
PERIODICA POLYTFX:HNlCA SER. E L ENG. VOL. 47. NO. 1-2. PP. 71-88 (2003)

OVERHEAD ANALYSIS OF HTTPS

Laszl6 Z O M B I K

Department of Telecommunication and Telematics
Budapest University of Technology and Economics

H - l 117, Magyar tud6sok korutja 2, Budapest, Hungary
e-mail: laszlo.zombik@ericsson.com

Received: Feb. 2, 2003; Revised: July 22, 2003

Abstract

Secure web access has a remarkable growth. Users would like to exploit the advantages of the Internet
for online banking, for e-commerce or they simply would like to protect their information e.g. with
using a secure web mailer. Https is a simple hup traffic on top of a security protocol (e.g. S S L ,
T L S) is used for serving this need. This paper gives detailed analysis of https traffic to aid traffic
dimensioning or traffic modelling and even to assist investigation of traffic flow confidentiality.

Keywords: https, S S L , T L S , traffic analysis, traffic flow confidentiality.

1. Introduction

The HTTP [5] has the largest traffic on the Internet. Users primarily surf on the
Internet to collect public information. Hovewer, the number of the web-based com
mercial services (e-commerce) or private accesses like e-banking rapidly grows. In
addition, protection of letters using web-based e-mail services has also a vital ne
cessity. These services require to protect communication between peers, moreover
between users.

Without protecting sensitive web traffic, an eavesdropper may deduce param
eters or user behaviour, or an attacker can even identify and impersonate the victim.
Therefore, several security solutions have evolved, the two most notable security
protocols are the SSL [1] and the TLS [3], The two protocols are very similar.
Before sending user information, the client and the server initially negotiate about
the security association, including cryptographic algorithms and keys. After the
handshake phase, protected traffic is transmitted. If a web server uses SSL or TLS,
then the HTTP [4, 5] communication is secured. In this case the communication is
called HTTPS[11],

It is beneficial to have a model for https for bandwidth or for cost estimation.
This is extremely important for communications that contain expensive links or
the link capacity is limited and secure web access is required. An example can be
when the subscribers use satellite terminals, GPRS or UMTS based equipment for
browsing on the web.

This paper introduces a methodology for modelling traffic characteristics of
security protocols in Section 2. Based on this methodology, a traffic model for

mailto:laszlo.zombik@ericsson.com

12 L . ZOMBIK

https is presented. In Section 3 security, protocols of https are shown, Section 4
introduces a generic https model. This model is used for-the characterisation of
https traffic in Section 5. Section 6 concerns the user behaviour and the properties
of transport and lower layers which can affect the shape of the https traffic. The
traffic model is verified by measurements in Section 7.

2. Methodology for Modelling Traffic Characteristics of Security Protocols

Traffic characteristics of any communication protocol can be modelled easily, since
the message format, length and behaviour are known from protocol specifications.
However, time-dependence and options (ambiguously specified behaviour) in the
specification can cause statistical properties of traffic characteristics. This kind of
statistical properties still can be characterised by traffic measurements. Security
protocols, unfortunately, lose the property of observability due to employment of
data confidentiality, so from their traffic measurements one can hardly deduce sta
tistical properties. Even most of the security protocols possess the ability of traffic
flow confidentiality. This not only hides the actual value of data elements, but also
the length and the place of information is concealed. In test envinronment, all in
formation (e.g. secret material) is available for characterising a security protocol,
however, its behaviour can be quite different than the real-time traffic. Furthermore,
applied methodology in test environments for characterisation of real-time traffic
is not manageable. Therefore it is impossible to find an accountable network ad
ministrator (e.g. of an on-line bank) who agrees to disclose confidential information
for characterisation.

The following methodology tries to address this issue, it is recommended for
investigation of real-time traffic without the need of any confidential information.
It requires to know the behaviour of the security protocol, like message flow or
where and how cryptographic algorithms, random padding lengths, or compression
methods are used.

Step 1: message attributes or variables (like port number, length field), used
in all types of implementations, should be identified.

Step 2: explore which cryptographic and compression algorithms might occur
in the security protocol.

Step 3: determine or estimate in what way a specific algorithm affects the
message attributes or even the whole message (e.g. an MD5 [6] hash increases the
length of message by 16 bytes).

Step 4: determine the value of those attributes which do not depend on the
various cryptographic and compression algorithms, but have either fixed length
(e.g. Version) or have variable length (e.g. SP1). From the protocol specification
or measurements, the probability density function of the attributes with variable
length can be determined or estimated.

Step 5: For those parameters, which depend on some cryptographic or com
pression algorithms, determine the statistical properties (e.g. the probability of

O V E R H E A D ANALYSIS OF HTTPS 73

occurrence) of a specific algorithm per message attributes. From the protocol spec
ification or measurements (by tracing the list of offered and accepted ciphersuites)
this probability can be determined.

Step 6: with characterisation of upper and lower layer protocols, the effect
to the security protocol can be determined. For example, an influence from upper
layer is the user behaviour. From the lower layer propagation, buffering delays,
and other network effects originate. Existing traffic models like HTTP, TCP source
models can be used here.

Step 7: Model statistical properties of communication, like interarrival time
between messages, correlation, etc.

Step 8: Simplify the model by neglecting infrequent messages or rare cipher-
suites, or approximating complex messages, and those lengths.

Step 9: Evaluate the model to measurements and feed back the results.
Chapter 4 addresses the first step, while the next four steps and Step 8 are

covered in chapter 5. Step 6 is discussed in chapter 6, and the results are evaluated
in chapter 7.

3. Security Protocols for https

Https can choose between three security protocols. However, the oldest one is the
Secure Socket Layer version 2 (SSLv2) [2] which contains several security flaws,
therefore this is extremely seldom used. Corrected version of this protocol, the
Secure Socket Layer version 3.0 rapidly became de facto standard. Later the Internet
Engineering Task Force (IETF) released an official standard, based on the SSLv3.0,
which is called Transport Layer Security (TLS). The difference between the TLS
and the SSLv3.0 is minimal: the number of ciphersuites, alert, and certificate types
were extended, the method of key calculation was modified and the Handshake
finalisation message was modified (simplified). The version numbering of TLS
shows (version 3.1) that this protocol can be considered as the successor of SSLv3.0.
Nowadays, secure hup communication prefers SSLv3.0, but the latest versions of
applications start to use TLS only.

Fig. 1 shows the SSL/TLS message flow. Messages with dashed lines are
optional. Fig. 1(a) shows the full handshake message exchange. The SSL/TLS
communication starts with the ClientHello messages, where the client sends several
ciphersuites to initiate a session. The server selects one ciphersuite and answers with
a ServerHello message; also certificate of the server and, optionally, if the selected
ciphersuite requires, serverKey Ex change message is attached. If the server requires
client certificate for authentication, then this is indicated in the ClientCertRequest
message. Finally, the ServerHelloDone closes this communication. If a client
certificate is requested, then the client attaches its certificate in the answer, also
responds with Client Key Exchange, which contains the keying material. Certificate
Verify notification may also be sent by the client. After negotiating and sending the
keying material, secure communication should be started. The ChangeCipherSpec

74 L ZOMBIK

message indicates, that the negotiated security procedures must be used right after
this message. Therefore, the last message of the clieni, the Finished is encrypted. If
the server receives the ClientKeyExchange, it starts to calculate secret keys. If this
is finished, the server answers to the client with a ChangeCipherSpec message. The
encrypted Finish message of the server closes the handshake. After the handshake
phase, peers exchange encrypted user data.

If both the server and the client support the Session Key Caching (SKC)
mechanisms, then after the initial communication they can improve efficiency by
reusing existing information. The reduced message flow is presented in Fig, 1(b).

In the SSL/TLS protocol stack upper layer messages are encapsulated and
protected in the lower SSL/TLS Record Layer. There are different methods to
achieve confidentiality. Stream ciphers have the same length as the plaintext; block
ciphers may have padding in order to fill the plaintext to block size of the ciphering
algorithm. The padding can be up to 255 bytes in order to provide some data flow
confidentiality too. Record Layer messages, furthermore, contain a generic header
(which consists of Type, Version and Length fields) and a Message Authentication
Code (MAC).

Client Server

HeUoBegy**1 _ -

Server

Encrypted User Data
Encrypted User Data

(a) Full Handshake (b) Session Key Caching

Fig. 1. The SSLH"LS message flow

OVERHEAD ANALYSIS OF HTTPS 75

4. General https Model

We denote the user traffic by / (/) , let 9 (9 : Q i-v 9t) model the interarrival time
of messages / (/) = msg(/)/(0 < t). is an indicator function, msg(r) is the
content of the message at time t.

Furthermore, let the encrypted user traffic be /*(/) between the server and
the client. The client can initiate multiple sessions, it starts with a handshake,
therefore, in our model h(t) is the aggregate handshake traffic between the server
and the client. The encrypted user traffic is equal to the user traffic fragmented,
encapsulated and encrypted to SSL/TLS record layer:

/* (/) = ^(RHeader + Enc(Compr (msg,(/)) + MAC {Compr jmsg^/))))) ,
tml

where + is concatenation, Enc{.} means symmetric encryption, and msg,(/) is the
i-th fragment of the message msg(/) = X]f = |(rnsg ((r)) such as N — | m y ~J and
the <p is the size of SSL/TLS fragment.

As SSL/TLS can handle both stream ciphers 5{.} and block ciphers B{.}:

Enc{.) = 5 { .] / a + 5 { . } / s ,

where lx indicator function (Iah — 0), its value is 1 if the specific cipher is used
(otherwise zero). A short definition of block ciphers (let the H symbol be deduction,
\x\ the length of message x in bytes and plaintext is a{t)):

Mt) = B{a(t), key]
= B{key,a(/) H> fo(t) \ Pr(/3B(/) h a(t))
= 0APr(^fl(Or-key)
= OA 10,(01 > \a(t)\)

and Stream ciphers:
& (/) = ${«</), key}

= B{key,a(t)r->Mt)\\<x(t)\
= |ft(f)| A PrGMO >-«(/))
= 0APr (^ (Or -key) = 0)

Compr{.) means compression: fic = Compr{a(r)} = [a(t) h-> /?<:(/) I \Pc(0\ <
|af (/)|} The RHeader is the general SSL/TLS record layer header, it consists of
the type, version and length fields. MAC{.) is the message authentication code
calculation function, this is different in SSL and TLS, but the following definition

7(> L ZOMBIK

can be applied to both protocols (y(t) is an arbitrary b i t string):

PMAC = MAC{a(t),key}
= {key,a(t) ^ j8 M A C (r) | P r (£ M A C (0 h Qf(/))
= OAPr(0MAc(Or-key)
= 0 A (Pr(<*(r), key h y(t)) = 0 | j8 M A C (f) ^ y(/))}

The generalised https model consists of the encrypted user application data and
handshake traffic:

HTTPS(r) = M O + / * (') •
Consider | (0 = (&.) , a vector of probability variable | : £2 »-» 9f . The first
element refers to the delay of X\ message arrived relative to a reference time, f ^ / i ' 7̂
1 are the probability variables of the interarrival times of message A., and A.,+ 1.

If no session caching is used, then i' e [1..14] and

(noSKo r̂ = (HelloRequest, ClientHello, ServerHello, ServerCert,
ServerKeyExchange, CertRequest, ServerHelloDone, ClientCert,

ClientKeyExchange, ClientCertificateVerify, ClientChangeCipherSpec,
ClientFinished, ServerChangeCipherSpec, ServerFinished).

If Session caching is set i e [I..6] and

(S K O ^ T _ (clientHello, ServerHello, ServerChangeCipherSpec,
ServerFinished, ClientChangeCipherSpec, ClientFinished).

The handshake traffic can be divided into client-to-server hc(t) and server-to-client
hs(t) directions. (Fig. 1):

MO = H (Mtfo < 0); hs(t) = (V % < '));

where K$KC = {1.5,6} and L S K C — {2,3,4} at session reuse, and ^ n o sKC =
{2, 8,9, 10, 11, 12} and L n o S K c = {1,3,4,5,6,7, 13, 14} when https not uses pre
vious session information. h*Ai is the handshake message X,, / (.) is an indicator
function, its value is set when the corresponding message is sent.

4. J. Format of Handshake Messages

In this Section the formal description of the handshake messages will be introduced.
The RHeader is the general SSL/TLS record layer header, it consists of the type,
version and length fields, while the HHeader is the general SSL/TLS handshake
header, it contains the handshake type, and length fields. Ver is the version attribute

OVERHEAD ANALYSIS OF HTTPS 77

of the sender. Ix is a generic indicator function, its value is one if and only if
message x exists, otherwise zero.

The Record layer adds the record layer header to all upper layer protocol
(handshake, application data) messages. If a message is supposed to be encrypted,
then after fragmentation the * (.) = RHeader + Enc{Compr{.} + MAC{Compr{.}}}
transformation is applied to it. HelloRequcsts consist only of the handshake layer
header /ihdioRcq = HHeader. ClientHello contains HHeader, Ver, and a Rand ran
dom data.

ĉiicnthciiofO = HHeader + Ver + Rand + CSessionID
+CCipherSuites + Compression,

Where CSessionID, CCipherSuites, Compression attributes arc the session ID of
the client (variable length random ID), list of ciphersuites and list of compression
methods offered by the client. In every implementation those fields additionally
contain length fields even if this is not specified in the SSL/TLS standards. The
server answers to the ClientHello message, choosing ciphersuite and compression
method:

/jse rvcrhciio(0 — HHeader + Ver + Rand + SScssionID
-1-SCipherSuite + Compression

The server certificate message contains a server specific certificate or certificate list.
CertificatesLength indicates the length of the certificate, this variable is not in the
SSL/TLS specification.

hsccn(t) = HHeader + CertificatesLength + Cert Lis t(server)

In the Server Key Exchange message, if RSA key transport is chosen in the ci
phersuite. RSA parameters, if Diffie-Hellman key exchange is selected, then DH
parameters are sent. The message should also contain a signature to authenticate
the traffic:

/iSKeyX Ch(0 = HHeader + Ver 4- / R S A RSA + /DHE-DH" + / S j gSig.

where
/ R S A ' D H E = 0.

DH contains the Diffie-Hellmann public variables, g, n and Ys, RSA [7] contains
the modulus and the exponent. /si g indicates whether a signature exists, Sig is a
signature algorithm, specified in the SCipherSuite. If DSS [8] authentication exists,
an SHA-1 [9] hash, if the signature is based on RSA, then an MD5+SHA1 hash is
applied:

Sig = / R S A (M D 5 + SHA) + / D S S (S H A)

The server can optionally ask for client certificate for mutual authentication. In
this case, the known certificate types (ClientCertTypes) and the known certificate

78 L ZOMBIK

authority names (CAname) are specified. In addition, implementations also con
tain one byte long attribute for indicating the number of known certificate types
(CertTypesCount).

/'CenReqO = HHeader + CertTypesCount + ClientCertTypes + CAname.

The ServerHelloDone consists of:

fcsHeiioDone(0 = HHeader.

Client certificate is similar to the server certificate message, however, it contains
the Client certificate or certificate list:

Accen(') = HHeader + CertificatesLength + CcrtList(client).

Client Key exchange message: if RSA key transport is selected, it contains Version
and random number encrypted by the public RSA key found in the certificate. If
DH method is selected, the public DH value is attached:

AcKeyXchf/) = HHeader + /R SA{Vcr + RND}RSA,,uh + / D H E > W

The optional Client Certificate Verify message includes either DSS or RSA signa
ture:

/iciCertVerifytO = HHeader + /sigSig,

The handshake phase is closed by the Finished message, generally this message is
encrypted by the negotiated algorithms. This message contains verification data,
which consists of 36 bytes in the case of SSL and 12 bytes in TLS.

ft Finished (0 — HHeader + VerifyData.

In SSL/TLS there are two additional non-handshake messages, the Alert and Change
CipherSpec message. The former indicates warning or fatal error, while the latter
indicates when the negotiated algorithms should be used. (Both can be in encrypted
form):

/'AieriO*) = AlertLcvel -I- AlertDescription
and

/iChCiPherSpec(0 = CipherSpecType.

5. Modelled TVaffic Characteristics of https

In this chapter Steps 2,3,4,5 and 8 of the methodology for modelling traffic charac
teristic of security protocols are shown.

O V E R H E A D ANALYSIS OF HTTPS 19

5.1. Cryptographic Algorithms

In the following, ciphers used in SSL/TLS implementations are shown: RSA is used
for Authentication and Key transport, but also DH or DHE is used for key generation
and DSS for authentication. For symmetric encryption 3DES, DES, RC4 and IDEA
are used, and MD5 and SHA-1 for message integrity.

Block size or output length of the used cryptographic algorithms are the fol
lowing: MD5uses 16, SHA-1 uses 20 bytes. Block ciphering algorithms like DES,
3DES, IDEA have 8 bytes block length, RSA generates as long ciphcrtext as the
size of modulus [10] so 64, 128, 256 bytes (if the key length is 512, 1024, 2048
bits). Output length of RC2, RC4 algorithms is the same as the length of the input
plaintext.

Size of the cryptographic parameters that can be sent between the client and
the server are various. The modulus of RSA can be around 64, 128, 256 bytes
(512, 1024, 2048 bits), however, the RSA exponent is usually 3 bytes. The length
of Diffie-Hellmann generator is usually 1 byte, while the modulus and Ys typically
have 64, 96, 128 bytes (512, 768, 1024 bits) length. A DSA signature (containing
the r and the s) requires 40 bytes, while RSA signature requires at least 64 or 128
bytes (if key length is 512, 1024 bits, respectively).

5.2. Length of Message Variables

Constant length variables of the SSL/TLS messages and their sizes are the follow
ing: RHcader 5, HHeader 4, Ver 2, Rand 32, CertificatesLength 3, CertTypeCount,
AlertLcvel, AlertDcsc, ChCipherSpecTypc and ComprMethod 1 byte.

Variable length message attribute is only the client SessionlD data, whose
length can be between 0 and 32 bytes, but in our measurement it is either 0 or 32.

Variable length message attributes which depend on some security properties
are the following. The CiphcrSuiteList variable of ClientHello contains between
5 and 24 ciphersuite, however, in most cases 8 and 11 ciphersuites are sent to the
server (one half of the samples contained 11 and one quarter of the samples had 8
ciphersuites). Since one ciphersuite consumes 2 bytes, the length of Ciphersuite
variable can be modelled as: ?r(x < 0.5)22 + Pr(0.5 < x < 0.75)16 + Pr(x >
0.75) Unif(10,48).

The length of the server and the client certificate depends on several param
eters, for example the number of X.509 extensions and signature algorithm. In
addition, the length of certificate depends on the length of the bounded public key
and signature. Public keys used on the Internet have 512, 1024 or 2048 bits length,
however, the latter is not typical yet. Therefore the length of the Certificate payload
is modelled as a uniform distribution between 600 and 1000 bytes.

The RSA public modulus has the same length as the key size, so it can be 64,
128 bytes. The RSA public exponent usually has a 3-bytes-iength. Diffie-Hellman
generator is usually 1 byte, while the modulus and Y, can be 64, 96, 128 bytes.

80 L ZOMBIK

The length of Signature data (Sig) can be 0, (in the case of no signature) 40, (if the
signature algorithm is DSS) or 64, 128 (in the case of 512 or 1024 bits length RSA)
bytes.

The Client CertTypesCount in the Certificate Request can be between 1 and
255 bytes, but in our measurement this is between 30 and 200. Therefore let the
length of ClientCertTypes be modelled as uniform distribution between 30 and 200
bytes.

The RSA encrypted message attribute in the Client Key Exchange message
({Ver + RND}RSAput)) has the same length as the RSA modulus size so 64 or 128
bytes. In the Finished message, the Verification data is either 36 bytes, i f SSL is
used, or 12 bytes in the case of TLS.

5.3. Length of Messages

The traffic characteristic of https can be defined using the generalised https model:

|HTTPS(<)i = |MOI + l /*(OI,

Handshake messages can be divided into client and server communication,

\h(t)\ = \hc(0\ + \hs(0\,
where

I M 0 I = £ (| A a (- | / & (- <'));
iei.

Let (j>{i) -- (4>K), 0 f ' ' :• m # probability variable for the length of the hi
message. In this case the handshake traffic length:

I M O I = < /)) ;
icK

Furthermore, let the probability density function of : fx, (x). Suppose that /% (x)
is time invariant. Note that if fK.(x) and the distribution of is known, then the
handshake traffic can be modelled. In the following, several models for <f>k. (x) and
for its distribution are presented, while models for /%(-*) are discussed in chapter
7.2.

The length of Record and Handshake layer header is fixed, 5 and 4 bytes,
respectively (|RHeader| = 5, |HHeader| = 4) . Let notation ({a, b, c}) be a specific

OVERHEAD ANALYSIS OF HTTPS 81

distribution between the set of a, b and c. The general model of Table 1 shows the
length of handshake messages using parameter estimation from Section 5.2.

Record layer encryption is used to protect user data, finish and alert messages.

N

\f*{t)\ = J2 (IRHeaderl + \B{payload}\lB + |5{payload)j/5),

where the payload before encryption:

payload = ComprfmsgifO} 4- MAC{Compr{msg,(r)}}.

The MAC algorithm is calculated as the outmost function is a hash. Therefore
the length of MAC depends on the hash algorithms: |MAC{.]| = / M A C 0 6 / M D 5 +
20/.SHA) The block ciphered data length:

|tf {payload}! = IComprfmsg^fOll + |MAC{Compr{msg,(0}}| + |Padding|.

Let the block length be ft bit. If the communication uses no traffic flow confiden
tiality (so the padding fills out only the last block), then the padding length can be
modelled as a uniform distribution: [Paddingl = UniffO, ft/8). Otherwise, i f traffic
flow confidentiality is set, then the padding can fill at least the last data block, but
its length can reach 255 bytes:

/' • blocksize + UniffO, ft/8) < 255, where i is a probability variable, such
i € N and its minimal value is UnivfO, ft/8) and maximal value is 255. The
distribution of this probability variable can be modelled with uniform distribution
/ = Unif(Unif(0, ft/8), 255).

For example, block ciphers with block size of 64 bits and with no traffic flow
confidentality, |Padding| = UniffO, 8). This is the common case in our measure
ments. •

The stream ciphered data length:

|£{payload}| - |Compr{msg,(0)l + |MAC{Compr(msg ({/)}}|.

5.4. Simplifications in the Model

In the First refinement model we made several improvements to adjust our model
to the common properties of the implementations. Therefore the size of the Client
Hello and ServerHello message is increased by four and one, respectively. The
implementations use extra length fields in those messages. The Certificate of the
client and the server is modelled by a uniform distribution between 600 and 1000
bytes, because the length of all the certificates was between those values.

The Second refinement model contains simplifications of various algorithms.
In all measurements no compression is used by implementations, so

|Compr{/<0}| = 1/(01-

82 L ZOMBIK

In our measurements RSA_RC4_128_MD5 was the most frequently used cipher-
suite (89.5%), in most implementations it is included, and it has the highest prefer
ence. Occurrence of RSA_RC4_56_MD5 is 1.7%, RSA_RC4_128_SHA is 0.35%,
RSA_RC4_56_SHA is 8.2%. The remaining block ciphers, (like DHE_RSA_3
DES_SHA) are used only in 0.25% of the samples. Therefore we can conclude that
in our measurements the stream ciphers have dominance (99.75%), therefore let us
simplify our model as IB = 0, is = 1.

In most cases (99.8%) RSA is used, so let us simplify our model further, as
/RSA == 1. foss = 0. / D H = 0, / D H E — 0. From the RSA ciphersuites 1.8% was
RSA_EXPORT (with 512 bits), 8.2% was RSA_EXPORT_1024 (with 1024 bits)
and 90% of the ciphersuites was RSA with no limitation. However, unlimited RSA
ciphers used only 1024 bits, therefore the 1024-bit-long RSA had the dominance
(98.2%). SHA algorithm is used in 8.8% of the https connection, while MD5 is
commonly used 91.2%. All communication used integrity check, so / M A C —

SSL is used in 52% of the https traffic (TLS is used in 48% of communication).
Therefore we simplify that the length of finished message is (with 50% probability)
either 45 or 21 bytes. In ServerKeyExchange and in ClientVerify messages SHA
signature is used.

The SessionID in the ClientHello is set when an SSL/TLS session has been
set up previously, and no new SSL/TLS connection is forced. Therefore the usage
of SessionID is set the case of session caching.

The modified length of handshake messages can be found in Table I.

Note that the calculation of the record layer length is simplified (N = | m s | (" 1 " j) :

]/*(01 - (l R H e a d e r l + Imsg((0l + /MD 5 |MAC{msg,(0l})

= 53 (|RHeader| + /MD5lMAC{msg ;(/)|}) + | / (f } | = 21/V + | / (0 I -

In the Third refinement model unfrequent messages (with an occurrence under 0.5%)
are removed (Table J). Since all optional handshake messages are removed, only
the ClientHello, ServerHello, SCert, SHelloDone, ClKeyExchange, ChCipherSpec,
Finished messages remain.

The Session Key Caching technique requires less messages, the length of those
messages can be found in Table J.

6. Behaviour of User and Network

The nature of the https traffic highly depends on user behaviour. However, https
services, like Internet banking, e-commerce, secure mailing, etc. delimit the be
haviour of the user. Therefore three different types of secure http service can be

O V E R H E A D ANALYSIS OF HTTPS 83

easily separated. In the first type the user interactively uses the service, reads and
fills https forms and sends them back (e.g. a questionnaire). In the second type the
user primarily reads information, and seldom sends data (e.g. querying an on-line
bank). The third type of secure web service is a secure mailer, where the user reads
and sends mails. In this case the user can attach a large file for uploading, or the
user may also download large files.

The user-generated traffic is correlated to the handshake traffic. Every new
standalone HTTP object download precedes a new handshake message flow.

The secure layer opens a new secure connection for each new object. There
fore i f the session caching is not set, then the https traffic:

^objects N

HTTPS (?) = £ X! (* N °SKC, - . , (0

+RHeader,-; + msg,.,(r) + padding,-; + MAC,-,;).

In session key caching is used, the download of the first object uses full handshake
(because there is no preceding shared knowledge), however further objects use
session caching mechanisms:

N
HTTPS(/) = / i n o S K C i (') + ^(RHeader; + msg,- ,(f) + padding,- r + M A C U

ffobjccts N

+ £ 12 (* i » U / W + RHeader,,+ ms$. /0 + padding^- + MAC,, ,) .
j=2 r=1

The network also can distort the traffic shape of https; buffering delays, network
congestion, the state of TCP (e.g. in slow start), propagation delays may cause
significant deviations.

However, in our study the delay is corrected by the actual RTT. Therefore
effects from the network layer can be ignored.

7. Results

Our measurements have been performed in two scenarios. In the first configuration
we monitored a 100 Mbps backbone line. The second measurement was collected
on the 10 Mbps network segments where https server was located. In both scenarios
we monitored real https traffic, which sent on TCP port 443. In the first configu
ration more than 120000, while in the second configuration more than 20000 https
communications (containing handshake and user data traffic) were collected.

84 L ZOMBIK

(a) Server Hello messages, No S K C (b) Server Finished messages. No S K C

(c) Server Hello messages, S K C (d) Finished messages, S K C

Fig. 2. Empirical distributions of interarrival times

7.1. Length of HS Messages

We have four methods to estimate the length of handshake messages. The first one
is originated from the general traffic characteristics in Section 5.3. In this model
there are several unresolved variables that the first refinement model resolves. This
might give a rough estimation, but i f it is not sufficient enough, then the second
refinement model can be used, where the unfrequent variables are removed. In the
third refinement model unfrequent messages are also neglected. The SKC model
can only be used for connections using session key caching mechanism (Table 1).

O V E R H E A D ANALYSIS OF HTTPS 85

Table I . Length of handshake messages. * length includes the Record layer encapsulation

Handshake
messages

(*,)
Empirical general model fo.

refinement
model 1

refine
ment

model2

retinc-
mcnt

modcl3
SKC

Hello Req* 9 9 - 9 - -

ClientHello'

p = 0.5 : 102
p = 0.25 : 96
p = 0.25 :
Unif(45. 110)

44 + 3 2 / s e s s i o n I D

+2(#Ciphcrsuite)
48 + 32/SKC
+2((8.U))

(f96. 102)) {{96, 102)) ({96. 102))

Server Hello 74 73 74 74 74 74

Server Cert Unif(600,1000) <kcr\ =&ert (server)
12+
Unif(600. 1000)

806 806 -

ScrverKeyEx-
change

210

"1 + ^ (3
+((64. 128}))+
/DHEU
+2(164,96. 128)))
+ >Sig«(40.
64, 128)))

- 180 - -

S Hello Done 4 4 - 4 4 -
Client Cert Unir(600,1000) ^ceri

= <Pcea<.cIient)
12+
Unif(600, 1000)

806 806 -

Client Key Ex
change

127
+({64. 128)))
+IDHEV
+ ((64.96. 128)))

- 140 140 -

Cert Verify 37 9 +/Sig ((40
.64. 128))

49 - -
ChCipherS' (> 6 - 6 6 6
Finished* ((45.21}) 9 + ((36. 12)) - ((45.21)) - -
Alert* 7 7 - 7 7 7

Encrypted
Finished*

p = 0.067: 37
p = 0.015: 41
p = 0.869: 61
p = 0.047: 65

(21.45)
+Unif(0. 8)
+ |MAC|

- ((37,41.
61,65))

({37,41,
61.65))

61

Encrypted
Alert*

p = 0.802 : 23
p = 0.191; 27

7 + Unif(0. 8)
+|MAC| - 23 23 23

Record Layer - |Compr(msg,(/))|
+Unif(Unif(0. 8). 255)
+|MACfCompr(ms&(/)))|

21 + 21 + | / (/) | NA

7.2. Time Dependence

The lower layer of the SSL/TLS protocols optimises the handshake performance by
grouping successive handshake messages. The empirical density of the interarrival
times of the grouped messages are shown in Fig. 2. The distortion caused by network
is corrected by the actual RTT, furthermore the data was collected in the second
scenario, in the same LAN where the server resides. Fig. 2(a) demonstrates that
the server immediately (2-3 ms) responds to ClientHello. In some cases, however.

86 L ZOMBIK

the server looks up its database for the client. This causes an extra delay (60 ms)
which is significant in the case of session caching Fig. 2(c).

The delay between the two finished messages (20 ms) in non-session key
caching case (Fig. 2(b)) is significant compared to the session caching case. The
cause of this difference can be found in the key agreement mechanisms, since
the server processes the CPU intensive ClientKeyExchange message, while in the
session key caching case this step is replaced by a faster one.

Note that the empirical probability density functions can be used for estimating
the density function of .

7.3. Overhead of https

Handshake overhead
The handshake overhead is defined as the ratio of the handshake and the total

traffic of a connection.

n m \
R h a n d s h a k e — \h(t)\ + | / * (0 |

\h(t)\
\h(t)\ + NORHeadl + |padding| + |MAC(/(f)) |) + 1/(01

= l/KOI
\h(t)\ + N(jRHead| + |padding| + |MAC(/(/)) |) + N<p - v '

where v = 0..(<p — 1).
The maximal value of handshake overhead (when no padding, MAC):

^ h a n d s a k e M A X

\h(t)\ \h(t)\
\h(t)\ + 5N + | / (0 I l /KOI+6

when N = 1, v = (p — 1. The minimal value of the handshake overhead (block
cipher with 64 blocklength, SHA):

wm = 1̂ (01
h a n d s a k e M , N + | / { f) | + 33^ + ^ 3 3 +

The most possible overhead value (the ciphersuite TLS_RSA_RC4_MD5):

\h(t)\ \h(t)\
andsake

|/i(0l + i / (0 l + 21N \h(t)\ + N(2\ + ^) - v

Table 2 shows the maximal and minimal values of handshake communication using
the models in Table 1.

Fig. 3 shows how the handshake ratio depends on the user traffic. The dotted
and dashed lines are the minimal and maximal borderlines of the handshake ratio.

O V E R H E A D ANALYSIS OF HTTPS 87

Table 2. Length of handshake messages and overhead. * for 1 kbyte user data

Session Caching Non Session Caching

Handshake Min Max Typical Min Max Typical

(raffle

Client to 125 261 169 159 369 264

Server
Serverlo 122 150 146 131 +cert 369 + cert 155 + cert
Client

Overhead

Client to

Server

125 0.9775 0.1392* 159 0.984 0.201* Client to

Server
125+^33+p) 0.9775 0.1392* 0.984 0.201*

Server to

Client

122 0.9615 0.1225* 131+cert 1-6 1-1045 * Server to

Client
122+Af{33+(0) 0.9615 0.1225* l31+cert+//(33+«>) 375+cert 1200+cert

(a) No session caching (b) Session Caching

Fig. 3. Handshake ratio (empirical)

In Fig. 3(a) the server to client and the opposite direction of handshake ratio are rep
resented. Fig. 3(b) proves that even the ciphersuite list affects the handshake ratio,
in the figure the ClientHello contained 3,5,6,8,11 ciphersuites, thus the handshake
ratio increases.

Cost for security

The traffic cost for securing http is defined as the ratio of the sum of the

L ZOMBIK

SSL/TLS control messages, record layer overhead and the user traffic.

_ \k(r)\ + A/(|RHead| + |MAC(/(Q)| + Ipaddingl)
n ~ 1/(01

_ IMOI + A/(|RHead| + |MAC(/(Q)| + Ipaddingl)
N(p — v

The minimal cost line (when there is no padding and no MAC).

_ \hmin(t)\ 5
N(p <p

The maximal cost line (blockcipher, SHA MAC, etc.)

| A (f) m a x | + 33jV
Irnax = T ^ y j = I « U W | + 33.

It is obvious that the cost function depends on the user traffic. If the user can
estimate the amount of traffic he sends , the additional network traffic can be deter
mined. Therefore this information can be the basis of the network dimensioning,
or bandwidth estimation.

8. Conclusion

Https model can be used not only for describing secure web traffic, but it can be
used for characterisation of secure IMAP, and secure POP3 [12] also. User traffic
and network congestion can distort the shape of https, however, the user behaviour
is determined by the secure service. In this paper a general https model, and an
exact traffic model together with simplified traffic models are introduced.

References

[I] F R I E R - KARLTON - K O C H E R , The SSL 3.0 Protocol, Netscape Corp., 1996. Internet Draft.
Work in Progress.

[2] KlPP, E . - H I C K M A N , B . . The SSL Protocol, Netscape Corp., 1995. Internet Draft, Work in
Progress.

[3] D I E R K S , T. - A L L E N , C , The TLS Protocol, R F C 2246, 1999. Proposed Standard.
14] B E R N E R S - L E E , T . - F I E L D I N G , R. - F R Y S T Y K , H . , HypertextTransfer Protocol -HTTP/7.0,

R F C 1945, May 1996.
[5] F I E L D I N G , et al., Hypertext Transfer Protocol - HTTP/1.1, R F C 2616, 1999.
[6] RlVEST, R . , The MD5 Message-Digest Algorithm, R F C I 3 2 1 , 1992.
[7] S C H N E I E R , B . , Applied Cryptography, 2nd Edition, John Wiley, 1996.
[8] F1PS PUB 186-2, National Institute of Standards and Technology, 2000.
[9] F1PS P U B 186-1. National Institute of Standards and Technology, 1995.

[10] Public Key Cryptography Standards P K C S # I , R S A laboratories, 1998.
[11] RESCORLA, E . , HTTP Over TLS. RFC2818, 2000.
[12] N E W M A N , C , Using T L S with IMAP. POP3 and ACAP, RFC2595, 1999.

