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Abstract

The Action Semantics for UML provides a standard and platform independent way to describe the
behavior of methods and executable actions in object-oriented system design prior to implementation
allowing the development of highly automated and optimized code generators for UML CASE tools.
Model transformation systems provide visual but formal background to specify arbitrary transforma-
tions in the Model Driven Architecture (the leading trend in software engineering). In the current
paper, we describe a general encoding of model transformation systems as executable Action Se-
mantics expressions to provide a standard way for automatically generating the implementation of
formal (and provenly correct) transformations by off-the-shelf MDA tools. In addition, we point out
a weakness in the Action Semantics standard that must be improved to achieve a stand-alone and
functionally complete action specification language.
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1. Transformations in the Model Driven Architecture

1.1. Towards the Model Driven Architecture

Recently, the main trends in software engineering have been dominated by the Model
Driven Architecture (MDA) [17] vision of the Object Management Group (OMG).
According to MDA, software development will be driven by a thorough modelling
phase where first (i) a platform independent model (PIM) of the business logic is
constructed from which (ii) platform specific models (PSMs) including details of
the underlying software architecture are derived by model transformations followed
by (iii) an automatic generation of the target application code.

The PIMs and PSMs are defined by means of the Unified Modeling Lan-
guage (UML) [21], which has become the de facto standard visual object-oriented
modelling language in systems engineering. Moreover, the recent inclusion of an
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action specification language to the UML standard (Action Semantics for UML
[13, 16]) seems to become a breakthrough for tool vendors to develop highly auto-
mated and optimized code generators for UML CASE tools (such as [11, 19]) with
an executable action specification language.

However, UML still lacks precise formal semantics, which hinders the formal
verification and validation of system design. Moreover, several shortcomings of the
language have been revealed in domain specific applications as well. To provide
formal semantics, UML models are frequently projected into various mathematical
domains (Petri nets, transition systems, process algebras, etc.), and the results of
the formal analysis are back-annotated to the UML-based system model to hide the
mathematics from designers [3, 10, 28].

1.2. Model Transformations in the MDA Environment

As the upcoming UML 2.0 standard aims at rearchitecturing UML into a family of
individual languages built around a small kernel language, different kinds of model
transformations will play a central role for UML, as well as for the entire MDA
approach.

• model transformations within a language should control the correctness of
consecutive refinement steps during the evolution of the static structure of a
model, or define (rule-based) operational semantics directly on models;

• model transformations between different languages should provide precise
means to project the semantic content of a diagram into another one, which
is indispensable for a consistent global view of the system under design;

• a visual UML diagram (i.e., a sentence of a language in the UML family)
should be transformed into its (individually defined) semantic domain, which
process is called model interpretation.

The VIATRA model transformation system VIATRA (VIsual Automated model
TRAnsformations [5, 28]) is a prototype tool that provides a general and automated
framework for specifying transformations between arbitrary models conforming to
their metamodel.

The main characteristics of VIATRA are the following:

• The precise theoretical background of the transformations is formalized by
means of graph transformation systems [20].

• From visual model transformation rules defined in a UML notation, VIATRA
automatically generates a Prolog program for the implementation [25].

• Moreover, the semantic correctness of transformations can be proven by
model checking techniques [26].
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Related work Other existing model transformation approaches can be grouped
into two main categories:

• Relational (or bidirectional) approaches: these approaches typically declare
a relationship between objects (and links) of the source and target language.
Such a specification typically based upon either (a) a metamodel with OCL
constraints [1, 2, 14], (b) textual mappings [9], or (c) triple graph grammars
[22].

• Operational (or unidirectional) approaches: these techniques describe the
process of a model transformation from the source to the target language.
Such a specification mainly combines metamodelling with (d) graph trans-
formation [6, 10, 24, 27], (e) term rewriting rules [29], or (f) XSL transfor-
mations [7, 18].

Unfortunately, none of these approaches provide a general solution for model
transformation when evaluated according to their (i) expressive power, (ii) pre-
cise mathematical background, (iii) efficient implementation and (iv) relatedness
to industrial standards.

• For instance, relational approaches providing bidirectionality might be con-
venient for many simple practical transformations but transformations with
deliberate loss of information (such as abstractions) cannot be expressed.

• XSLT-based solutions do not have a precise mathematical background, more-
over, XSLT is very inefficient as a transformation language if our models are
not trees but complex graph structures.

• Graph transformation (and rewriting) based approaches fulfill requirements
(i) – (iii) but their concepts are far from the industrial standards which hinders
their acceptance in the UML environment.

Problem statement In order to facilitate the widespread use of model transfor-
mations with graph transformation as the formal background, we have to integrate
them into existing MDA standards and tools. In other words, academic tools (like
VIATRA) are useful for the experimentation and verification of model transforma-
tions, but the final (product quality) implementation should be integrated into the
MDA approach and the UML standard as much as possible.

Our contribution In the current paper, we aim at transforming model transforma-
tion systems into standard Action Semantics descriptions to allow the automatic
generation of transformation scripts for various software architectures by off-the-
shelf UML tools. As a result, our visual but formal specification technique [28]
based on metamodelling and graph transformation may become the first approach
to fulfill all the four requirements of general purpose model transformations in the
MDA environment.
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The structure of the paper The rest of the paper is structured as follows. Section2
provides a brief introduction to the concepts and formal treatment of model trans-
formation systems while Sec. 3 gives an overview of the UML Action Semantics
standard. Then, in Sec. 4, which is the key part of the paper, we describe a gen-
eral encoding of model transformation systems into Action Semantics expressions.
Finally, Sec. 5 concludes our paper.

2. Formalizing Model Transformations

2.1. Models and Metamodels

The abstract syntax of visual modelling languages is defined by a corresponding
metamodel in a UML notation (i.e., a simplified class diagram), which conforms to
the best engineering practices in visual specification techniques. Models (defined in
the form of UML object diagrams) are sentences of those languages, thus each well-
formed model has to conform to its metamodel. Typically, models and metamodels
are represented internally as typed, attributed and directed graphs.

• On the metamodel level (or class level), classes can be mapped into a graph
node and all associations are projected into a graph edge in the type graph
(denoted as T G). The inheritance hierarchy of metamodels can be preserved
by an appropriate subtyping relation on nodes (and possibly, on edges). Class
attributes are derived into graph attributes where the latter may be treated
mathematically as (possibly partial) functions from nodes to their domains.

• On the model level (or object level), objects and links between them are
mapped into nodes and edges, respectively, in the model (instance) graph
(denoted as M). Each node and edge in the model graph is related to a
corresponding graph object in the type graph by a corresponding typing ho-
momorphism [4].

A sample metamodel and a simple model of finite automata are depicted in
Fig. 1.
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Fig. 1. A metamodel and model of finite automata
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EXAMPLE 1 According to the metamodel, a well–formed instance of a finite au-
tomaton is composed of states and transitions. A transition is leading between its
from state and to state. The initial states of the automaton are marked with init, the
active states are marked with current, while the reachable states starting from the
initial states are modelled by reachable edges.

A sample automaton a1 consisting of three states (s1, s2, s3) and three
transitions between them t1 (leading between s1 and s2), t2 (leading between s2
and s3), and t3 (leading between s2 and s3) is also depicted. We can notice that
the initial state of a1 is s1.

2.2. Model Transformation Systems

The dynamic operational semantics of a modeling language, as well as transfor-
mations between modelling languages can be formalized by model transformation
(transition) systems (introduced in [28]), which is a variant of graph transformation
systems with a predefined set of control structures.

A graph transformation rule is a 3-tuple Rule D .Lhs; Neg; Rhs/, where
Lhs is the left-hand side graph, Rhs is the right-hand side graph, while Neg denote
the (optional) negative application conditions.

The application of a rule to a model graph M (e.g. a UML model of the user)
rewrites the user model by replacing the pattern defined by Lhs with the pattern of
the Rhs. This is performed as follows:

1. Find a match of Lhs in M (graph pattern matching).
2. Check the negative application conditions Neg which prohibit the presence

of certain nodes and edges in the model graph. Informally, if the match of the
Lhs pattern can be extended to include the match of the Neg pattern, then
the original match of the Lhs is eliminated. Negative application conditions
are denoted by graph objects with a cross.

3. Remove a part of the graph M that can be mapped only to the Lhs but not to
the Rhs graph (i.e., to Lhs n Rhs) in order to yield the context graph.

4. Glue the image of the Rhs and the context graph to obtain the derived model
M 0, which means the creation of certain model elements (nodes and edges).

The entire model transformation process is defined by an initial graph ma-
nipulated by a set of graph transformation rules (micro steps) executed in a specific
mode in accordance with the semantics (macro steps) of a hierarchical control flow
graph.

A model transformation (transition) system MT S D .I ni t; R; C FG/ with
respect to (one or more) type graph T G is a triple, where I ni t defines the initial
graph, R is a set of graph transformation rules (both compatible with T G), and
C FG is a set of a control flow graphs defined as follows:

• There are five types of nodes of the CFG: Start, End, Try, Forall and Loop.
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• There are two types of edges: succeed and fail.

The control flow graph is evaluated by a virtual machine which traverses the
graph according to the edges, and applies the rules associated to each node.

1. When a Try node is reached, its associated rule is tried to be executed. If the
rule was applied successfully then the next node is determined by the succeed
edge, while in case the execution failed, the fail edge is followed.

2. At a Loop node, the associated rule is applied as long as possible (which may
cause non-termination in the macro step). Only a succeed edge may lead
from a Loop node.

3. When a Forall node is reached, the related rule is executed in parallel for all
distinct (possible none) occurrences in the current host graph. Only a succeed
edge may lead from a Forall node.

Note that this CFG model follows the control flow concepts of the VIATRA
tool. However, the use of “as long as possible” kind of control conditions (and
additional negative application conditions) instead of forall nodes would almost
directly yield the appropriate control conditions for many existing graph transfor-
mation tools.

EXAMPLE 2 A pair of rules describing how the reachability problem on finite
automata can be formulated by graph rewriting rules is depicted in Fig.2. Rule
initR states that all states of the automaton marked as initial are reachable (if the
state has not been marked previously). Rule reachR expresses that if a reachable
state S1 of the automaton is connected by a transition T1 to such a state S2 that
is not reachable yet, then S2 should also become reachable as a result of the rule
application.

Note that without the negative application condition (the crossed reachable
edge in the left-hand side of the rule), the transformation might generate more than
a single reachable edge between an automaton and a state, which contradicts our
intuitive requirements.

According to the control flow graph, first we have to apply initR in forall
mode, then reachR should be executed as long as possible. Since all edges in the
control flow graph are succeed edges, it is not explicitly depicted in Fig.2.

3. Action Semantics for UML: An Overview

The Action Semantics for UML (AS) provides a standardized and platform (and
implementation) independent way to specify the behavior of objects in a distributed
environment. Basically, the user can describe the body of methods and executable
actions in an abstract language prior to the implementation phase by constructing a
dataflow-like model.
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Fig. 2. Calculating reachable states by graph transformation

Action specification An action specification consists of the following elements:

• Pins: the input and output “ports” of an action having a specific type and
multiplicity (a pin may hold a collection of values at a time if it is allowed
by its multiplicity),

• Variables: an auxiliary store for results of intermediate computations,
• Data flow: connects the output pin of one action to the input pin of another,

thus providing an implicit ordering of action execution,
• Control flow: imposes an explicit ordering constraint for action pairs having

no connecting data flow,
• Actions: for object manipulation, memory operations, arithmetic, message

passing, etc.,
• Procedures: provides the packaging of actions with input and output pins,

e.g. for method body.

Action execution The execution of an action has the following stages in its life-
cycle:

• Waiting. An action execution may be created at any time after the procedure
execution for its containing procedure has been created. On creation, an
action execution has the status ‘waiting’ and no pin values are available.

• Ready. An action execution with status ‘waiting’ becomes ready on the
completion of the execution of all prerequisite actions (that is, when all actions
that are the sources of data flows or predecessors of control flows into the
action become ready). The values of the input pins of the target action
execution are determined by the values of the output pins from the prerequisite
action executions for actions by data flows.

• Executing. Once it is ready, an action execution eventually begins executing
(the action semantics does not determine the specific time delay (if any)
between becoming ready and actually executing).
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• Complete. When it has finished execution, the action becomes complete. The
action execution then has pin values for all output pins of the action computed
according to specific semantics of different actions. After the output values
from a completed execution have been copied, there is no longer any way for
another execution to access the completed execution.

Actions have no default orderings (like sequential execution as in traditional
programming languages); actions that are not implicitly ordered by data flow or
explicitly ordered by control flow can be executed either parallelly or in an arbitrary
order.

Types of actions Specific semantics of different kind of actions can be grouped
into the following main categories (only actions relevant for the encoding of Sec.4
are enlisted):

• Computation actions are primitive actions for mathematical functions (not
defined in the standard in details)

• Composite actions are recursive structures that permit complex actions to be
composed of simpler ones providing means for basic control flow actions
(e.g. LoopAction, ConditionalAction, GroupAction),

• Read and write actions access, navigate, and modify model-level constructs
(such as objects, links, attribute slots, and variables)

• Collection actions (such as FilterAction, MapAction, or IterateAction) apply
a subaction to a collection of elements to avoid overspecification of control
caused by explicit indexing and extracting of elements.

Syntax of actions The Action Semantics standard only defines a metamodel (and
some well-formedness constraints) for the language without any restrictions on
concrete syntax. In this respect, a well-formed action expression itself is a rather
complex object diagram, which is easy to process for CASE tools but extremely
hard to read and write for system engineers. In fact, existing UML CASE tools
with an integrated action specification language have their own textual notations
for describing actions.

Therefore, the encoding of model transformation systems will be presented
in the sequel on two levels: (i) first, in an own, self-explanatory pseudo action
language to understand the overall idea of the encoding (instead of sticking to any
specific existing dialects of AS tools), (ii) and then in a standardized way, by using
object diagrams (to cope with AS technicalities).

EXAMPLE 3 In order to provide an overview of Action Semantics, a simple frag-
ment of an AS expression is presented in Fig. 3, which captures the behavior of
a Boolean function testing whether the value of a variable factor is equal to the
constant 2.
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• For this purpose, we should first read the values of the constant 2 and the
variable factor into corresponding output pins by using AS actions LiteralVal-
ueAction and ReadVariableAction, respectively.

• Then both values are transported to the argument input pins of ApplyFunc-
tionAction by corresponding DataFlow operations.

• Finally, ApplyFunctionAction applies the primitive function == supplied with
the previous arguments, and stores the results in its op1 output pin.

app :

ApplyFunctionAction

 :

InputPin

== :

PrimitiveFunction

op1 :

OutputPin

 :

DataFlow

 :

DataFlow

 : OutputPin

 : OutputPin  :

ReadVariableAction

factor :

Variable

destination

source

source outputPin
variable

 : LiteralValueAction

outputPin

value

2 : Integer

 : InputPin

destination

argument

function

result

argument

Fig. 3. An Action Semantics Expression for factor==2

4. Action Semantics for Model Transformation Systems

In this section, we provide a general way to encode model transformation sys-
tems into Action Semantics (AS) descriptions to provide a standard and platform
independent way to implement transformations in the MDA environment.

Our generation technique takes the metamodel(s) and a model transformation
system as input, and generates a set of actions as output. The results of the trans-
formations are obtained afterwards in the form of an object/collaboration diagram.

A natural correctness criterion of the generation process would be that the
execution of actions according to the Action Semantics standard should yield iden-
tical results with (at least one trace of) the formal generation process driven by the
model transformation system itself, starting from a given instance model. However,
as the AS standard completely lacks any formal semantics, unfortunately, we cannot
formally reason the correctness of our approach.

The overall idea basically follows the graph pattern matching techniques im-
plemented in the PROGRES [23] and FUJABA [15] tools in procedural and object-
oriented languages. The encoding consists of the following main steps (which will
be introduced in details as ‘Solutions’ later in this section):
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• implementing graph pattern matching by local searches in the user model
based on collection actions and navigation capabilities of AS;

• checking non-existence of certain objects and links prescribed by the negative
conditions by a user-defined function;

• adding and deleting graph objects by using actions for object and link ma-
nipulation;

• implementing rule application modes by various corresponding collection
actions;

• simulating the execution of the control flow graph by conditional actions and
explicit control flow restrictions.

The encoding will be introduced on our running example of the reachability
problem of finite automata, which includes the handling of all major problems.

4.1. Encoding the Control Flow Graph

The handling of the control flow graph consists of modelling rule applications in a
certain mode and defining the sequence of consecutive transformation steps.

SOLUTION 1 For each rule applied in loop or forall mode, a GroupAction is gen-
erated, while a ConditionalAction is generated for a rule applied in try mode.

SOLUTION 2 The sequence of rule applications is defined by explicit ControlFlow
restrictions set upon the sequence of corresponding rule actions.

As only succeed edges may lead from loop and forall nodes of a CFG, such
rules are modelled by GroupActions, which is simply a collection of subactions.
However, in the case of try rules, the CFG branches depend on the success of rule
application, thus the corresponding action of a try rule must return whether the
application of the rule was successful or not. After that, the composite actions of
rules can be simply connected by ControlFlow objects in accordance with the CFG.

EXAMPLE 4 The control flow graph of our reachability example is depicted in
the AS notation in Fig. 4, stating that the execution of GroupAction initR should
precede the execution of reachR action.

initialR :
GroupAction

: ControlFlow reachableR :
GroupAction

predecessor successor

forall(initialR); loop(reachableR)

Fig. 4. Control flow restrictions
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4.2. Action Semantics for Pattern Matching

The implementation of a graph pattern matching algorithm within Action Seman-
tics is the central part of the entire encoding. The main challenge lies in the
fact that graph transformation tools are traditionally control-oriented with global
(constraint-based) graph pattern matching algorithms, while Action Semantics pro-
vides a data flow based specification technique, allowing only local navigations for
pattern matching algorithms.

In addition, the encoding of pattern matching depends on the rule application
mode, thus, the same rule may have different AS representations when applied in
different application modes according to the nodes of the CFG. Loop and try modes
are handled almost similarly (loop mode is based upon try mode, since a rule is
tried to be applied as long as possible, and the next application depends on the
applicability of the current one), and they differ essentially from the behavior of
forall mode (where rule applications are executed parallelly for each matching).

In the sequel we discuss the encoding of a rule applied in forall mode on
the demonstrative example of Algorithm 1 for initR, while the pseudo encoding of
reachR is shown in Algorithm2 with detailed explanations given later in the current
section. (Note that node identifiers in rules correspond to the variables to ease the
comparison of graph transformation rules with their pseudo AS representation.)

Algorithm 1 Encoding initR in a pseudo action specification language
1: GroupAction Automaton::initR() =
2: Variable a1, s1, S1;
3: a1 = ReadSelfAction();
4: if ReadIsClassifiedObjectAction(Automaton, a1) then
5: {S1} = ReadLinkAction(a1, initial) ;
6: for all s1 2 {S1} do {MapAction; parallel execution}
7: if ReadIsClassifiedObjectAction(State, s1) then
8: if : testLink(a1, reachable, s1) then
9: CreateLinkAction(a1, reachable, s1);

10: end if
11: end if
12: end for
13: end if

Starting point of pattern matching The first step, which is to find the starting point
for pattern matching is, in fact, identical for all modes.

SOLUTION 3 The starting point of pattern matching is identified by the instance
retrieved by a ReadSelfAction executed on an instance of the model class (i.e.,
Automaton in our example) and stored in a variable (see Line 3 in Algorithm1).



178 D. VARRÓ and A. PATARICZA

As for the AS representation, a data flow is required to connect the output pin
of ReadSelfAction with the input pin of AddVariableValueAction action. We must
also specify that the previous value stored in the variable should be overwritten
by setting the isReplaceAll variable to true. Note that matching instances of LHS
graph nodes will be stored in AS variables (later on as well).

EXAMPLE 5 The AS representation of Line 3 in Algorithm 1 is depicted in Fig. 5.
We expect to retrieve an Automaton instance stored in variable a1.

: ReadSelfAction : OutputPin : DataFlow

: InputPin: AddVariableValueActiona1 : Variable

isReplaceAll = true

result source

destination
variable

value

a1 = ReadSelfAction()

Fig. 5. Starting point of pattern matching

Type checking of objects Our next problem to be solved is to visit only type
conforming objects when matching patterns.

SOLUTION 4 When a new object is obtained at any time during pattern matching
(i.e. matched to a corresponding node in the graph transformation rule), we imme-
diately test whether it has a conforming type (conforming to the type of the graph
node). See Lines 4 and 7 in Algorithm 1 as examples.

This testing is performed by a ConditionalAction with a test clause consisting
of a single ReadIsClassifiedObjectAction. The test action ReadIsClassifiedObjec-
tAction (checking whether an object is an instance of a certain class) has to return
a boolean value on its output pin, which serves as the test output for the test clause
in the meantime. If the value retrieved by the test subaction of a clause is true, then
the body action of the clause can be executed (which consists of further actions of
pattern matching in this case).

EXAMPLE 6 The AS representation of Line 7 in Algorithm 1 is depicted in Fig. 6.
We check whether the value stored in variable s1 is an instance of the class Au-
tomaton. Naturally, we first have to get this value from the variable by a ReadVari-
ableAction connected to the input pin of ReadIsClassifiedObjectAction by a data
flow.
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if : ConditionalAction

then : Clause

clause

: ReadIsClassifiedObjectAction

: OutputPin

testOutput
result

s1 :
Variable

State :
Class

:
ReadVariableAction

: OutputPin

: InputPin

:
DataFlow

destination

source

input classifier

resultvariable

if ReadIsClassifiedObjectAction(s1, State) then ...

test

... : Action

body

Fig. 6. Checking types of objects

Navigating links The core operation of graph pattern matching in a UML envi-
ronment is the navigation of links.

SOLUTION 5 When a certain object is matched, the neighbours of the object (con-
nected by links corresponding to the edge types in the graph transformation rule)
are obtained by navigating links (Line 5 in Algorithm1). This navigation results in
a single object or a collection of objects stored in a variable.

A navigation of a link in AS (by applying ReadLinkAction) means that

• the exactly one-end object (called the source object) of a link is already known
(i.e. at most one LinkEndData may have an associated single value on its input
pin), while the target end of the link should be unknown yet (naturally, an
association can be navigated in both directions if allowed by the metamodel);

• the link should correspond to a certain association (also defined by the Link-
EndData);

• as a result of the navigation, a single object or a set of objects is retrieved
(depending on multiplicities of the association and the topology of intercon-
nected objects), and stored in a variable.

EXAMPLE 7 The AS representation of Line 5 in Algorithm 1 is depicted in Fig. 7.
We read the value of variable a1 into the input pin of one LinkEndData corresponding
to an association end of the initial association. When the ReadLinkAction is executed,
the result is written into variable S1 (variables with a capital initial will store a
collection of objects in the sequel).

Rule application mode specific processing of collections The processing of col-
lections obtained from navigating links depends on rule application modes.
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SOLUTION 6 When processing a collection for the pattern matching of a rule ap-
plied in forall mode (see Line 6 in Algorithm 1), each element in the collection
must be processed independently from each other, thus subsequent actions in the
pattern matching process should be applied for each of them. For this reason, a
MapAction is required in AS.

SOLUTION 7 When processing a collection for the pattern matching of a rule ap-
plied in try or loop mode (see Lines 9, 12 and 15 in Algorithm2), each element in
the collection must be processed sequentially (thus an IterationAction is required in
AS); however, the next element in the collection needs to be processed only if no
complete matching has been found successfully so far (first boolean condition in
Lines 10, 13 and 16).

 : OutputPin

 : InputPin

 : LinkEndData : ReadLinkAction

initial :

AssociationEnd

 : LinkEndData

 : InputPin
 : AssociationEnd

 : DataFlow a1 :

Variable

 : ReadVariableAction

 : OutputPin : DataFlow

initial :

Association

 : AddVariableValueAction S1 : Variable

multiplicity = 0..*

{S1} = ReadLinkAction(a1, initial)

isReplaceAll = true

endData endData

result

endend
value

source

destination

variableresult

destination

source

connection connection

value variable

Fig. 7. Navigating links

SOLUTION 8 In both cases, the current element of the collection (corresponding to
the matching of a certain node in the LHS of the rule) is stored in a variable. If the
collection is empty, then none of the subactions are executed, thus this instantiation
can be omitted.



UML ACTION SEMANTICS 181

Algorithm 2 Encoding reachR in a pseudo action specification language
1: GroupAction Automaton::reachR() =
2: Variable isApplicable, a1, s1, S1, s2, S2, t1, T1;
3: AddVariableValueAction(isApplicable, T);
4: while isApplicable do {LoopAction}
5: AddVariableValueAction(isApplicable, F);
6: a1 = ReadSelfAction();
7: if ReadIsClassifiedObjectAction(Automaton, a1) then
8: {S1} = ReadLinkAction(a1,reachable);
9: for all s1 2 {S1} do {IterateAction, sequential execution}

10: if :isApplicable ^ ReadIsClassifiedObjectAction(State, s1) ^

testLink(a1,states, s1) then
11: {T1} = ReadLinkAction(s1,source);
12: for all t1 2 {T1} do {IterateAction; sequential execution}
13: if :isApplicable ^ ReadIsClassifiedObjectAction(Transition, t1)

^ testLink(a1,transitions, t1) then
14: {S2} = ReadLinkAction(t1,target);
15: for all s2 2 {S2} do {IterateAction; sequential execution}
16: if :isApplicable ^ ReadIsClassifiedObjectAction(State, s2)

^ testLink(a1,state, s2) then
17: if : (testLink(a1,reachable, s2)) then {Neg. condition}
18: AddVariableValueAction(isApplicable, T);
19: CreateLinkAction(a1,reachable, s2);
20: end if
21: end if
22: end for
23: end if
24: end for
25: end if
26: end for
27: end if
28: end while
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 : OutputPin

 : InputPin

S1 : Variable

multiplicity = 0..*

 : ReadVariableAction  : OutputPin

 : DataFlow

subaction :

GroupAction

 : AddVariableValueActions1 : Variable

multiplicity = 1

 : InputPin

 : DataFlow

for all s1 in {S1}

{  s1 = MapAction.subinput  }

inputPin

subinput

variable result

source

destination

subaction

subaction

variable value

source

destination

 : MapAction

Fig. 8. Implementing application modes (forall)

EXAMPLE 8 In the AS representation (see Fig.8 for Line 6 in Algorithm 1), we first
read the collection variable (ReadVariableAction) S1 into the input pin of MapAction
with a further constraint stating the value contained by the subinput (output) pin
should be stored in the variable s1 (AddVariableValueAction).

A weakness in the standard: Testing the existence of links At the current point,
we give explanation for Line 8 in Algorithm 1, which will demonstrate a major
weakness in the AS standard.

When all the nodes of the LHS are instantiated by objects, we have to test the
existence of links between these objects prescribed by edges in the LHS that have
not been visited by navigation (or the non-existence of links in case of negative
conditions). For efficiency reasons, such tests should be performed as soon as
possible.

EXAMPLE 9 For instance, in Line 8 of Algorithm 1, we check the negative con-
dition that there must not be any existing reachable link between the automaton
object stored in variable a1 and the initial state object stored in s1 by executing the
boolean function testLink(a1, reachable, s1).

PROBLEM 1 The existence of a link of a certain type relating two given objects
cannot be tested within AS.

Function testLink can be used in UML models with AS expressions, but it
cannot be implemented by predefined actions of AS since a user function can be
declared (with a signature specification) within AS as an action, but they cannot
be defined (no specification of semantics). Typically, this action is implemented
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in every UML CASE tool with an action specification language; however, it is not
part of the standard, which is very unfortunate.

SOLUTION 9 Thus, the standard should be extended with a TestLinkAction with
two LinkEndData (both required to store an associated object on its input pin) as
storing the input and a boolean valued output pin.

Without such an extension to the standard, the implementation of the external
mathematical function a testLink will be CASE tool dependent and does not fit well
to the generality of our approach.

4.3. Manipulating Links and Objects

Finally, after a successful pattern matching phase, objects and links are to be ma-
nipulated according to the difference of the LHS and the RHS of a rule.

SOLUTION 10 Whenever a transformation rule prescribes

• the addition of an object, a CreateObjectAction is executed and the created object
is stored in a new variable;

• the deletion of an object, a DestroyObjectAction is executed on an object retrieved
from the corresponding variable;

• the addition of a link, a CreateLinkAction is executed to create a link of a certain
type between the objects read from the corresponding variables;

• the deletion of a link, a DestroyLinkAction is executed to destroy a link of a certain
type between the objects read from the corresponding variables.

EXAMPLE 10 The AS encoding of link creation in Line 9 of Algorithm 1, and an
fictitious creation of a State object is demonstrated in Fig.9.

• When a new State object is created (upper part of Fig.9) by CreateObjectAction, it
is directly passed to AddVariableAction by a data flow connection to store the new
object in variable s1.

• When a reachable link is created between objects a1 (of type Automaton) and s1
(of type State), a CreateLinkAction is executed where values of both LinkEndCre-
ationData are specified by data flows from the corresponding ReadVariableActions,
while the ends of both LinkEndCreationData are defined by the related association
in the metamodel.

5. Conclusions

In the paper, we presented a method to automatically implement model transforma-
tions, specified on a very high abstraction level by metamodelling techniques and
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: CreateObjectAction State :
Class

: OutputPin: DataFlow

: InputPin : AddVariableValueAction s1 :
Variable

classifier

resultsource

destination

value variable

s1 = CreateObjectAction(State)

 : CreateLinkAction : LinkEndCreationData  : LinkEndCreationData

 : AssociationEnd reachable :

AssociationEnd

reachable :

Association

 : InputPin  : InputPin

 :

DataFlow

 : OutputPin  : OutputPin :

DataFlow

endData
endData

value
end value

end

connection connectiondestination

source

destination

source

 : ReadVariableAction  : ReadVariableAction

result result

a1 :

Variable

s1 :

Variablevariable

variable

CreateLinkAction(a1, reachable, s1)

Fig. 9. Creating objects and links

graph transformation rules, by mapping them into UML Action Semantics expres-
sions. The main advantage of our approach is that visual but mathematically precise
model transformations can be directly encoded in the standard action specification
language of the MDA (and UML) environment, thus providing a smooth integration
of formal specifications and industrial standards. The entire encoding was demon-
strated on a small example (reachability analysis of finite automata) which was still
rich enough to cover all the basic rules of our encoding.

Our approach conceptually followed the graph pattern matching algorithms of
the PROGRES [23] and (especially) FUJABA [15] systems. Instead of global, con-
straint satisfaction-based searches (such as [12]), the matching pattern is searched
locally by navigating through links between objects. Meanwhile, from a strict the-
oretical point of view, global strategies can be more efficient than local searches,
practical experiences in the previous graph transformation systems demonstrated
that pattern matching by navigation is very efficient in most practical cases, more-
over, it fits better to the object-oriented nature of UML and AS.

During our encoding, we also discovered a weakness in the Action Semantics
(testing the existence of links of a certain type between two objects) standard that
should be fixed in order to obtain a fully functional navigation language for actions.
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