
PERIODICA POLYTECHNIC* SER. EL ENG. VOL 47. NO. 1-2. PR 125-140(2003)

CLASSIFIER COMBINATION IN SPEECH RECOGNITION
L£szl6 F E L F O L D I * , Andrds KOCSOR** and L£szl6 T 6 T H * ' *

Research Group on Artificial Intelligence
of the Hungarian Academy of Sciences and University of Szeged

H-6720 Szeged, Aradi v^rtanuk tere I., Hungary
e-mail: pfe l fo ld , **kocsor, ***tothl}@inf.u-szcgcd.hu

http://www.inf.u-szeged.hu/speech
Received: Sept 20, 2003

Abstract
In statistical pattern recognition, the principal task is to classify abstract data sets. Instead of using
robust but computational expensive algorithms it is possible to combine 'weak' classifiers that can
be employed in solving complex classification tasks. In this comparative study, we will examine the
effectiveness of the commonly used hybrid schemes - especially those used for speech recognition
problems - concentrating on cases which employ different combinations of classifiers.
Keywords: machine learning, pattern recognition, classifier combination, speech recognition.

1. Introduction
The goal of designing pattern recognition systems is to achieve the best possible
classification performance for the specified task. This objective traditionally led to
the development of different classification schemes for recognition problems the
user would like to be solved. Experiments show that although one of the designs
should yield the best performance, the sets of patterns misclassified by the different
classifiers do not necessarily overlap. These observations motivated the relatively
recent interest in combining classifiers. The main idea behind it is not to rely on
the decision of a single classifier. Rather, all of the inducers or their subsets are
used for decision-making by combining their individual opinions to produce a final
decision.

A fair number of combination schemes have been proposed in the literature
[3, 5, 6], differing from each other in their architecture, the characteristics of the
combiner, and the selection of the individual classifiers. From the analytic view
point, there are basically two combination scenarios. In the first scenario, all the
classifiers use the same representation of input patterns, while in the second scenario
each classifier uses its own pattern representation, so the measurements extracted
from the pattern are unique to each classifier.

'This work was supported under the contract IKTA No. 2001/055 by the Hungarian Ministry of
Education.

http://www.inf.u-szeged.hu/speech

I - mj&LDI a al.

The paper is organized as follows. In the first section we give a general
overview of combination schemes, concentrating on their input representation, ar
chitecture, and some of techniques for generating the independent inputs needed
for combinations. Then we derive the commonly used combination rules like the
Product and Sum rule. In the next section we compare the individual classifiers
and the associated hybrid schemes, including the traditional Bagging and Boosting
techniques. In the final section we summarize the main results and conclusions of
the paper.

2. Concept of Combination Schemes
2. /. Types of Knowledge Sources

Each inducer has to be capable of assigning one of the classes to a given pattern x(.
The output information from each is sufficient for some types of combiners (e.g.,
Majority Voting Rule), but other combiners might need other types of information
from individual classifiers. The types of information required can be grouped into
three main categories:
Abstract: Only the assigned class label cok is

required. Classifiers which only need this information as input are voting
combiners like Bagging and Boosting.

Ranking: Instead of providing just the best class cok associated with the given pattern
X/, the list of classes is supplied, ranked in order of probability. This more
general information type can be used as input for combiners like the Borda
count rule.

Measurement or Confidence: In the most general case, each of the a posteriori
probabilities p(o)j | x,) are provided. Combiners can aggregate these proba
bilities from different inducers and make a final decision. Examples include
combiners which use the measurement information type such as Prod. Sum,
and Max Rules.

2.2. Combination Architectures
Various schemes for combining multiple classifiers can be grouped into three main
categories according to their architecture:
Parallel: Each of the inducers are invoked independently, and their results arc then

combined by a combiner. The majority of combination architectures in the
literature belong to this category.

Cascading: Individual classifiers are invoked in a linear sequence. The number of
possible classes for a given pattern is gradually reduced as more classifiers
in the sequence are invoked. For the sake of efficiency, inaccurate but cheap

CLASSIFIER COMBINATION IN SPEECH RECOGNITION 127

classifiers are considered first, followed by more accurate and expensive
inducers.

Hierarchical: Individual classifiers are combined into a structure similar to that of
a decision tree classifier. The tree nodes, however, may now be associated
with complex classifiers requiring a large number of features. The advan
tage of this architecture is its high efficiency and flexibility in exploiting the
discriminant power of different types of features.

2.3. The Training Set
A classifier combination is especially useful if the classifiers applied are largely
independent. If this is not already guaranteed by the use of different learning sets
or different learning methods, various re-sampling techniques like rotation and
bootstrapping may be used to artificially create such differences.
Rotation: The original learning set is divided into n disjoint subsets and uses dif

ferent unions of n — 1 subsets as training sets. This technique is commonly
used in cross-validation during error estimation.

Bootstrapping: A bootstrap sample can be generated by sampling instances from
the training set with replacement, using a specified probability distribution.
Examples include Bagging and Boosting.

Stacking: The outputs of the individual classifiers are used to train the stacked
classified 11]. The final decision is made based on the outputs of the stacked
classifier in conjunction with the outputs of individual classifiers.

Generating noise: The generated classification model of an unstable classifier strong
ly depends on existing errors in the training database. Adding artificial errors
is a way of generating a set of more or less independent classifiers, making
it possible to fulfil the requirements of a combiner.

3. Integration of Knowledge Sources
Consider a pattern recognition problem where the pattern Z is to be assigned to one
of m possible classes (co\,..., com). Let us assume that we have R classifiers, each
representing the given pattern by a different feature vector. Next, denote this feature
vector (employed by the ith classifier) by X/. In the feature space each class is
modelled by the probability density function /?(x, | co^) and its a priori probability
of occurrence P(a)k).

According to Bayesian theory, for given features x,-, i e { I , . . . , R] the pat
tern Z should be assigned to class o)j with the maximal value of the a posteriori
probability such that

f(\i) = coj, j = argmax P(<ok \ xj xR).
k

(1)

12ft L FELFOLDI Mil.

Let us rewrite the a posteriori probability using Bayes' Theorem. We have
„, , P(x\ xfl | tok)P(a>k)
P(cok I x, Xft) = . (2)

/>(xi xR)
In the latter, the unconditional joint probability density can be expressed in terms
of the conditional feature distributions, so that

m
p(x\ xR) = ^ / > (X | , . . . ,\R | a)j)P(ojj). (3)

j = 0 3.1. Product Rule
Let us assume that the probability distributions /?(x(, . . . , xR \ cok) are conditionally
statistically independent. Then

R
p(X[xfl | a>k) = \\p(Xi | a)k), (4)

and the decision rule
f(Xj) a= coj, j = argmax P(a>k) Y] I a>k), (5)

or in terms of the a posteriori probabilities generated by the respective classifiers
argmax Pl~R(a>k)]~[p(mk \ x(). (6)

3.2. Sum Rule
In some applications it may be appropriate to assume that the a posteriori probabil
ities computed by the respective classifiers will not dramatically deviate from those
of the prior probabilities. This is a rather strong assumption but it may be readily
satisfied when the available information is highly ambiguous due to high level of
noise. In such a situation we may assume that the a posteriori probability can be
expressed in the form

p(a>k\xi) = P(cok)0+Ski)l (7)
where 8ki <5C 1. Substituting this for the a posteriori probabilities in (6), we find
that ^imUpm i x() = p(a>k)Y\(\ + « . (8)

CLASSIFIER COMBINATION LV SPEECH RECOGNITION 1 2 4

If we neglect terms of second and higher order, we can approximate the right-hand
side and obtain the sum decision rule

f (\ i) = coj, j = argmax
k

(\-R)P(a>k) + J^p{a>k\Xi) (9)

3.3. Max, Min Rule
The decision rules (6) and (9) constitute the basic schemes for combining classifiers.
Many commonly used combination strategies can be developed from these rules
after noting that

FI/7^ I x<) - min/>(a>i | x,) < — V^/Kfifc I x ;) < max/>(o>* I Xi). 0 0)
I A *• ' I

i i
This inequality suggests that the product and sum combination rules may be approx
imated by the max and min operators, where appropriate. These approximations
lead to the following:

3.3. J. Max Rule:

/ (x t) = coj, j = argmax I (] - R)P(wk) + R max p(cok \ x ,) j , (11)

3.3.2. Min Rule:

f(Xj) = tuj, j = argmax
1 P(1-R)(ojk)m\np(wk (12)

3.4. Median Rule
Note that using the equal prior assumption, the sum rule can be interpreted as
computing the average a posteriori probability. It is well known that a robust
estimate of the mean is the median, so it might be more appropriate to use it as the
basis for the combining procedure. Adopting this leads to the following rule:

/ (x ,) = coj, j = argmaxmed/>(wk \ x ,) . (13) k '

[30 LFELFOLDIetal.

3.5. Voting Rule
Hardening a posteriori probabilities P{cok \ x,) will produce binary valued functions
Aki like

1 if p((ok | x,) = max p(a); I x()
A * , = / (14) 0 otherwise,

which results in combination decision outcomes rather than a combination of a
posteriori probabilities. Assuming that each a priori probability is equal leads to
the following decision rule:

f(\i)=a>j, j = a r g m a x ^ A k i . (15)

Note that for each class cok, the sum on the right-hand side of (15) simply counts
the votes received for this hypothesis from each individual classifier.

3.6. Borda Count
Instead of hardening a posteriori probabilities, it is possible to use modified proba
bilities pki based on ranking information.

Put = ^ 1 <16>
j:Pla>j\Xi)<P((ot\Xi)

where C is a normalization constant. This results in the following decision rule:

/ (x ,) = a)j, j = argmax] T p k i . (17)

3.7. Bagging
The Bagging (Bootstrap aggregating) algorithm [1] votes classifiers generated by
different bootstrap samples (replicates). A bootstrap sample is generated by uni
formly sampling m instances from the training set with replacement. T bootstrap
samples B\, B2, BT are generated and a classifier C, is built from each bootstrap
sample 5,. A final classifier C* is built from Cj, C 2 , C j whose output is the
class predicted most often by its sub-classifiers (majority voting).

CLASSIFIER COMBINATION IN SPEECH RECOGNITION 131

Bagging algorithm
Require: Training Set S, Inducer X
Ensure: Combined classifier C*

for * = 1 . . . T do
S' = bootstrap sample from S

For a given bootstrap sample, an instance in the training set will have a proba
bility 1 - (1 - \/m)m of being selected at least once from them instances randomly
selected from the training set. For large m, this is about 1-1/e = 63.2%. This
perturbation causes different classifiers to be built if the inducer is unstable (e.g.
ANNs, decision trees) and the performance may improve if the induced classifiers
are uncorrelated. However, Bagging can slightly degrade the performance of stable
algorithms (e.g. kNN) since effectively smaller training sets are used for training.

Boosting [9J was introduced by SHAPIRE (1990) as a method for boosting the per
formance of a weak learning algorithm. Here we will focus on AdaBoost, some
times called "AdaBoost.Ml". Like Bagging, the AdaBoost algorithm generates a
set of classifiers and it makes a decision based on their votes. However, beyond
this, the two algorithms substantially differ. The AdaBoost algorithm generates the
classifiers sequentially, while Bagging can generate them in parallel. AdaBoost
also changes the weights of the training instances provided as input for each in
ducer based on classifiers that were previously built. The final decision is made
using a weighted voting scheme for each classifier, whose weights depend on the
performance of the training set used to build it.

Boosting algorithm
Require: Training Set S of size m, Inducer X
Ensure: Combined classifier C*

S' = S with weights assigned to be l/m
for i = 1 . . . T do

5' = bootstrap sample from 5

d =KS')
end for

3.8. Boosting

Q = 1(5 ')

132 L FELFOLD! el al

€j = weight of x
xe5':C,(x)incorrcci

if e, > 1/2 then Exit
8 = f'
for all Xj G S' such C, (x;) = (Oj do

weight of Xj = weight of Xj • fjt
end for
normalize weights of instances to sum 1

end for
C*(x) = argmax] P log ^~

The AdaBoost algorithm requires a weak learning algorithm whose error is
bounded by a constant strictly less than 1/2. In the case of multi-class classification
this condition could be different to guarantee. Some implementations of AdaBoost
make use of boosting by re-sampling because the inducers employed are unable to
support weighted instances. Using appropriate classifiers, one can try re-weighting,
which might work better in practice.

4. Experimental Results
4.1. Data-Sets

The various hybrid techniques were compared using a relatively small corpus that
consisted of several speakers pronouncing Hungarian numbers. More precisely, 20
speakers were used for training and 6 for testing, and 52 utterances were recorded
from each person. The ratio of male and female speakers was 50%:50% in both
the training and the testing sets. The recordings were made using an inexpensive
commercial microphone in a reasonably quiet environment, at a sample rate of
22050Hz. The whole corpus was manually segmented and labelled. Because the
corpus contained only numbers, we had occurrences of only 32 phonemes, which
is approximately two-thirds of the Hungarian phoneme set. Because some of these
labels represented only allophonic variations of the same phoneme, some labels
were fused, and so we actually worked with a set of just 28 labels. We performed
tests with two other groupings as well where the labels were grouped into 11 and
5 classes, respectively, based on phonetic similarity. We had two good reasons for
doing experiments with these gross phonetic classes. First, we could increase the
number of training examples in each class and inspect the effects of this on the
learning algorithms. Second, our speech recognition system has a first-pass stage
in which the segments are classified into gross phonetic categories only.

CLASSIFIER COMBINATION IN SPEECH RECOGNITION 1 3 3

Hence, we had three phonetic groupings, which will be denoted by grpl, grp2,
and grp3 from this point on. With the first grouping, the number of occurrences
of the different labels in the training set was between 40 and 599. This value was
between 120 and 1158 for the second grouping and between 716 and 2158 for the
third grouping.

The trials were performed on five feature sets [7] described later. Because all sets
contained duration information, we do not mention it separately. Setl consisted
of the MFCC coefficients, because these were the most commonly used features.
To have the chance of studying the usefulness of the cosine transform, we also
carried out tests on the filter bank energies themselves (Set3). By augmenting Setl
and Set3 with gravity center features, we acquired two new sets, Setl and Set4.
We hoped that the addition of these phonetics-based features would lead to a slight
improvement. Lastly, the largest set Set5 contains all the features, that is, filter bank
energies, MFCC coefficients, and gravity centers. The same trials were performed
on the three phoneme groupings grpl, grp2, grp3.

4.2. Features

Table 1. Databases used in tests

grouping features
glsetl
glset2
glset3
glset4
glset5
g2setl
g2sct2
g2set3
g2set4
g2set5
g3setl
g3set2
g3set3
g3set4
g3set5

grpl MFCC
grpl M F C C G C
grpl FLBE
grpl FLBE, GC
grpl MFCC, FLBE, GC
grp2 MFCC
grp2 MFCC, GC
grp2 FLBE
grp2 FLBE, GC
grp2 MFCC, FLBE, GC
grp3 MFCC
grp3 MFCC, GC
grp3 FLBE
grp3 FLBE, GC
grp3 MFCC, FLBE, GC

L FELFOLD! et si.

4.3. Classifiers
Each of the classifiers used in the experiments was modified so that to make them
capable of providing a posteriori probabilities for each class ct>k-

4.3.1. Decision Tree Learner:
Our version of DTL used in the experiments is based on the C4.5 tree learning
algorithm [8], It is able to learn predefined discrete classes from labelled examples.
The result of the learning process is an axis-parallel decision tree. This means that
during the training, the sample space is divided into subspaces by hyper-planes
which are parallel to every axis but one. In this way, we obtain many n-dimensional
rectangular regions that are labelled by class labels and organized in a hierarchical
way so it can be encoded into a tree. For knowledge representation, DTL uses the
'divide and conquer' technique, which means that regions are split during learning
whenever they are insufficiently homogeneous, and left untouched when they are
homogenous. Splitting is done by axis parallel hyper-planes and, thanks to this, the
learning process is quite fast. Hence, the greatest advantage of the method is time
complexity. Unfortunately, the simple learning strategy, in certain cases, results in
a huge number of regions that are needlessly split.

4.3.2. Gaussian Mixture Models:
GMM [4] assumes that the class-conditional probability distribution /?(x, | cok) can
be well-approximated by a distribution of the form

where J\f(Xj, Hj, C ;) denotes the multidimensional normal distribution with mean
(Xj and covariance matrix Cj, / is the number of mixtures and c, are nonnegative
weighting factors that sum to 1.

As luck would have it, there is no closed formula for the optional parameters
of the mixture model. Normally, the expectation-maximization (EM) algorithm is
utilized to find proper parameters, but it guarantees only a locally optimal solution.
This iterative technique is very sensitive to initial parameter values, so we used
k-mean clustering to find a good starting parameter set. Since &-mean clustering
again guarantees only a local optimum, we ran it 15 times with random parameters
and took the one with the highest log-likelihood to initialize the EM algorithm. In
each case, the covariance matrix was made diagonal because training full matrices
would have required much more training data and computation time.

(18)

CLASSIFIER COMBINATION IN SPEECH RECOGNITION 135

4.3.3. Support Vector Machines:
SVM [10] was developed by Vapnik for binary classification. It selects a hyper-
plane with maximal margin to separate points with different class labels, but prior to
that, it applies a nonlinear transformation to map the patterns to a higher dimensional
space where the classification is easier. The problem of non-linearity is handled by
kernel functions which makes Support Vector Machines a very powerful tool for
machine learning.

4.3.4. Artificial Neural Networks:
ANNs [2] now count among the conventional pattern recognition tools, so we will
not describe them here. In the trials performed, we used the most common feed
forward multi-layer perceptron network with the back-propagation learning rule.
The number of neurons in the hidden layer was set at three times the number of
features (this value was chosen empirically based on preliminary trials). Training
was stopped when, for the last 20 iterations, the decrease in the error between two
consecutive iteration steps remained below a certain threshold.

4.3.5. k Nearest Neighbor:
kNN [4] is a well known classifier used in pattern recognition. Because no rule
or decision is made before the actual classification, this approach is called lazy
learning. Typically, this kind of machine learning has a very short training time but
the classification of new data takes rather a long time. The storing and processing
of millions of examples can also be a serious handicap. Despite this, being a stable
inducer it is a great tool for machine learning.

4.4. Classification Without Combination
In the first stage, all the classifiers were tested on the same data set. As can be seen
in Table 2, SVM and ANN performed the best on the majority of data-sets, the other
classifiers only produced weaker results.

4.5. Selecting the Classifier Set
One can expect a different performance depending on which classifiers are com
bined. To obtain the optimal classifier selection, a different subset of the classifiers
was selected for combining with the same method. From all of the 32 possible
subset selections we chose 5 subsets, each of them representing the most successful

136 L. FELFOLDI ei al.

Table 2. Classification errors of the individual classifiers

ANN SVM GMM kNN DTL
glsetl 13.71% 14.01% 21.16% 20.09% 35.58%
glset2 12.23% 13.71% 24.65% 19.86% 33.75%
g1set3 11.88% 11.76% 26.77% 21.34% 32.80%
glset4 12.23% 11.82% 25.59% 21.99% 32.09%
glset5 11.88% 11.41% 24.36% 19.24% 34.22%
g2setl 10.64% 9.93% 18.68% 13.83% 22.10%
g2set2 10.40% 9.69% 21.69% 13.48% 22.46%
g2set3 8.63% 8.22% 18.68% 12.12% 21.75%
g2set4 10.76% 7.92% 18.26% 13.00% 21.45%
g2set5 9.93% 8.16% 20.33% 12.41% 24.76%
g3setl 7.15% 6.03% 11.76% 8.51% 13.38%
g3set2 6.32% 5.56% 11.82% 7.51% 12.71%
g3set3 5.38% 5.61% 10.22% 6.86% 10.87%
g3set4 5.32% 5.14% 10.46% 7.39% 12.00%
g3set5 5.61% 4.96% 10.11% 6.86% 12.35%

variation of different inducers with sizes 1,2,..,5, respectively. The combination
rule applied in the test was the Product rule.

The above test results in Table 3 show that there is little point in using all the
classifiers in combination schemes, as the optimal solution is the combination of
SVM, ANN, and kNN. Including GMM and DTL only leads to a deterioration in
the classification performance.

4.6. Comparing Combination Rules
In the next stage of the testing, we combined the outputs of the selected classifiers
(SVM, ANN, and kNN) by applying various combination rules. Table 4 suggests
that there is no definite optimal rule for combining classifiers using this database.
Combiners which applied the Sum rule performed the best, but the improvement
compared with the others was only marginal.

4.7. Results Using Bagging
In this part the Bagging algorithm was applied to each of the classifiers. During
the trials 15 bootstrap samples were generated, each of them with a size two-thirds
that of the size of the original training-set.

CLASSIFIER COMBINATION IN SPEECH RECOGNITION

Table 3. Combinat ion error obtained using the Product Decision Rule

137

ANNN
ANN SVM

ANN SVM kNN
ANN SVM kNN GMM

SVM SVM kNN GMM DTL
glsetl 14.01% 12.46% 12.00% 15.07% 29.91%
glset2 13.71% 11.70% 11.76% 18.14% 27.42%
glset3 11.76% 11.05% 11.70% 18.44% 27.96%
glset4 11.82% 11.05% 12.77% 19.62% 28.25%
glset5 11.41% 10.99% 10.87% 19.39% 27.66%
g2setl 9.93% 10.11% 8.63% 10.93% 17.43%
g2set2 9.69% 9.69% 8.76% 12.12% 16.61%
g2set3 8.22% 7.80% 7.03% 12.29% 16.19%
g2set4 7.92% 9.10% 8.98% 13.18% 17.14%
g2set5 8.16% 9.46% 8.51% 13.95% 19.33%
g3setl 6.03% 6.21% 5.14% 7.98% 8.04%
g3set2 5.56% 5.67% 5.02% 7.74% 9.04%
g3set3 5.61% 4.96% 5.14% 7.92% 7.21%
g3set4 5.14% 5.02% 4.67% 8.22% 9.40%
g3set5 4.96% 5.50% 5.02% 7.74% 9.10%

As can be seen (Table 5), Bagging can improve classification performance,
almost to the same level of the previous combination methods, but it requires more
processing time.

4.8. Results Using Boosting
Because Boosting is an improvement on Bagging, we expected a better performance.
Testing Boosting on this data-set, however, produced roughly the same classification
error values. The explanation for this is that the classifiers are too 'strong', they
generated very small classification errors when using the training set. After the
first step of Boosting, only the 'noise' remained in the bootstrap sample, which was
too difficult to separate, and the classification error on this sample generally hit the
50% limit. Here tBe algorithm exits, but in practice a standard Bagging (uniform
bootstrapping) step can be performed instead. The result (Table 6) is very close to
that for the Bagging algorithm.

Ms L FELFOLDI el J/

Table 4. Classilication error of hybrid combinat ions using A N N , S V M , and kNN

Prod Sum Max Min Borda Voting
glsetl 12.00% 11.64% 12.59% 12.77% 12.77% 13.23%
glset2 11.76% 11.41% 12.06% 13.06% 12.06% 11.47%
glset3 11.70% 11.35% 13.18% 12.29% 11.64% 10.87%
g1sct4 12.77% 12.41% 14.24% 12.35% 12.59% 11.41%
glset5 10.87% 10.70% 11.88% 11.17% 11.41% 11.17%
g2setl 8.63% 8.45% 9.22% 9.10% 8.87% 9.16%
g2sct2 8.75% 8.57% 9.87% 9.16% 9.10% 9.04%
g2set3 7.03% 7.09% 8.04% 7.33% 7.80% 7.15%
g2set4 8.98% 7.98% 9.87% 9.34% 8.69% 7.74%
g2set5 8.51% 8.22% 8.98% 7.98% 8.81% 8.51%
g3setl 5.14% 5.14% 6.32% 5.61% 5.61% 5.56%
g3sct2 5.02% 5.50% 5.73% 4.85% 5.08% 5.08%
g3set3 5.14% 4.91% 5.26% 5.20% 5.08% 4.91%
g3set4 4.67% 4.61% 5.02% 4.79% 5.02% 4.91%
g3set5 5.02% 4.96% 5.08% 5.14% 5.14% 5.14%

Table 5. Classification error of Bagging classifiers

ANN SVM GMM kNN DTL
glsetl 12.71% 12.59% 19.80% 20.45% 26.36%
glset2 11.76% 12.23% 23.05% 19.21% 22.70%
glset3 10.99% 10.28% 22.70% 21.10% 22.87%
g1set4 11.88% 11.29% 22.94% 22.28% 21.57%
g1set5 10.70% 10.82% 21.22% 20.21% 21.39%
g2set I 11.17% 9.52% 14.83% 13.95% 16.84%
g2set2 9.75% 9.40% 18.38% 13.65% 17.32%
g2set3 8.16% 7.45% 15.96% 12.83% 16.90%
g2set4 8.69% 7.51% 16.67% 13.12% 16.31%
g2set5 9.57% 7.86% 16.67% 12.65% 16.37%
g3setl 6.80% 5.44% 11.05% 8.87% 11.23%
g3set2 6.38% 5.08% 10.64% 7.80% 10.52%
g3set3 5.79% 5.50% 10.11% 7.51% 11.82%
g3set4 5.26% 4.61% 09.57% 7.15% *10.22%
g3set5 6.09% 5.02% 9.63% 7.09% 10.40%

Ct-ASSIFIER COMBINATION IN SPEECH RECOGNITION 139

Table 6. Classification error of Boasting classifiers

ANN SVM GMM kNN DTL
g1 set 1 12.51% 12.44 18.55% 20.32% 25.12%
glset2 11.56% 11.97 22.05% 19.42% 22.25%
glsct3 10.79% 9.67 20.12% 20.87% 21.98%
g1set4 11.88% 10.43 20.05% 22.16% 21.60%
g1set5 10.66% 10.34 21.22% 19.87% 20.47%
g2sct 1 11.17% 9.72 14.87% 13.95% 16.75%
g2set2 9.75% 9.31 17.12% 13.87% 15.88%
g2set3 8.42% 7.14 15.27% 12.83% 16.36%
g2set4 8.64% 7.62 14.98% 13.07% 16.59%
g2set5 9.77% 7.36 15.14% 12.68% 15.72%
g3setl 6.76% 5.32 11.23% 8.97% 11.17%
g3set2 6.41% 4.87 9.96% 7.72% 10.69%
g3set3 5.63% 5.50 10.03% 7.31% 11.47%
g3set4 5.28% 4.82 9.98% 7.22% 9.93%
g3set5 6.02% 4.91 9.61% 6.98% 10.05%

5. Conclusion
We reviewed the various combination schemes available using speech recognition
oriented data-sets. Making classifier hybrids improved the discrimination perfor
mance, the best results being obtained by aggregating the output of SVM, ANN, and
kNN. Experimental resulls show that the performances of the combiners applying
different decision rules were not significantly different, but the sum rule outper
formed the others. Comparing the traditional Bagging and Boosting techniques,
we have found that they have nearly the same classification improvement, but their
applicability is limited because they are too cpu intensive. The findings suggest
that it is worth applying combination techniques in phoneme-level speech recog
nition systems because they will hopefully produce belter scores, hence, improved
results. In the future, we plan to investigate advanced combination methods, focus
ing on word (phoneme sequence) recognition where another dimension of possible
knowledge source aggregation arises.

141) L FELFOLDI er al.

References
[1] BREIMAN, L . , Bagging Predictors, Machine Learnings, 24 No. 2 (1996), pp. 123-140.
[2] B I S H O P , C. M . , Neural Networks for Pattern Recognition, Oxford University Press, 1995.
[3] DlETTERiCH, T. G. Machine-Learning Research: Four Current Directions, The Al Magazine,

18 No. 4 (1998), pp. 97-136,
[4] D U D A , R. O. - H A R T , P. E. - S T O R K , D . G., Pattern Classification. John Wiley & Sons Inc.,

2001.
[5] JAIN, A. K., Statistical Pattern Recognition: A Review, IEEE Trans. Pattern Analysis and

Machine Intelligence, 22 No. I (January, 2000).
[6] K I T T L E R , J. - H A T E F , M . - D U I N , R. P. W. - M A T A S , J., On Combining Classifiers, IEEE

Trans. Pattern Analysis and Machine Intelligence, 20 No. 3 (March, 1998).
[7] KOCSOR ET AL A Comparative Study of Several Feature Transformation and Learning Methods

for Phoneme Classification, InternationalJournal of Speech Technology, 3 (2000), pp. 201-215.
|8] QuiNLAN, J. R., C4.5: Programs for Machine Learning, Morgan Kaufmann, 1993.
[9] SHAPIRE, R. E., The Strength of Weak Learnability, Machine Learnings, 5 (1990), pp. 197¬

227.
[10] V A P N I K , V. N., Statistical Learning Theory, John Wiley & Sons Inc., 1998.
[II] WOLPERT, D. H . , Stacked Generalization, Neural Networks, 5 (1992), pp. 241-259.

V

