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Abstract 
In statistical pattern recognition, the principal task is to classify abstract data sets. Instead of using 
robust but computational expensive algorithms it is possible to combine 'weak' classifiers that can 
be employed in solving complex classification tasks. In this comparative study, we will examine the 
effectiveness of the commonly used hybrid schemes - especially those used for speech recognition 
problems - concentrating on cases which employ different combinations of classifiers. 
Keywords: machine learning, pattern recognition, classifier combination, speech recognition. 

1. Introduction 
The goal of designing pattern recognition systems is to achieve the best possible 
classification performance for the specified task. This objective traditionally led to 
the development of different classification schemes for recognition problems the 
user would like to be solved. Experiments show that although one of the designs 
should yield the best performance, the sets of patterns misclassified by the different 
classifiers do not necessarily overlap. These observations motivated the relatively 
recent interest in combining classifiers. The main idea behind it is not to rely on 
the decision of a single classifier. Rather, all of the inducers or their subsets are 
used for decision-making by combining their individual opinions to produce a final 
decision. 

A fair number of combination schemes have been proposed in the literature 
[3, 5, 6], differing from each other in their architecture, the characteristics of the 
combiner, and the selection of the individual classifiers. From the analytic view
point, there are basically two combination scenarios. In the first scenario, all the 
classifiers use the same representation of input patterns, while in the second scenario 
each classifier uses its own pattern representation, so the measurements extracted 
from the pattern are unique to each classifier. 
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The paper is organized as follows. In the first section we give a general 
overview of combination schemes, concentrating on their input representation, ar
chitecture, and some of techniques for generating the independent inputs needed 
for combinations. Then we derive the commonly used combination rules like the 
Product and Sum rule. In the next section we compare the individual classifiers 
and the associated hybrid schemes, including the traditional Bagging and Boosting 
techniques. In the final section we summarize the main results and conclusions of 
the paper. 

2. Concept of Combination Schemes 
2. /. Types of Knowledge Sources 

Each inducer has to be capable of assigning one of the classes to a given pattern x( . 
The output information from each is sufficient for some types of combiners (e.g., 
Majority Voting Rule), but other combiners might need other types of information 
from individual classifiers. The types of information required can be grouped into 
three main categories: 
Abstract: Only the assigned class label cok is 

required. Classifiers which only need this information as input are voting 
combiners like Bagging and Boosting. 

Ranking: Instead of providing just the best class cok associated with the given pattern 
X/, the list of classes is supplied, ranked in order of probability. This more 
general information type can be used as input for combiners like the Borda 
count rule. 

Measurement or Confidence: In the most general case, each of the a posteriori 
probabilities p(o)j | x,) are provided. Combiners can aggregate these proba
bilities from different inducers and make a final decision. Examples include 
combiners which use the measurement information type such as Prod. Sum, 
and Max Rules. 

2.2. Combination Architectures 
Various schemes for combining multiple classifiers can be grouped into three main 
categories according to their architecture: 
Parallel: Each of the inducers are invoked independently, and their results arc then 

combined by a combiner. The majority of combination architectures in the 
literature belong to this category. 

Cascading: Individual classifiers are invoked in a linear sequence. The number of 
possible classes for a given pattern is gradually reduced as more classifiers 
in the sequence are invoked. For the sake of efficiency, inaccurate but cheap 



CLASSIFIER COMBINATION IN SPEECH RECOGNITION 127 

classifiers are considered first, followed by more accurate and expensive 
inducers. 

Hierarchical: Individual classifiers are combined into a structure similar to that of 
a decision tree classifier. The tree nodes, however, may now be associated 
with complex classifiers requiring a large number of features. The advan
tage of this architecture is its high efficiency and flexibility in exploiting the 
discriminant power of different types of features. 

2.3. The Training Set 
A classifier combination is especially useful if the classifiers applied are largely 
independent. If this is not already guaranteed by the use of different learning sets 
or different learning methods, various re-sampling techniques like rotation and 
bootstrapping may be used to artificially create such differences. 
Rotation: The original learning set is divided into n disjoint subsets and uses dif

ferent unions of n — 1 subsets as training sets. This technique is commonly 
used in cross-validation during error estimation. 

Bootstrapping: A bootstrap sample can be generated by sampling instances from 
the training set with replacement, using a specified probability distribution. 
Examples include Bagging and Boosting. 

Stacking: The outputs of the individual classifiers are used to train the stacked 
classified 11 ]. The final decision is made based on the outputs of the stacked 
classifier in conjunction with the outputs of individual classifiers. 

Generating noise: The generated classification model of an unstable classifier strong
ly depends on existing errors in the training database. Adding artificial errors 
is a way of generating a set of more or less independent classifiers, making 
it possible to fulfil the requirements of a combiner. 

3. Integration of Knowledge Sources 
Consider a pattern recognition problem where the pattern Z is to be assigned to one 
of m possible classes (co\,..., com). Let us assume that we have R classifiers, each 
representing the given pattern by a different feature vector. Next, denote this feature 
vector (employed by the ith classifier) by X/. In the feature space each class is 
modelled by the probability density function /?(x, | co^) and its a priori probability 
of occurrence P(a)k). 

According to Bayesian theory, for given features x,-, i e { I , . . . , R] the pat
tern Z should be assigned to class o)j with the maximal value of the a posteriori 
probability such that 

f(\i) = coj, j = argmax P(<ok \ xj xR). 
k 

(1) 
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Let us rewrite the a posteriori probability using Bayes' Theorem. We have 
„, , P(x\ xfl | tok)P(a>k) 
P(cok I x, Xft) = . (2) 

/>(xi xR) 
In the latter, the unconditional joint probability density can be expressed in terms 
of the conditional feature distributions, so that 

m 
p(x\ xR) = ^ / > ( X | , . . . ,\R | a)j)P(ojj). (3) 

j = 0 3.1. Product Rule 
Let us assume that the probability distributions /?(x( , . . . , xR \ cok) are conditionally 
statistically independent. Then 

R 
p(X[ xfl | a>k) = \\p(Xi | a)k), (4) 

and the decision rule 
f(Xj) a= coj, j = argmax P(a>k) Y] I a>k), (5) 

or in terms of the a posteriori probabilities generated by the respective classifiers 
argmax Pl~R(a>k) ]~[ p(mk \ x(). (6) 

3.2. Sum Rule 
In some applications it may be appropriate to assume that the a posteriori probabil
ities computed by the respective classifiers will not dramatically deviate from those 
of the prior probabilities. This is a rather strong assumption but it may be readily 
satisfied when the available information is highly ambiguous due to high level of 
noise. In such a situation we may assume that the a posteriori probability can be 
expressed in the form 

p(a>k\xi) = P(cok)0+Ski)l (7) 
where 8ki <5C 1. Substituting this for the a posteriori probabilities in (6), we find 
that ^imUpm i x() = p(a>k)Y\(\ + « . (8) 
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If we neglect terms of second and higher order, we can approximate the right-hand 
side and obtain the sum decision rule 

f ( \ i ) = coj, j = argmax 
k 

(\-R)P(a>k) + J^p{a>k\Xi) (9) 

3.3. Max, Min Rule 
The decision rules (6) and (9) constitute the basic schemes for combining classifiers. 
Many commonly used combination strategies can be developed from these rules 
after noting that 

FI/7^ I x<) - min/>(a>i | x,) < — V^/Kfifc I x ; ) < max/>(o>* I Xi). 0 0 ) 
I A *• ' I 

i i 
This inequality suggests that the product and sum combination rules may be approx
imated by the max and min operators, where appropriate. These approximations 
lead to the following: 

3.3. J. Max Rule: 

/ ( x t ) = coj, j = argmax I ( ] - R)P(wk) + R max p(cok \ x , ) j , (11) 

3.3.2. Min Rule: 

f(Xj) = tuj, j = argmax 
1 P(1-R)(ojk)m\np(wk (12) 

3.4. Median Rule 
Note that using the equal prior assumption, the sum rule can be interpreted as 
computing the average a posteriori probability. It is well known that a robust 
estimate of the mean is the median, so it might be more appropriate to use it as the 
basis for the combining procedure. Adopting this leads to the following rule: 

/ ( x , ) = coj, j = argmaxmed/>(wk \ x , ) . (13) k ' 
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3.5. Voting Rule 
Hardening a posteriori probabilities P{cok \ x,) will produce binary valued functions 
Aki like 

1 if p((ok | x,) = max p(a); I x() 
A * , = / (14) 0 otherwise, 

which results in combination decision outcomes rather than a combination of a 
posteriori probabilities. Assuming that each a priori probability is equal leads to 
the following decision rule: 

f(\i)=a>j, j = a r g m a x ^ A k i . (15) 

Note that for each class cok, the sum on the right-hand side of (15) simply counts 
the votes received for this hypothesis from each individual classifier. 

3.6. Borda Count 
Instead of hardening a posteriori probabilities, it is possible to use modified proba
bilities pki based on ranking information. 

Put = ^ 1 <16> 
j:Pla>j\Xi)<P((ot\Xi) 

where C is a normalization constant. This results in the following decision rule: 

/ (x , ) = a)j, j = argmax ] T p k i . (17) 

3.7. Bagging 
The Bagging (Bootstrap aggregating) algorithm [1] votes classifiers generated by 
different bootstrap samples (replicates). A bootstrap sample is generated by uni
formly sampling m instances from the training set with replacement. T bootstrap 
samples B\, B2, BT are generated and a classifier C, is built from each bootstrap 
sample 5,. A final classifier C* is built from Cj, C 2 , C j whose output is the 
class predicted most often by its sub-classifiers (majority voting). 
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Bagging algorithm 
Require: Training Set S, Inducer X 
Ensure: Combined classifier C* 

for * = 1 . . . T do 
S' = bootstrap sample from S 

For a given bootstrap sample, an instance in the training set will have a proba
bility 1 - (1 - \/m)m of being selected at least once from them instances randomly 
selected from the training set. For large m, this is about 1-1/e = 63.2%. This 
perturbation causes different classifiers to be built if the inducer is unstable (e.g. 
ANNs, decision trees) and the performance may improve if the induced classifiers 
are uncorrelated. However, Bagging can slightly degrade the performance of stable 
algorithms (e.g. kNN) since effectively smaller training sets are used for training. 

Boosting [9J was introduced by SHAPIRE (1990) as a method for boosting the per
formance of a weak learning algorithm. Here we will focus on AdaBoost, some
times called "AdaBoost.Ml". Like Bagging, the AdaBoost algorithm generates a 
set of classifiers and it makes a decision based on their votes. However, beyond 
this, the two algorithms substantially differ. The AdaBoost algorithm generates the 
classifiers sequentially, while Bagging can generate them in parallel. AdaBoost 
also changes the weights of the training instances provided as input for each in
ducer based on classifiers that were previously built. The final decision is made 
using a weighted voting scheme for each classifier, whose weights depend on the 
performance of the training set used to build it. 

Boosting algorithm 
Require: Training Set S of size m, Inducer X 
Ensure: Combined classifier C* 

S' = S with weights assigned to be l/m 
for i = 1 . . . T do 

5' = bootstrap sample from 5 

d =KS') 
end for 

3.8. Boosting 

Q = 1(5 ' ) 
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€j = weight of x 
xe5':C,(x)incorrcci 

if e, > 1/2 then Exit 
8 = f' 
for all Xj G S' such C, (x; ) = (Oj do 

weight of Xj = weight of Xj • fjt 
end for 
normalize weights of instances to sum 1 

end for 
C*(x) = argmax ] P log ^~ 

The AdaBoost algorithm requires a weak learning algorithm whose error is 
bounded by a constant strictly less than 1/2. In the case of multi-class classification 
this condition could be different to guarantee. Some implementations of AdaBoost 
make use of boosting by re-sampling because the inducers employed are unable to 
support weighted instances. Using appropriate classifiers, one can try re-weighting, 
which might work better in practice. 

4. Experimental Results 
4.1. Data-Sets 

The various hybrid techniques were compared using a relatively small corpus that 
consisted of several speakers pronouncing Hungarian numbers. More precisely, 20 
speakers were used for training and 6 for testing, and 52 utterances were recorded 
from each person. The ratio of male and female speakers was 50%:50% in both 
the training and the testing sets. The recordings were made using an inexpensive 
commercial microphone in a reasonably quiet environment, at a sample rate of 
22050Hz. The whole corpus was manually segmented and labelled. Because the 
corpus contained only numbers, we had occurrences of only 32 phonemes, which 
is approximately two-thirds of the Hungarian phoneme set. Because some of these 
labels represented only allophonic variations of the same phoneme, some labels 
were fused, and so we actually worked with a set of just 28 labels. We performed 
tests with two other groupings as well where the labels were grouped into 11 and 
5 classes, respectively, based on phonetic similarity. We had two good reasons for 
doing experiments with these gross phonetic classes. First, we could increase the 
number of training examples in each class and inspect the effects of this on the 
learning algorithms. Second, our speech recognition system has a first-pass stage 
in which the segments are classified into gross phonetic categories only. 
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Hence, we had three phonetic groupings, which will be denoted by grpl, grp2, 
and grp3 from this point on. With the first grouping, the number of occurrences 
of the different labels in the training set was between 40 and 599. This value was 
between 120 and 1158 for the second grouping and between 716 and 2158 for the 
third grouping. 

The trials were performed on five feature sets [7] described later. Because all sets 
contained duration information, we do not mention it separately. Setl consisted 
of the MFCC coefficients, because these were the most commonly used features. 
To have the chance of studying the usefulness of the cosine transform, we also 
carried out tests on the filter bank energies themselves (Set3). By augmenting Setl 
and Set3 with gravity center features, we acquired two new sets, Setl and Set4. 
We hoped that the addition of these phonetics-based features would lead to a slight 
improvement. Lastly, the largest set Set5 contains all the features, that is, filter bank 
energies, MFCC coefficients, and gravity centers. The same trials were performed 
on the three phoneme groupings grpl, grp2, grp3. 

4.2. Features 

Table 1. Databases used in tests 

grouping features 
glsetl 
glset2 
glset3 
glset4 
glset5 
g2setl 
g2sct2 
g2set3 
g2set4 
g2set5 
g3setl 
g3set2 
g3set3 
g3set4 
g3set5 

grpl MFCC 
grpl M F C C G C 
grpl FLBE 
grpl FLBE, GC 
grpl MFCC, FLBE, GC 
grp2 MFCC 
grp2 MFCC, GC 
grp2 FLBE 
grp2 FLBE, GC 
grp2 MFCC, FLBE, GC 
grp3 MFCC 
grp3 MFCC, GC 
grp3 FLBE 
grp3 FLBE, GC 
grp3 MFCC, FLBE, GC 
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4.3. Classifiers 
Each of the classifiers used in the experiments was modified so that to make them 
capable of providing a posteriori probabilities for each class ct>k-

4.3.1. Decision Tree Learner: 
Our version of DTL used in the experiments is based on the C4.5 tree learning 
algorithm [8], It is able to learn predefined discrete classes from labelled examples. 
The result of the learning process is an axis-parallel decision tree. This means that 
during the training, the sample space is divided into subspaces by hyper-planes 
which are parallel to every axis but one. In this way, we obtain many n-dimensional 
rectangular regions that are labelled by class labels and organized in a hierarchical 
way so it can be encoded into a tree. For knowledge representation, DTL uses the 
'divide and conquer' technique, which means that regions are split during learning 
whenever they are insufficiently homogeneous, and left untouched when they are 
homogenous. Splitting is done by axis parallel hyper-planes and, thanks to this, the 
learning process is quite fast. Hence, the greatest advantage of the method is time 
complexity. Unfortunately, the simple learning strategy, in certain cases, results in 
a huge number of regions that are needlessly split. 

4.3.2. Gaussian Mixture Models: 
GMM [4] assumes that the class-conditional probability distribution /?(x, | cok) can 
be well-approximated by a distribution of the form 

where J\f(Xj, Hj, C ; ) denotes the multidimensional normal distribution with mean 
(Xj and covariance matrix Cj, / is the number of mixtures and c, are nonnegative 
weighting factors that sum to 1. 

As luck would have it, there is no closed formula for the optional parameters 
of the mixture model. Normally, the expectation-maximization (EM) algorithm is 
utilized to find proper parameters, but it guarantees only a locally optimal solution. 
This iterative technique is very sensitive to initial parameter values, so we used 
k-mean clustering to find a good starting parameter set. Since &-mean clustering 
again guarantees only a local optimum, we ran it 15 times with random parameters 
and took the one with the highest log-likelihood to initialize the EM algorithm. In 
each case, the covariance matrix was made diagonal because training full matrices 
would have required much more training data and computation time. 

(18) 
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4.3.3. Support Vector Machines: 
SVM [10] was developed by Vapnik for binary classification. It selects a hyper-
plane with maximal margin to separate points with different class labels, but prior to 
that, it applies a nonlinear transformation to map the patterns to a higher dimensional 
space where the classification is easier. The problem of non-linearity is handled by 
kernel functions which makes Support Vector Machines a very powerful tool for 
machine learning. 

4.3.4. Artificial Neural Networks: 
ANNs [2] now count among the conventional pattern recognition tools, so we will 
not describe them here. In the trials performed, we used the most common feed
forward multi-layer perceptron network with the back-propagation learning rule. 
The number of neurons in the hidden layer was set at three times the number of 
features (this value was chosen empirically based on preliminary trials). Training 
was stopped when, for the last 20 iterations, the decrease in the error between two 
consecutive iteration steps remained below a certain threshold. 

4.3.5. k Nearest Neighbor: 
kNN [4] is a well known classifier used in pattern recognition. Because no rule 
or decision is made before the actual classification, this approach is called lazy 
learning. Typically, this kind of machine learning has a very short training time but 
the classification of new data takes rather a long time. The storing and processing 
of millions of examples can also be a serious handicap. Despite this, being a stable 
inducer it is a great tool for machine learning. 

4.4. Classification Without Combination 
In the first stage, all the classifiers were tested on the same data set. As can be seen 
in Table 2, SVM and ANN performed the best on the majority of data-sets, the other 
classifiers only produced weaker results. 

4.5. Selecting the Classifier Set 
One can expect a different performance depending on which classifiers are com
bined. To obtain the optimal classifier selection, a different subset of the classifiers 
was selected for combining with the same method. From all of the 32 possible 
subset selections we chose 5 subsets, each of them representing the most successful 
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Table 2. Classification errors of the individual classifiers 

ANN SVM GMM kNN DTL 
glsetl 13.71% 14.01% 21.16% 20.09% 35.58% 
glset2 12.23% 13.71% 24.65% 19.86% 33.75% 
g1set3 11.88% 11.76% 26.77% 21.34% 32.80% 
glset4 12.23% 11.82% 25.59% 21.99% 32.09% 
glset5 11.88% 11.41% 24.36% 19.24% 34.22% 
g2setl 10.64% 9.93% 18.68% 13.83% 22.10% 
g2set2 10.40% 9.69% 21.69% 13.48% 22.46% 
g2set3 8.63% 8.22% 18.68% 12.12% 21.75% 
g2set4 10.76% 7.92% 18.26% 13.00% 21.45% 
g2set5 9.93% 8.16% 20.33% 12.41% 24.76% 
g3setl 7.15% 6.03% 11.76% 8.51% 13.38% 
g3set2 6.32% 5.56% 11.82% 7.51% 12.71% 
g3set3 5.38% 5.61% 10.22% 6.86% 10.87% 
g3set4 5.32% 5.14% 10.46% 7.39% 12.00% 
g3set5 5.61% 4.96% 10.11% 6.86% 12.35% 

variation of different inducers with sizes 1,2,..,5, respectively. The combination 
rule applied in the test was the Product rule. 

The above test results in Table 3 show that there is little point in using all the 
classifiers in combination schemes, as the optimal solution is the combination of 
SVM, ANN, and kNN. Including GMM and DTL only leads to a deterioration in 
the classification performance. 

4.6. Comparing Combination Rules 
In the next stage of the testing, we combined the outputs of the selected classifiers 
(SVM, ANN, and kNN) by applying various combination rules. Table 4 suggests 
that there is no definite optimal rule for combining classifiers using this database. 
Combiners which applied the Sum rule performed the best, but the improvement 
compared with the others was only marginal. 

4.7. Results Using Bagging 
In this part the Bagging algorithm was applied to each of the classifiers. During 
the trials 15 bootstrap samples were generated, each of them with a size two-thirds 
that of the size of the original training-set. 
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Table 3. Combinat ion error obtained using the Product Decision Rule 

137 

ANNN 
ANN SVM 

ANN SVM kNN 
ANN SVM kNN GMM 

SVM SVM kNN GMM DTL 
glsetl 14.01% 12.46% 12.00% 15.07% 29.91% 
glset2 13.71% 11.70% 11.76% 18.14% 27.42% 
glset3 11.76% 11.05% 11.70% 18.44% 27.96% 
glset4 11.82% 11.05% 12.77% 19.62% 28.25% 
glset5 11.41% 10.99% 10.87% 19.39% 27.66% 
g2setl 9.93% 10.11% 8.63% 10.93% 17.43% 
g2set2 9.69% 9.69% 8.76% 12.12% 16.61% 
g2set3 8.22% 7.80% 7.03% 12.29% 16.19% 
g2set4 7.92% 9.10% 8.98% 13.18% 17.14% 
g2set5 8.16% 9.46% 8.51% 13.95% 19.33% 
g3setl 6.03% 6.21% 5.14% 7.98% 8.04% 
g3set2 5.56% 5.67% 5.02% 7.74% 9.04% 
g3set3 5.61% 4.96% 5.14% 7.92% 7.21% 
g3set4 5.14% 5.02% 4.67% 8.22% 9.40% 
g3set5 4.96% 5.50% 5.02% 7.74% 9.10% 

As can be seen (Table 5), Bagging can improve classification performance, 
almost to the same level of the previous combination methods, but it requires more 
processing time. 

4.8. Results Using Boosting 
Because Boosting is an improvement on Bagging, we expected a better performance. 
Testing Boosting on this data-set, however, produced roughly the same classification 
error values. The explanation for this is that the classifiers are too 'strong', they 
generated very small classification errors when using the training set. After the 
first step of Boosting, only the 'noise' remained in the bootstrap sample, which was 
too difficult to separate, and the classification error on this sample generally hit the 
50% limit. Here tBe algorithm exits, but in practice a standard Bagging (uniform 
bootstrapping) step can be performed instead. The result (Table 6) is very close to 
that for the Bagging algorithm. 
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Table 4. Classilication error of hybrid combinat ions using A N N , S V M , and kNN 

Prod Sum Max Min Borda Voting 
glsetl 12.00% 11.64% 12.59% 12.77% 12.77% 13.23% 
glset2 11.76% 11.41% 12.06% 13.06% 12.06% 11.47% 
glset3 11.70% 11.35% 13.18% 12.29% 11.64% 10.87% 
g1sct4 12.77% 12.41% 14.24% 12.35% 12.59% 11.41% 
glset5 10.87% 10.70% 11.88% 11.17% 11.41% 11.17% 
g2setl 8.63% 8.45% 9.22% 9.10% 8.87% 9.16% 
g2sct2 8.75% 8.57% 9.87% 9.16% 9.10% 9.04% 
g2set3 7.03% 7.09% 8.04% 7.33% 7.80% 7.15% 
g2set4 8.98% 7.98% 9.87% 9.34% 8.69% 7.74% 
g2set5 8.51% 8.22% 8.98% 7.98% 8.81% 8.51% 
g3setl 5.14% 5.14% 6.32% 5.61% 5.61% 5.56% 
g3sct2 5.02% 5.50% 5.73% 4.85% 5.08% 5.08% 
g3set3 5.14% 4.91% 5.26% 5.20% 5.08% 4.91% 
g3set4 4.67% 4.61% 5.02% 4.79% 5.02% 4.91% 
g3set5 5.02% 4.96% 5.08% 5.14% 5.14% 5.14% 

Table 5. Classification error of Bagging classifiers 

ANN SVM GMM kNN DTL 
glsetl 12.71% 12.59% 19.80% 20.45% 26.36% 
glset2 11.76% 12.23% 23.05% 19.21% 22.70% 
glset3 10.99% 10.28% 22.70% 21.10% 22.87% 
g1set4 11.88% 11.29% 22.94% 22.28% 21.57% 
g1set5 10.70% 10.82% 21.22% 20.21% 21.39% 
g2set I 11.17% 9.52% 14.83% 13.95% 16.84% 
g2set2 9.75% 9.40% 18.38% 13.65% 17.32% 
g2set3 8.16% 7.45% 15.96% 12.83% 16.90% 
g2set4 8.69% 7.51% 16.67% 13.12% 16.31% 
g2set5 9.57% 7.86% 16.67% 12.65% 16.37% 
g3setl 6.80% 5.44% 11.05% 8.87% 11.23% 
g3set2 6.38% 5.08% 10.64% 7.80% 10.52% 
g3set3 5.79% 5.50% 10.11% 7.51% 11.82% 
g3set4 5.26% 4.61% 09.57% 7.15% *10.22% 
g3set5 6.09% 5.02% 9.63% 7.09% 10.40% 
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Table 6. Classification error of Boasting classifiers 

ANN SVM GMM kNN DTL 
g1 set 1 12.51% 12.44 18.55% 20.32% 25.12% 
glset2 11.56% 11.97 22.05% 19.42% 22.25% 
glsct3 10.79% 9.67 20.12% 20.87% 21.98% 
g1set4 11.88% 10.43 20.05% 22.16% 21.60% 
g1set5 10.66% 10.34 21.22% 19.87% 20.47% 
g2sct 1 11.17% 9.72 14.87% 13.95% 16.75% 
g2set2 9.75% 9.31 17.12% 13.87% 15.88% 
g2set3 8.42% 7.14 15.27% 12.83% 16.36% 
g2set4 8.64% 7.62 14.98% 13.07% 16.59% 
g2set5 9.77% 7.36 15.14% 12.68% 15.72% 
g3setl 6.76% 5.32 11.23% 8.97% 11.17% 
g3set2 6.41% 4.87 9.96% 7.72% 10.69% 
g3set3 5.63% 5.50 10.03% 7.31% 11.47% 
g3set4 5.28% 4.82 9.98% 7.22% 9.93% 
g3set5 6.02% 4.91 9.61% 6.98% 10.05% 

5. Conclusion 
We reviewed the various combination schemes available using speech recognition 
oriented data-sets. Making classifier hybrids improved the discrimination perfor
mance, the best results being obtained by aggregating the output of SVM, ANN, and 
kNN. Experimental resulls show that the performances of the combiners applying 
different decision rules were not significantly different, but the sum rule outper
formed the others. Comparing the traditional Bagging and Boosting techniques, 
we have found that they have nearly the same classification improvement, but their 
applicability is limited because they are too cpu intensive. The findings suggest 
that it is worth applying combination techniques in phoneme-level speech recog
nition systems because they will hopefully produce belter scores, hence, improved 
results. In the future, we plan to investigate advanced combination methods, focus
ing on word (phoneme sequence) recognition where another dimension of possible 
knowledge source aggregation arises. 
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