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Abstract 
Developmcni of various robotic algorithms can be supported with the aid of robot simulation pro
grams. We present the Webots mobile robot simulator and its applicability to handle machine-learning 
methods. Furthermore, we show advantages and disadvantages of different navigation paradigms. 
We focus our investigation on metric navigation and especially on the creation and the usage of oc
cupancy grids. We show a working method on how to use occupancy grid to efficiently navigate in 
Wcbois. 
Keywords: mobile robotics, simulation, mclric/iopological navigation, cognitive map, occupancy 
grid. 

1. Introduction 
According to some scientifical forecasts, robotics can be as important branch of life 
within reasonable time as the automotive industry was in the 20th century. 

To facilitate the spreading of the discipline, engineers research new types of 
robot hardware, while informaticians create new kinds of robot controlling soft
wares. The latter task cannot be imagined without reliable robot simulator environ
ments. These tools may link up powerful algorithms and real-world tasks ([ 1 ]). 

One of the most important goals of the mobile robot research is the emergence 
of the ability to efficiently navigate. Since the introduction of artificial landmarks, 
lights, or characteristic floor map, and other modifications of the environment to 
ease rapid movement may be too expensive, the algorithms controlling the robot 
have to be better and better equipped to changing conditions. 

In our investigation, we implement robot control algorithms in a simulator 
environment using the method of metric navigation. The general path of our research 
follows the ideas described by Thrun ([2]). 
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2. The Simulation Environment 
Webots is a three-dimensional mobile robot simulator ([3]). 

Fig. J. Webots simulation program 

The description of the simulation environment based on Virtual Reality Mod
elling Language, some extensions are introduced for the specific simulation domain. 
The appearing robots can be any type of two-wheel differential steering robots which 
means that they are equipped with two indepent motors. Some of the predefined 
possibilities are Khepera, Koala, Magellan, Pioneer2. 

Fig. 2. Khepera robot Fig. 3. Simulated Khepera robot 
The flexibility in the definition of the environment and the robot results that 

almost every type of mobile robotic task can be evaluated in the Webots. 
Robot movement follows the laws of kinematics, dynamics - namely forces 

- are not handled. In spite of this simplification, the movement of the robots has 
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a close resemblance of the real world equivalent. To ameliorate the compatibility, 
noise is introduced in the sensation, and in the action as well. As a consequence of 
the above it is possible to control real robots from the simulator. 

The control process is mainly influenced by the number, the modality, the 
position, and the range of sensors. Webots can handle infra-red, laser, or sonar 
distance sensors, light sensors, touch sensors, and color video cameras {[4]). 

3. Navigation Methods 
One of the most important goals of the mobile robot research is the emergence 
of the ability to efficiently navigate in complex, cluttered, and unknown environ
ments. Without navigation, the creation of self-propelled household machines, 
guard robots, or planet surveyors is beyond imagination. 

To perform this task, momentary, local information collected by the sensors 
of the robot is not enough. The robot has to create a cognitive map - an acceptable 
projection of the environment as an inner representation - which can be used for 
decision making. The cognitive map is not necessarily a map in a cartographic 
sense, it is rather a collection of spatial relations, angles, distances, environmental 
characteristics, and landmarks. Many species of animals - mammals, birds, fishes, 
bees, or ants and, naturally, humans - use different types of cognitive maps ([5]). 
Used models of cognitive maps can be divided into two major groups: metric 
navigation and topological navigation ([6], [7]). 

Metric, geometric, or grid-based navigation, or survey mapping works with 
metric spatial properties of objects like distance, angle, and coordinates according 
to an imagined coordinate system. The resulting map truly can be a 'view from 
above', a proportional map of the environment. During the creation of a metric 
map, the surveyor should be aware of its actual position, and all the objects are 
placed on the map according to this information. 

Topological navigation handles topological relations of objects. It focuses on 
the links between landmarks, the possibility to move from one place to another. The 
resulting map, in this case, is a graph of important positions and routes connecting 
them. The surveyor should recogni/x important places - the graph nodes - via 
landmarks. 

Table 1 shows advantages and disadvantages of these navigation methods. 
An example of topological navigation is presented in [8] and [9], where the 

authors create a purely vision-based representation of the open environment with a 
panorama camera. Since the camera has a full view angle, non-occluded landmarks 
can be tracked at every pose of the robot. Displacement in the environment causes 
contraction of objects in one direction while expansion of objects in the other. This 
geometrical property makes possible the movement to the goal direction in a small 
region. 

At the borders of these small regions, to avoid ambiguous place-recognition 
and the lack of landmarks because of occlusion, it is necessary to take photos from 
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Table 1. Properties of navigation methods 

Metric 
+ easy to create and maintain 
+ robust to ambiguous senses 
- does not follow world properties 
- needs large memory 
- hard to use for navigation tasks 
- needs knowledge of exact robot 
position 

Topological 
- hard to create and maintain 
- sensible to ambiguous senses 
+ can adapt to world characteristics 
+ needs small memory 
+ easy/efficient for navigation tasks 
+ knowledge of exact robot position 
is unimportant 

Fig. 4. View of the panorama camera 

time to time. These photos are placed in the view-graph nodes while the edges of 
the graph are determined by the possible displacements. 

Example of metric navigation will be shown below, for further reading see [ 10]. 

4. Our Work 
Our goal was to create a metric navigation module for a modified Khepera robot in 
the Webots simulation environment. The developed robot has to build a cognitive 
map - 'a view from above' - of a square-shaped room in the size of a few square 
meters while it visits every location. 

The selected Khepera robot has a cylindrical shape of 55 mm in diameter 
and 3 cm in height. The original Khepera has 8 infra-red distance sensors with the 
sensing range of 2-4 cm depending on the color and texture of the sensed object. 
In our experiment, the robot has 24 sonar distance sensors with the sensing range 
of 15 cm. These modifications facilitate the fast creation of an accurate map. 
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Fig. 5. View graph under construction 

Usage of distance sensors has practical reasons. It is much less expensive 
than video cameras both literally and algorithmically. While digital camera images 
can deploy more information, the image processing is a significantly more complex 
task because of the dimensionality of the source. 

The selected method of metric navigation is based on the occupancy grid 
([11 J, [12]). This general structure in two dimensions manages a tesselation of the 
plane in cells. Each cell of the occupancy grid contains a probability value which is 
an estimation that the represented position is occupied by some object. During the 
navigation process the robot has to continuously calculate the occupancy values of 
its neighbourhood and has to insert the result into the grid. 

The important steps of the map building, in accordance with the work of [2], 
are the following: 

• sensor interpretation 
" integration over time 
• pose estimation 
• global grid building 
• exploration 

4.1. Sensor Interpretation 
The sensor interpretation is the first phase in the creation of an occupancy grid based 
navigation. 

The 24, circularly placed sonar sensors are fairly dense source of information 
on the object distance. These items make possible the calculation of occupancy 
values in a small environment. The calculation is necessarily a transformation of 
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sonar range scans to a set of occupancy grid cells, a translation of 24 scalars to a 
two-dimensional grid of probabilities. That is to say the conditional probability of 
every grid cell is computed in the vicinity as 

p(occx,y | s), 
where s is a sonar measurement of cell (x, y) . 

Instead of using an artificial neural network to solve the problem at hand, like 
in [2], we used a simpler, yet efficient method to estimate. For every sensor, the 
returned value is proportional with the distance of an object in the scan direction. 
Closer to the robot on the line of the scan, the probability that a grid cell is occupied 
is small (e), at the position of the value it is large (1 — e), and after the scan it 
decreases linearly to complete uncertainty (0.5). 

Since the main goal of the grid is to find traversable corridors on the map for 
the robot, it seems natural to broaden the evaluation of the scan on both sides with, 
at most, the size of the robot. This enhancement gives a better knowledge of the 
world from our point of view, because the number of modified cells is increased, 
leaving less uncertainity locally, as it can be compared in Figs. 6 and 7. 

Fig. 6. Local grid with narrow environment Fig. 7. Local grid with wide environment 

4.2. Integration Over Time 
The whole occupancy map of the environment is created during an exploration. 
This means that several sensor measurements are processed until the end, and sev
eral measurements are related to the same grid cell as well. Since circumstances 
{like pose of the robot, noise, etc.) influence the sensation, different values have 
to be integrated for every cell. So the conditional probabilities based on sensor 
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interpretations p (occXty \ s^) of every time step / have to be used to calculate the 
conditional probability of all measurements, p (occxy | s ( 2 ) , . . . , J ( T J) . This 
integration process can be solved by applying Bayes theorem ([13]) if we use the as
sumption that, given the true occupancy value of a cell, sensations are independent 
of the time of their collections: p (s(l) \ occXty) is independent of p (s1'J | occXiy), 
iff £f. 

Having the preconditions above, we can state that 
n(x,y,T) = p(occx,y\sw,si2) slT)) 
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where p(occx,y) is the prior probability which if set to 0.5 the last fraction can be 
omitted. 

Theorem (1) follows from the next proof, using Bayes theorem 

T\(x,y,T) p{occx,y U ( 1 ) , 5 ( 2 ) s<T)) 
1 - U(x, y,T)~ p (~-occx,y | sU\ J<2> s^) 

p{s<T>\occXty<s<l\s<n J*7"-") p(occx,y\s^,s^,...ts^) 
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Using the assumption of indepence of time is equal to 
p {s^ | occx,y) p{occx.y\sW,SM,...ts<T-») 
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Using Bayes theorem again on the first fraction 
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Now we reduced the number of sensations on the right side by one, so after induction 
we get 
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and after a rearrangement we get Eg. (1). 

The main consequence of Eg. (1) is that incremental calculation of occupancy 
grid values for every cell is possible, sonar scans can be concatenated to previous 
experiences. 
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Table 2. Sources of errors in odometry 

Systematic Non-systematic 
- unequal wheel diameters 
- irregular wheels 
- encoder sampling rate limitations 
- encoder resolution limitations 

- uneven floor 
- slippage of wheels 
- interaction with objects 

4.3. Pose Estimation 
As the robot moves around in the environment it builds the global occupancy grid 
employing the local occupancy grid. For merging local grid information into the 
global map, the robot needs to know its position and orientation, alias pose, at least 
approximately. Since sonar sensor scans are not informative enough to determine 
the robot pose unambiguously, another solution has to be found. If the robot con
tinuously tracks the changes of its pose, it can estimate the actual state relative to 
the starting state. This method is called odometry. 

In our case, wheel encoders of the robot accumulate the movement of each 
wheels in radians. As the structure parameters of the robot, like axle length and the 
wheel radius, are given, using equations of coordinate geometry, the actual state of 
the robot can be calculated. 

The problem of this approach is that systematic and non-systematic errors 
may influence the navigation, and the calculated pose differs from the real one 
([14], [15]). Table 2 shows some sources of odometry errors. 

Systematic errors can be compensated after a deep investigation of the working 
robot, but non-systematic errors cannot be eliminated. As time goes, odometry 
errors are accumulating and may distort pose estimation to a level where they are 
useless. 

Fig. 8 shows how the real and the calculated position of the robot diverge with 
time, because of odometric errors. 

Fig. 9 displays quantitatively the difference. Error in orientation alternates 
frequently and it reaches 3 degrees. Error in position increases faster in the direction 
of the movement and it approaches 10% of the route travelled. 

For possible methods of dealing with odometric errors see Section 5. 

When the robot can estimate its pose, at least approximately, local occupancy in
formation needs to be merged into a global map. On one hand, this process means 
the transformation of polar coordinates to Cartesian. On the other hand, it is the 
moment of the sensor integration. As the robot moves around in the environment, 

4.4. Global Grid Building 
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Fig. 8. Real and calculated trajectories 
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Fig. 9. Graph of the odometry errors by coordinate 

the revealed territory is growing until a complete discovery as it can be seen in the 
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open environment of Fig. 10 and in the maze of Fig. 11. 

Fig. 10. Global occupancy grid of an open area 

Fig. 11. Global occupancy grid of a maze 

4.5. Exploration 
After the robot is ready to create a map of its environment, a driving force is needed 
to urge the robot to explore all the reachable places, otherwise it would wander 
randomly. 
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For this reason a variant of value iteration is implemented ([16]). The se
lected algorithm helps to find the minimum cost-path to unexplored regions of the 
occupancy grid. A newly introduced cost matrix is calculated itcratively and after 
convergence for every occupancy grid cell the cost of travelling to an unexplored 
grid cell from the actual cell is given. 

L The first step of the method is the initialization. Naturally, the costs of 
unexplored cells - where occupancy value has not been changed - are 0, 
while the costs of the explored cells are oo. 

2. During the update loop, the value of every explored cell is recalculated. Cells 
with high occupancy probability get 1 as cost. For others, the modification 
is based on a minimum search in the vicinity, the cost together with the 
probability of occupancy of the neighbouring cells determine the new value 
of the investigated cell. The e component is necessary to punish the length 
of the path. 
V explored (x,y): 

After convergence, the cumulative cost of travelling to an unexplored cell is 
in the matrix for every explored cell. 

3. Since the exploration in one region of the environment affects the whole cost 
matrix a total update of the costs would be necessary every step. With a large 
number of cells it may make the exploration process extremely slow. 
This is the main reason why total update is not performed continuously. On 
the other hand, regular calculations arc necessary to ensure the determination 
of the new exploration direction. 
Exploration direction is a consequence of the actual state of the cost matrix. 

Since matrix cells contain cumulative travelling costs, a minimum search is appro
priate to find the way to unexplored regions. This procedure has to work in a small 
environment of the robot, in the interior of a bounding box to avoid the discovery 
of a cell which has no linear connection with the actual robot position. 

Actual orientation of the robot is also taken into account in the selection of 
the new exploration direction to help the generation of a smooth movement. 

The evolved exploration strategy is greedy in the sense that it always makes 
the robot moving straight in the direction of unexplored regions. Normally, the en
vironment contains some obstacles which influence the trajectory. In our navigation 
algorithm, front sonar sensors have an important effect on the movement direction 
since close objects force the robot to turn away. The complementary behaviours 

0 if (x, y) is unexplored 
oo if (x, y) is explored. 

1 if p (occx+Ly+j) > 1 - 5 
Vx,y «- min( l , min ( + p (occ 

f = - l . 0 . 1 1 
i—1.0.1 

x+i,y+j ) j + £) otherwise. 
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of minimum cost search and obstacle avoidance together enable an appropriate 
navigation. 

Fig. 12 and Fig. 13 show the cost matrices evolved in the same environments 
with the occupancy grids in Fig. 10 and Fig. 11. 

Fig. 12. Cost matrix of the open area 

Fig. 13. Cost matrix of the maze 
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5. Odometric Error Correction 
Various algorithms exist to solve the 'chicken-egg' problem of map building and 
self-localization ([17]). 

SCHIELE and CROWLEY employ a Hough transform on the occupancy grid 
to extract line segments ([18]). The segments of the recent sensation are matched 
against the global map. Results of the matching process can be used as parameters 
of a Kalman filtering technique. 

LU and MiLiOS extend the traditional Kalman method in their research ([19]). 
They store the history of laser range scans and create a network of pose estimations. 
The edges of the network are defined by odometry and alignments of scan pairs. 

Another approach of correcting the odometric error is the expectation max
imization algorithm ([13], [20]). This iterative maximum likelihood process has 
two main steps. In the expectation step the robot pose is recalculated based on the 
actual map. In the maximization step the most likely map is estimated according 
to the current position of the robot. 

6. Dynamic Environments 
General robot-working environments change over time. Some objects are so-called 
'semi-dynamic', they do not change their locations only their positions like doors, 
windows. All other objects like people, chairs, desks move in the environment 
every now and then. 

Most of the navigation methods do not support dynamic environments, while 
occupancy grids handle them only to a limited extent. As it is described in [21], the 
'integration over time' step of the occupancy grid building ensures that occupancy 
changes are integrated into the grid. 

Our approach has a simple extension to cope with dynamism better: cell 
probabilities may be influenced more by recent sensor readings than by earlier 
ones. Introducing a 0 < y < 1 decay factor in Eq. (1) serves this need. 

n<x,y,T) = p(occx.y\s<l\S™ 5 < r > ) 

7_! p(OCCx,y 1 Sil)) yr T_T p{QCCXly \ S(X)) 1 ~ p(OCCx,y)\ 
1 - p(OCCx.y | 5* 1 ) ) U Y 1 - p(0CC

x
.

y
 | 5<r>) p(0CC
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A more sophisticated method is presented in [22]. The authors create the robot 
object mapping algorithm (ROMA), which builds a model level above the grid with 
the characteristic shape of objects. Moving people are not modelled, hence the 
basic assumption is that objects are changing location so slowly that they can be 
assumed static during an occupancy grid building. In the preprocessing step of 
the algorithm, the robot tries to estimate the number of non-static objects using 
occupancy grids created at different times with the aid of well-known algorithms 
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of image processing. Having the dynamic objects, an expectation maximization 
procedure determines the model of the objects in the changing grid. 

7. Conclusions 
During our research we created a metric navigation method in the simulation en
vironment of Webots. The presented occupancy grid model resembles the work of 
THRUN ([2]) with the following modifications. 

We use a simpler, yet effective sensor interpretation with broadened scan 
lines. Odometry of the simulated Khepera robot is determined for later usage for 
error correction. The value iteration rule of the exploration phase was modified. 
Instead of a selective reset phase and a prioritized sweeping we use occasional total 
updates. 

The evolved robot controller was tested in three different environments: in 
an open area (Fig. 10), in a maze (Fig. 11), and in an office-like room (Fig. 1). The 
open area is 1 m2, while the other two are 2.25 m2. The robot could explore all the 
three environments. Naturally, the open area caused the slightest challenge: full 
explorations took 8 minutes on an average. Solving the maze and the office was 
harder, the robot was navigating for 22 and 20 minutes, respectively, on average. 

8. Future Work 

There are some natural continuations of the research. 

• Error correction of position estimation is important. 
• Since complete knowledge of the environment is only a tool to perform higher-

level tasks, after exploration the robot should start a new behavior. 
• Modelling dynamic objects would also be an advantage. 
• Combination of metric and topological navigation may bring together the 

desired proprieties of both methods. Building a topological graph as a new 
control level above an occupancy grid may reduce algorithmic complexity. 

• Integration of new sensor types, especially video cameras, may cause a faster 
and more accurate environment mapping. 
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