
PERIODICA POLYTECHNICA SER. EL. ENG. VOL 47. NO. 1-2, PP. IOI-! 13 (2003)

P E R F O R M A N C E TESTING ARCHITECTURE FOR
COMMUNICATION PROTOCOLS

Janos ZoltSn S Z A B O 1

High Speed Networks Laboratory
Department of Telecommunications and Telematics
Budapest University of Technology and Economics

H-l 117, Magyar tud<5sok kOnitja 2, Budapest, Hungary
e-mail: szaboj@ttt-atm.tmit.bme.hu

Received: Feb. 2, 2003

Abstract
This paper presents a new model for distributed and parallel performance testing. The model has been
designed to support testing based on language Testing and Test Control Notation version 3 (TTCN-3).
Our test environment is capable of generating a realistic load towards the tested implementation with
a large number of distributed parallel tester processes. The architecture is also able to operate on test
systems with heterogeneous hardware and operating systems.

We show the components of our model in details and demonstrate their operation and inter
nal communication on examples. The practical issues of the test system implementation are also
discussed. Some results from real life performance testing applications conclude the paper.
Keywords: test architecture, performance testing, TTCN-3, distributed testing.

i

1. Motivations
In today's telecommunication protocols and applications it is important to check not
only the functional correctness of implementations, but their performance charac
teristics as well. The purpose of performance testing is to verify whether the tested
system can work under realistic load conditions and is able to cope with overloaded
situations.

The commonly used protocols exchange complex data units based on sophis
ticated behaviour rules. Thus it is practically infeasible to set up a test environment
only for performance testing from scratch, which is able to communicate with a
real protocol entity. Performance evaluation takes place in the last phases of the
verification process because it assumes the functional correctness of the implemen
tation. The most suitable way to do performance testing is to re-use some parts
from the existing functional or conformance test environment. For example, data
type definitions and message encoders/decoders are available from earlier phases.

'Some parts of this work were performed in the Conformance Center of Ericsson Hungary's
Research and Development division

mailto:szaboj@ttt-atm.tmit.bme.hu

102 J Z. SZABO

This implies that, if possible, performance testing should use the same test
notation as conformance testing. The most widely used standardized test language
in the telecommunication area is the Tree and Tabular Combined Notation (TTCN).
This paper proposes a new, TTCN-based performance testing architecture and deals
with its theoretical and practical issues.

The paper is organized as follows. The next section presents the existing
solutions and approaches for performance testing. Section 3 describes our proposed
performance test architecture in details. Section 4 deals with implementation issues.
Finally some case studies show the applicability of our test environment in practice.

2. Preliminaries
The implementations of communication protocols are usually distributed systems.
Performance testing includes the checking of functional correctness because the
high throughput and short response times are useless if the functional behaviour is
incorrect. That is why performance testing requires at least as much computational
power for the tester as the tested implementation. Therefore the testing of dis
tributed implementations is feasible only with distributed test environments. This
raises significant problems such as the synchronization and coordination between
remote testing entities or the interoperability between different hardware/software
platforms.

A possible technique for measuring the performance characteristics of end-
to-end services and applications is to model each protocol entity with a service user
based on a probabilistic timed state machine ([1]). The test environment runs a
large number of these simple automata in parallel; each of them is communicating
with the tested system independently. When the load generation is finished the test
environment collects the measured results from the parallel processes and sets the
final verdict.

The original version of TTCN language, TTCN-2 ([2]) was designed for
conformance testing of OSI reference model based protocols. TTCN-2 had both
theoretical and practical shortcomings when it was applied for performance testing.
The most serious theoretical trouble was the static test configuration of TTCN-2.

In the TTCN terminology the processes that are executing test behaviours are
called test components. A test configuration consists of two kinds of test compo
nents: the only one Main Test Component (MTC) and zero, one or more Parallel
Test Components (PTC). The test configuration model of TTCN-2 is static, what
means that the number of PTCs is fixed and each of them shall be separately de
clared and named uniquely. The connections between two test components and the
interfaces toward the System Under Test (SUT) are also static.

The practical difficulty with TTCN-2 is based on its tabular format: the test
specification consists of several complex and strictly defined tables. Therefore the
TTCN-2 test executors are enormous and very complex systems with low execu
tion speed. This makes performance measurements with TTCN-2 unfeasible in

PERFORM A SCE TESTING ARCHITECTURE 103

most cases.
There were attempts to overcome the difficulties with TTCN-2. One of them

was PerfJTCN ([3]), a language extension, which defined a new performance test
configuration. PerfTTCN groups the test components into two categories: the
Foreground and Background Test Components (FTCs and BTCs). There are only
a few pieces of FTCs, but the number of BTCs is scalable. FTCs make just a
few sample sessions with SUT and measure its performance characteristics. At
the same time a large number of BTCs generate a bulk load toward SUT without
measurements.

Our previous trials showed in [4] that PerfTTCN had some disadvantages. The
major one was that only the FTC behaviours were described in TTCN-2. The BTCs
had to be implemented as external programs in common programming languages
like C. This means a lot of extra work and extra cost, and not all TTCN-2 test
systems have open interfaces to extend the language. Another drawback is that
only an insignificant portion of traffic is monitored thoroughly, failures in BTC
communications usually remain hidden.

To abandon such limitations a new revision was made on the TTCN language.
TTCN-3 ([5]) has been recently standardized by ETSI. Compared to TTCN-2 the
syntax has been simplified, but the application areas have been extended. In addition
to the traditional conformance testing, the language can be efficiently used to specify
performance lest scripts. Moreover, the language allows the derivation of test cases
for measuring performance characteristics of protocol implementations easily from
existing TTCN-3 conformance test suites by simply re-using data definitions and
message templates.

The built-in TTCN-3 language constructs allow to create any number of PTCs
during the test run. Not only the number of PTCs may change during test run, but
also the test components can be dynamically re-configured. This means, the test
components can terminate and re-establish their communication connections with
each other or towards S U T

However, the TTCN-3 standard does not deal with the implementation of
performance test systems. The test executor abstract virtual machine is defined in
the operational semantics as a centralized singleton process. This paper presents
a possible, working solution for the test system realization. Of course, our basic
problem is not a recent one: there have already been some existing standardized
solutions for distributed testing and test synchronization.

In the next paragraphs we would like to summarize our arguments for defining
a new test architecture and control protocols. The test coordination standard that
has the most similar purpose to ours is called Test Synchronization Protocol 1 plus
(TSPI+, [6]).

The main goal of TSP1 + is to provide a common interface for interoperability
between TTCN lest equipment of different vendors. The TSP1+ communication
primitives cover the constructs of the TTCN-2 only. TSP1+ is unable to handle,
for example, the creation of TTCN-3 PTCs and the dynamically changing test
configuration because TTCN-3 has no static limits and FTCs have no unique names.
On the other hand, TSP1+ was designed for managing conformance test execution

KM ; Z SZABO

for complex systems and not for performance testing at all. Moreover, the TSP1 +
messages contain many optional fields to better fit the needs of different tool vendors.

If we had chosen TSP1+ for the control protocol between our test system
entities, we would have had to extend it with new TTCN-3 features and we have
had to handle a lot of unnecessary options. Thus the final outcome would have been
a relatively slow implementation of a standard protocol with proprietary extensions.
The execution speed is a key issue in the case of performance testing, so we decided
to design a completely new architecture from scratch, which fits our needs the best.
We tried to minimize the number of data fields in all communication primitives and
we specified the behaviour of all entities to be unambiguous.

3. Architecture for Parallel Test Execution

In our proposed architecture the test system consists of several parallel processes
and control connections between them. Fig. J shows the set-up of these processes
in the case of an example test configuration. The processes of the Test System as
well as the System Under Test may be distributed among many computers, Because
TTCN-3 uses the black box testing approach, the internal structure of SUT is not
important from the tester's point of view. Therefore, in the following we will focus
on the different types of components that form the Test System.

Fig. 1. A sample configuration with the parallel test architecture

PERFORMANCE TESTING ARCHITECTURE 105

3.1. Elements of the Test System
The components of Test System can be grouped into three functional units: the
Main Controller (MC), the Host Controllers (HC) and the Test Components (TC).

There is one Main Controller in the Test System. Its main responsibility
is to perform those lasks that require central coordination, such as assigning a
unique identifier for a newly created Test Component. Therefore the MC maintains
bi-directional control connections with all other components. In addition, MC
provides the user interface for the entire Test System. The user can start or interrupt
the test execution and view the test results on a graphical or command line interface.
The program code of MC is static, that is, it docs not depend on the test suite to be
executed.

There may be one or more Host Controllers in the Test System, but there
must be exactly one HC on every compuier that participates in test execution. The
HCs have only one task, to create new Test Components locally on that computer.
Whenever a request for component creation arrives from MC. the HC duplicates
itself and the child process will become the new TC. Thus the program code of
HCs shall include the executable format of the TTCN-3 test suite. To assure the
consistent behaviour of the Test System, all HCs (and therefore all TCs) must run
the same program code.

3.2. Creating Test Components
Test Components realize the behaviour of each TTCN-3 test component by running
the executable form of the test specification. The TCs can communicate with each
other or with SUT using abstract messages as specified by TTCN-3 communication
primitives (e.g. s e n d or r e c e i v e) . In the Test System there is one dedicated TC,
which corresponds to the TTCN-3 MTC and others are the equivalents of TTCN-3
PTCs. Initially, only the MTC is created so it is the logical ancestor of all TCs. Not
only the MTC but any PTC may create new components.

The test execution works as follows. First, the user starts the MC and the HCs
on each computer. After that, the MC instructs a HC to create the MTC and starts a
TTCN-3 test case on it. The creation and termination of FTCs arc fully controlled
from the TTCN-3 test suite.

3.3. Component Creation
When the MTC reaches a TTCN-3 create statement below:

var MyComponentType MyPTC := MyComponentType.create;

106 j.z SZABO

it blocks itself and sends a request message to the MC on its own control con
nection. MC will choose a host and forward the request to the corresponding HC.
When the new PTC is ready, it notifies the MC on its new control connection, and
finally the MC sends an acknowledgement back to MTC and both components can
run in parallel. The Message Sequence Chart (MSC) of the create operation can be
seen in Fig. 2.

MTC MC

Reaching a
TTCN-3

create operation

CREATE REQ

Waiting

CREATE ACK

Continuing
execution

HC

CREATE

connection

(fork)
PTC

eslablishment

CREATED

Waiting for
start

Fig. 2. MSC of create operation

3.4. Component References
In a TTCN-3 test system every test component must have a unique identifier, which
is called component reference in the language. The TTCN-3 standard specifies
the component references to be implementation dependent, but those values must
behave transparently like in the case of any built-in data type. The test components
can store them in variables, pass them as argument to functions or even communicate
them to other test components within internal messages. The component references
are returned by the create operations. In our previous example the component
reference of the newly created PTC is stored in variable named MyPTC. The other
built-in TTCN-3 component and configuration operations, which operate on already
existing components, take one or more component references as arguments.

• In our test architecture only the Main Controller sees a consistent picture
about the state of test components. Therefore only MC is able to allocate the
unique component references. To make the implementation as simple as possible
the component references are pure integer numbers, that is, they do not imply the
type or physical location of the test component.

PERFORMANCE TESTING ARCHITECTURE III?

The component references of PTCs may be arbitrary; our MC uses a mono-
tonically increasing continuous range for that. The Main Test Component, however,
has a special role: it cannot be created or stopped, but it can have port connections.
Thus MTC must also have a well-known component reference, so MC uses a fixed
number (I , for example) for this.

To avoid confusion the MC must not assign an already used component ref
erence to a newly created PTC even if its previous owner has already terminated.
This is because any TC may have stored the reference of the old PTC and may
use it in future operations. Although all TCs must terminate at the end of test case
execution, there exists a construct in TTCN-3 to define such variables that preserve
their values between successive test cases2. Therefore the component references
must be globally unique during the entire test execution and it is not a good idea to
re-start the component reference allocation algorithm in the MC at the beginning
of each test case.

3.5. Component Location Strategy
Choosing the appropriate host for a newly created test component is one of the key
functions in MC. Our algorithm comprises two steps. First, the set of candidate hosts
is determined based on the type of the requested component. In general, the network
location and the different hardware configuration of the participating computers do
not allow running any kinds of components anywhere. The mapping between
component types and hosts is specified with special rules in the test configuration,
outside of TTCN-3 test specifications.

The second step uses a load-balancing concept. The host with the lowest
load is chosen from the set of candidates in such a way that MC forwards the
create request to the computer that runs the least number of TCs. Therefore the
overall performance of the Test System is scalable with the number of computers
participating in test execution.

3.6. Control Protocols
The control protocols between the test system entities assume a reliable transport
layer for all connections. The connections between different entities have different
semantics with different messages. The different types of arrows in Figure 1 de
note different kinds of connections. Altogether we use around 50 different types
of messages with various attributes. During the design of our control protocols we
eliminated all redundancies and ambiguities (e.g. options) from the messages to
achieve simpler and faster implementation. Our test architecture covers all paral
lelism related TTCN-3 language constructs, such as PTC creation and termination

2An example is when a local variable of the TTCN-3 module control part is passed as i n o u t
parameter to several test cases.

108 ; . z SZAB6

(as it was shown before) as well as the handling of internal communication channels
between PTCs.

The following section shows an example that illustrates the working mecha
nisms of the control protocols within the testsystem. We present the implementation
of TTCN-3 connect and disconnect port operations only, the other TTCN-3 opera
tions work in a similar way. In addition, we describe only the normal way of working
for these operations. The recovery mechanisms from various error situations are
out of scope of this paper.

3.7. Handling of Port Connections
The abstract interfaces of TTCN-3 a test component towards the outside world are
called communication ports. TCs can send or receive abstract messages on these
ports to or from the SUT or other test components. In the first case the port of a
TC shall be mapped to SUT using TTCN-3 operation map and unmap2. Making
the physical connection to SUT is the task of the protocol adaptation and is outside
the responsibility of the test architecture. In the second case, however, the internal
connections within the test system shall be handled entirely by the test architecture.

In order to communicate between two TCs the TTCN-3 test behaviour has to
perform a connect operation on a port of each TC. A port connection allows two-way
message transfers between two ports. A connection establishment or termination
may be requested either from one of the end-points or from a third TC by calling the
built in operations connect or disconnect. The TTCN-3 language allows a port to
have multiple connections to different TCs at the same time so that each connection
shall be handled separately. In our test architecture the port connections are realized
by direct transport layer connections between the processes realizing TCs. This
ensures the fastest transfer of internal messages to their destinations even in the
case of load testing when a large number of internal messages are communicated.

When a TC is created it has only one control connection to MC. Therefore
the central coordination of MC is always required for establishing or destroying
of a port connection. In our examples we would assume that TC A requests the
building and destroying of a port connection between two other TCs (let us call
them B and C). Fig. 3 shows the test system before the port connection is set up.
MC also keeps an eye on all existing port connections of the test system. This can
avoid inconsistent behaviour if the connection with same endpoints is requested by
two different TCs at the same time.

The connection handling protocols are precisely described using Finite State
Machines (FSMs). The two endpoints A and B shall behave according to the same
FSM but, of course, both have their own instance. In MC there is another type

Execution of map and unmap operations also require the exchange of special control messages,
especially when the mapping is initiated by a remote component. These operations are much simpler
compared to connect or disconnect, thus we do not present them due to the lack of space and relevance,

PERFORMANCE TESTING ARCHITECTURE 109

Fig. 3. The test sysiem before establishing the port connection

of FSM for this connection and MC has an independent automaton for every port
connections in the test system.

Although TTCN-3 allows asymmetric port connections as well, that is, when
the list of allowed message types is different in each direction, the arguments of con
nect and disconnect operations are symmetric. Those operations refer to the same
connection even if the arguments are swapped. Therefore the port connections are
considered symmetric in our test architecture regarding the tasks for connection set
up and termination. The actual tasks, however, are different for the two endpoints.
It is the M C s responsibility to choose which end-point shall behave as server or
client for the underlying transport connection4.

3.7.J. Connecting TTCN-3 Ports
The MSC of connection establishment can be seen in Fig. 4. First, the test execution
on component A reaches the connect statement below:

c o n n e c t (p t c B : p o r t l , p t c C : p o r t 1) ;

Because of this, component A sends a connect request message to MC with the
component and port identifiers of B and C. Then TC A waits until an acknowl
edgement message is arrived from MC denoting that the connecting procedure is
completely finished.

The connect operation comprises two steps for the MC. Firstly it has to in
struct one of the endpoints (component B in our case) to prepare itself for accepting
a transport layer connection from the other TC. When B is ready, the MC notifies
C to make the connection. When the connection is built up B will send the ac
knowledgement to MC. This is necessary because the connection establishment is

In the actual MC implementation this selection is based on a canonical ordering of component
references and port names.

110 J. Z SZAB6

TC

Reaching a TTCN-3
connect operation

MC

CONNECT REQ

Wailing

CONNECT ACK

Continuing
execution

TC

Waiting or
executing

CONNECT LISTEN

Listening
on a TCP port

CONNECT LISTEN ACK

CONNECT

CONNECTED

TC

Waiting or
executing

connection establishment

Waiting or
executing

Waiting or
executing

Fig. 4. MSC of connect operation

a passive event for the listener side, that is, it may happen that B does not notice
the new connection for a while after C became ready.

Fig. 5 shows the test configuration after the port connection has been estab
lished. The thick dashed arrow denotes the new connection.

Fig. 5. The test system when the port connection is established

3.7.2. Disconnecting TTCN-3 Ports
The communication diagram of a TTCN-3 disconnect operation can be seen in
Fig. 6. When executing the following disconnect statement:

PERFORMANCE TESTING ARCHITECTVRE I I I

d i s c o n n e c t (p t c B : p o r t l , p t c C : p o r t l) ;

the initiator A behaves very similarly as in the case of connect. It sends a dis
connect request to MC and waits until the whole procedure is finished. The task of
MC is also easy, but the endpoints have more things to do.

TC

Reaching a TTCN-3
disconnect operation

MC

DISCONNECT REQ

Waiting

DISCONNECT ACK

Continuing
execution

B
1C

Waiting or
executing

DISCONNECT

C

Waiting or
executing

No more messages
can be sent

lasl_message

No more messages
can be sent

DISCONNECTED

last_message

connection termination

Wailing or
executing

Waiting or
executing

Fig. 6. MSC of disconnect operation

The termination of the transport layer connection must be properly arranged
in order to avoid message losses in intermediate network buffers. There is a special
message called iast_message that can be transmitted on the transport layer connec
tions of ports. This means that no more messages can be sent after last_message
in that direction. The last message cannot be confused with the regular messages
of the ports. When MC requests C to disconnect, C sends the last_message to B
and waits for another last_message from the opposite direction. When the second
last_message has arrived back to C, C can be sure that no messages are staying
in the middle of transport connection in either direction. Then C can safely de
stroy the transport connection, which will be noticed by B and B will send the
acknowledgement back to MC.

Finally the test system will get back to its original state as shown in Fig. 3.

m J. Z. SZAB6

4. Practical Issues

4.]. Implementation of Test Architecture

Our performance test architecture has been successfully implemented as an exten
sion for an existing, compiler-based test executor ([7]), which translates TTCN-3
test specifications into C++ programs.

The processes of Test System were implemented as UNIX processes and the
control connections were mapped to simple TCP connections on a local network.
The encoding of control messages between the processes was designed to be plat
form independent so that a group of computers with heterogeneous hardware and
operating systems can cooperate and generate load simultaneously.

The key aspects of implementation were the scalability, the robustness and the
execution speed. The equivalent C++ code of TTCN-3 test suites can be compiled
into efficient executable programs. The test body of typical performance test cases
generates a stationary load towards SUT and therefore the number and configuration
of PTCs do not change during test run. So the most performance critical part of
the Test Architecture, the Main Controller has tasks only during the test set-up and
termination phases.

Our real-life experiments showed that this architecture could safely cope with
test set-ups with up to 1000 PTCs distributed over more than ten workstations.

4.2. Protocol Adaptation

Like the TTCN-3 language, this test architecture is designed to be independent of
the execution platform and the protocol to be tested. However, the handling of port
mappings and messages going to or coming from SUT are protocol and platform
dependent and outside the scope of the generic test architecture.

To make the test environment flexible, our test executor implementation pro
vides the user with an Application Programming Interface (so-called Test Port API)
for the protocol specific communication tasks. In the Test Port modules the user has
to implement the TTCN-3 map and u n m a p port operations in C++ language that
shall establish or destroy connections between the Test System and SUT. Sending
and receiving messages to or from SUT is also the task of Test Ports, which can be
realized with the help of operating system primitives.

The Test Ports are the parts of the processes that realize TTCN-3 test compo
nents (either the MTC or a PTC), so the messages of SUT are handled locally. This
design principle eliminates the bottleneck of a centralized protocol adaptation.

PERFORMANCE TESTING ARCHITECTURE 113

5. Conclusion
Our distributed performance test environment has been successfully applied in a
couple of projects. We used TTCN-3 test scripts to generate load against Remote
Authentication Dial In User Service (RADIUS) and DIAMETER servers. We ran
around 500 parallel test components simultaneously distributed on five Sun work
stations. Each component emulated one service user by initiating and terminating
RADIUS or DIAMETER sessions repeatedly. To generate stationary load, we used
random values with given distributions for session duration and session inter-arrival
times.

We also used the test environment for the performance evaluation of two
experimental IP micro-mobility protocols. In the case of BRAINCandidate Mobility
Protocol (BCMP) the existing TTCN-3 conformance test suite was re-used to verify
the robustness of system nodes. Wc simulated 200 end-users that generated both
signalling and payload from 2 Linux hosts.

During the investigation of a Hierarchical Mobile IPv6 (HMIP) system we
generated load from two PTCs that ran on a single computer. We measured the de
lays and latencies of hand-overs. Unfortunately, the only available prototype HMIP
implementation was unstable and produced such slow hand-over characteristics that
we could not measure rcpealable results. Nevertheless, the same test environment
can be also used with more settled implementations in the future.

References
[1] K W I A T K O W S K A , M. - N O R M A N , G. - S E G A L A , R. - S P R O S T O N , J., Verifying Quantitative

Properties of Continuous Probabilistic Tuned Automata, CONCUR'2000, 2000.
[2] Information Technology - Open Systems Interconnection - Conformance Testing Methodology

and Framework - Part 3. The Tree and Tabular Combined Notation, ISO/IEC 9646-3, 1998.
[3] S C H I E F E R D E C K E R , L - STBPIEK, B. - RENNOCH, A., PerfTTCN, a TTCN Language Exten

sion for Performance Testing, In Testing of Communicating Systems, 10 (1997), Chapman &
Hall.

[4] G E C S E , R. - K R E M E R , P. - SZABO, J. Z.. HTTP Performance Evaluation with TTCN, In
Testing of Communicating Systems, 13 (2000), Kluwcr Academic Publishers.

[5] Methods for Testing and Specification (MTS); The Tree and Tabular Combined Notation Version
3. TTCN-3: Core Language. ES 201 837-1, ETS1 Standard. 2001.

[61 Methods for Testing and Specification (MTS); Test Synchronization Architectural Reference; Test
Synchronization Protocol I plus <TSPi+) Specification ES 201 770, ETSI Standard, 2000.

[7] SZABO, J. Z.. Experiences of TTCN-3 Test Executor Development, In Testing of Communicating
Systems, 14 (2002), Kluwcr Academic Publishers

