.4. Achieving Even More Performance

Using the largest Virtex-II series FPGA form Xil inx which contains 46.592 config­
urable logical blocks (slices), several arithmetic units can be implemented. How
can we use this huge amount of resources to achieve more performance?

The Falcon processors can be connected in a square grid on the FPGA. The
performance of the array scales linearly according to the number of processors.
The processed image is partitioned between the physical processors. Each physical
processor column works on a long and narrow vertical stripe of the image. In one
cycle a row of processor units gets the result of the previous iteration from the row
of processor units above, calculates one iteration and sends the results to the row of
processor units below. Adding additional columns to the grid increases the input
bandwidth of the whole array and the available user I/O pins on the FPGA device
limits the number of columns.

3.5. Multi-Layer Extension: the Falcon-ML Processor

To emulate a multi-layer CNN array we have to make some modifications on the
original Falcon architecture. The main structure is not changed and the processor
cores are arranged in a square grid. In a multi-layer case the same optimizations
can be made to reduce I/O bandwidth as in the single-layer case. The memory
requirements and the required input bandwidth of the r-layer processor core are r
times higher than the single layer architecture.

The Falcon-ML processor emulates a general multi-layer CNN array where
every layer is connected together in all possible ways. This means that the arithmetic
unit must do r 2 times more work man in the single layer case. Templates in the
multi-layer case can be treated as r x r pieces of single-layer templates and r single-
layer arithmetic units can compute the template operation for every layer. It is
possible at high-precision cases that this arithmetic unit requires a huge area, in
this case the parallelism is reduced, and one multiplier per single-layer template or
serial distributed arithmetic FIR filters can be used in the arithmetic unit.

M ZNAGYoadPSZOLGAY

4. Features and Performance

After these design considerations we were able to make a synthesizable RTL-level
(Register Transfer Level) V H D L (Very high speed Hardware Description Language)
description of the Falcon and Falcon-ML architectures. We used Synopsis FPGA-
Express to synthesize our processors. The processors can be configured via a
configuration file before the synthesis.

The configurable parameters are the following:

• the bit width and displacement of the radix point for the state, constant and
template values, possible values for width are between 2 and 64

• the neighborhood value of the templates
• the width of the cell array slice
• the number of processor core rows and columns
• the number of layers in the multi-layer case

The large number of configuration parameters makes it easy to synthesize the
Falcon architecture, which is optimal for our requirements. I f our requirements
are changed, the same FPGA can be used but with differently configured Falcon
processors.

The performance of the Falcon processor is compared to the speed of the soft­
ware simulation and the CASTLE emulated digital CNN-UM [8]. In the software
simulations, Intel Pentium IV with DDR R A M (Double Data Rate) and R D R A M
(RamBus) and A M D Athlon XP processors are used. To simulate a CNN array,
functions of the Intel Signal Processing Library [9] are used, which contain M M X
optimized functions for various signal and vector processing tasks. The perfor­
mance of the software simulation depends on the size of the cell array. I f the size of
the data set is greater than the Level 2 cache of the microprocessor, the performance
drops to a lower level, which is determined by the FSB (Front Side Bus) frequency
of the processor.

The Falcon and the CASTLE processor arrays do not make any rounding
until the final step of the computation, thus the precision used inside the processor
is higher than the input precision and this must be considered in the comparison.
We select 24-bit precision to compare with the double precision floating point
simulation.

Timing analysis of the implemented Falcon processor using distributed arith­
metic shows that the processor core can run at 200 MHz using 24 bit precision
and a new value can be computed in every clock cycle. The CASTLE processor
runs on 125 MHz clock frequency and compute a new cell value in 3 clock cycles.
Table 4 shows the performance of the software simulation and the emulated digital
architectures in CNN iterations/s in the case of different number of layers and cell
array sizes. The Falcon processor seems to be faster than the CASTLE architecture
but we have to note that the Virtex-II FPGAs use 0.15 /xm technology while the
CASTLE processor is manufactured with 0.35 (Mm. I f the same technology is used,
the custom VLSI chip wi l l be faster. In the single layer case the Falcon emulated

Ml/LTT-LAYER CNN-UM EMULATOR 65

digital C N N - U M architecture offers 27.63 times more performance than the soft­
ware simulation. In multi-layer configuration the speed up is more significant but
a larger area is required to implement the processor cores. The results show that
the Falcon and the CASTLE architectures are considerably faster than the software
simulation, even in a single processor configuration.

Table 4. Performance of the software simulation, the Falcon and the CASTLE architecture
in CNN iteration/s

Array size

Single layer 3 layers

Array size

A
th

lo
n

X
P

18
00

 +

PI
V

1.
7G

H
z

DD
R

R
A

M
 +

PI
V

1.8
 G

H
z

R
D

R
A

M
 +

C
A

ST
L

E
*

Fa
lc

on
* a *

c X ° o x: oo

< ™ PI
V

1.
7

G
H

z
DD

R
R

A
M

+

PI
V

 1
.8

G
 H

z
R

D
R

A
M

 +

Fa
lc

on
*

180 x 135 338.88 403.65 451.15 1,643.78 8,230.45 39.03 46.18 52.07 8,230.45
320 x 200 84.72 122.20 148.51 650.94 3,125.00 13.77 16.67 18.98 3,125.00
640 x 480 17.59 20.18 23.56 135.61 651.04 2.73 3.04 3.45 651.04

Speedup 0.75 0.86 1.00 5.76 27.63 0.79 0.88 1.00 188.93
*Performance of the single processor core configuration

The strength of the emulated digital architectures is to connect multiple pro­
cessor cores to work parallel. The area required to implement a core processor
depends on the accuracy, template size, cell array slice width and the number of
layers. Table 5 shows the number of implementable processor cores on different
FPGAs. Using low precision, more than a hundred processor cores can be imple­
mented on the largest FPGA. I f an array of processor cores is used, the performance
scales linearly correspond to the number of processors. The result is a 500-fo!d
speedup compared to the software simulation using moderate accuracy.

Table 5. Number of implementable Falcon and Falcon-ML processor cores on different
FPGAs

State and template width (bit)
Single layer 3 layers

State and template width (bit) 6 12 24 6 12 24
v300 8 3 1 1 0 0
vlOOO 32 15 6 6 2 0
v3200 85 41 16 16 6 2

2vl000 13 6 2 2 1 0
2v8000 123 59 24 23 9 3

56 Z. NAGY and P. SZOLGAY

5. Examples

5.1. Image Halftoning

The first example is the 5 x 5 halftoning template from the CNN Template Library
[10]. This template converts greyscale images into black and white images preserv­
ing the main features of the image. This function is implemented by the following
template:

A =

-0.03
•0.09
•0.13
-0.09
-0.03

•0.09
•0.36
-0.6
-0.36
-0.09

-0.13
- 0 . 6

0.05
- 0 . 6
-0.13

B =

0
0
0.07
0
0

0
0.36
0.76
0.36
0

0.07
0.76
2.12
0.76
0.07

0
0.36
0.76
0.36
0

-0 .09
-0 .36
- 0 . 6
-0 .36
-0 .09
0 "
0

0.07
0
0

-0.03
-0 .09
-0 .13
-0 .09
-0.03

= 0.

This example was run on our prototyping board with a Xilinx Virtex-300 FPGA.
Two processor configurations were used; in the first case one Falcon processor was
used with 16 bit wide state and 8 bit wide template values. In the second case the
template width remained 8 bit but the state width was decreased to 8 bit which
enabled us to implement 4 Falcon processors. Each processor used 3 multipliers to
compute the results. The simulation time step was 25/128 to make template value
representation more accurate. 100 simulation lime steps ran on an A M D Athlon
XP 1800+ processor and on both Falcon processors.

The input, output and error images are shown in Fig. 4 to 9 and the runtime and
speed up of the computation are summarized in Table 6. The error images show the
difference between the simulated and the emulated images, black pixel represents
error larger than 0.01 and white pixel represents no error. In the 16 bit case, most
of the errors are near to the edges of the image. The main source of these errors
is the different boundary conditions. In the simulation, fixed boundary conditions
were used, while the Falcon processor used zero-flux boundary conditions. In the
8 bit case the number of erroneous pixels is higher but these errors on the output
image are not noticeable by a human observer.

68 Z NACY tnd P. SZOLGAY

Table 6. Runtime and speedup of the examples

Runtime of 100 iterations(s) Speedup
Athlon XP 1800+ 1.97475 1
1 Falcon processor 16 bit wide state 0.65-197 3.015
4 Falcon processors 8 bit wide state 0.163782 12.0571

5.2. Emulating a 3-Layer Retina Model

The simulation of a retina model motivated the development of the multi-layer
Falcon-ML architecture [4], The retina is modelled with 3-layer CNN array where
every layer has different time constant. One control and six feedback templates
describe the connections between the layers. Some template elements have large
values (±60,000) while others require fine resolution (0.2). The minimum timestep
required to simulate the array is 0.0001, and the size of the input images is 180 x 135
pixels.

The implementation of the Falcon-ML processor which can emulate such a
CNN array on our prototyping board was a very challenging task. After examining
the templates we found that at least 28 bit wide state and 19 bit wide template values
should be used. Unfortunately, the Virtex-300 FPGA in our prototyping board
has very limited resources, so some modifications were required to implement the
Falcon-ML architecture with these parameters.

At the first step the memory unit is changed and the on-chip SRAM memories
are used to store a belt of the image. The height of the belt stored in the memory
unit can be reduced to two lines instead of three because only one processor core is
used. The size of the arithmetic unit is also reduced, using two bit a time serial FIR
filters and 14 clock cycles are required to update a cell. The displacement of the
template values can be configured independently for every layer and the template
precision can be reduced to 9 or even 4 bits depending on the values used in the
templates.

This specialized Falcon-ML architecture can be implemented on our proto­
typing board. The processor runs only on 100'MHz clock frequency because of
the limitations of the Virtex-300 FPGA on our prototyping board and it computes
a new value every 14 l h clock cycle. The performance of this slow processor is 293
CNN iteration/s on a 180 x 135 pixels sized image, which is 6 times faster than a
Pentium IV 1.8 Ghz processor, see Table 5. Using faster memories, higher speed
grade FPGA or using the more advanced Virtex-E and Virtex-II FPGAs, 30 times
higher performance can be easily achieved.

M U L T I - L A Y E R CNN-UM EMULATOR 69

6. Conclusions

The implementation of the Falcon architecture was successful on our prototyping
board, using a Virtex-300 FPGA from Xil inx Inc. The performance of the architec­
ture was encouraging, even in a single processor configuration a 27-fold speedup
can be achieved. The easy scalability of the array makes it possible to connect
the processor cores and achieve even more performance. Using re-configurable
devices to implement the Falcon architecture provides us more flexibility compared
to the conventional emulated digital architectures, e.g., different configurations can
be used on the same hardware and extra design effort is not required to implement
it.

I f forward Euler method is used, very small time step is required for precise
emulation of a CNN dynamics, mainly in a multi-layer case. Instead of computing
thousands of iterations, better numerical method should be used, where the final
value of the iteration is computed from several substeps or adaptive stepsize control
can be used. Software implementation of a sophisticated numerical method can be
slower than the forward Euler method. Re-configurable hardware can be used to
implement such an algorithm to improve performance and make very precise and
fast emulation of various CNN architectures possible.

Acknowledgements

This research is sponsored by the National Research and Development Funds of the Sz6-
chenyi Plan under the consortium N K F P OM-2/052/2001 and O T K A #029609.

References

| l] ROSKA, T. - C H U A , L . O . , The CNN Universal Machine. An Analogic Array Computer. IEEE
Trans. On Circuits and Systems-II, 40 (1993). pp. 163-173.

[2] LiftAN, G. - D O M I N G U E Z - C A S T R O , R. - ESPEJO, S. - R O D R I C U E Z - V A Z Q U E Z , A. ,

ACE 16k: A Programmable Focal Plane Vision Processor with 128x128 Resolution, in Proc. of
the I5'h European Conference on Circuit Theory and Design, I (2001), pp. 345-348

[3] SZOLGAY, P. - T O M O R D I , K., Analogic Algorithms for Optical Detection of Breaks and Short
Circuits on the Layouts of Printed Circuit Boards Using CNN, Int. J. of Circuit Theory and
Applications, 26 (1998).

[4] B A L Y A , D. - ROSKA, B. - ROSKA, T. - W E R B L I N , F. S., A CNN Framework for Modeling
Parallel Processing in a Mammalian Retina. Int. J. on Circuit Theory and Applications, 29 No.
3.2002.

[5J LlU, P. - LlU, B.. A New Hardware Realization of Digital Filters, IEEE Trans, on Acoust.,
Speech, Signal Processing, ASSP-22 December 1974, pp. 456-462.

[6] MlNTZER, L . , FIR filters with the Xilinx FPGA, in Proc. of FPGA '92 ACM/SIGDA Workshop
on FPGAs. pp. 129-134, 1992.

[7] W H I T E , S. A., Applications of Distributed Arithmetic to Digital Signal Processing, IEEEASSP
Magazine, 6 (3) (1989), pp. 4-19.

70 Z. NAGYand P. SZOLGAY

[8] K E R E S Z T E S , P. - ZARANDY, A. - ROSKA, T. - SZOLGAY, P. - HlDVEGI, T. - J6NAS. P. -
KATONA, A., An Emulated Digital CNN Implementation, Int. J. of VLSI Signal Processing,
Kluwer, 1999 September 9.

[9] Intel Performance Libraries homepage, http://www.intel.com/software/products/perflib/
[10] CNN Software Library, http://lab.anaIogic.sztaki.hu/
[11] Xilinx products homepage, http://www.xilinx.com/

http://www.intel.com/software/products/perflib/
http://lab.anaIogic.sztaki.hu/
http://www.xilinx.com/

