
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 47, NO. 3–4, PP. 187–204 (2003)

PROGRAM CODE GENERATION BASED ON UML
STATECHART MODELS

Gergely PINTÉR and István MAJZIK

Department of Measurement and Information Systems
Budapest University of Technology and Economics

H–1521 Budapest, Hungary
e-mail: pinterg@mit.bme.hu,majzik@mit.bme.hu

Received: Oct. 1, 2003

Abstract

Since visual modelling languages are getting more and more popular, the automatic generation of
the program code on the basis of high-level models is an important issue. This article discusses
implementation possibilities of statecharts, the graphical notation for describing state-based event-
driven behaviour in the Unified Modelling Language (UML). The first part of the article outlines
common approaches published in the literature and identifies their weaknesses. In the second part an
implementation pattern is proposed that is capable of efficiently instantiating most of the statechart
features. The pattern developed by us poses low hardware requirements therefore applicable even in
embedded systems.

Keywords: code generation, UML, statechart.

1. Introduction

This article discusses implementation possibilities of UML (Unified Modelling
Language [10]) statecharts. After a short introduction to UML statecharts the com-
mon implementation approaches are introduced with emphasis on their hardware
requirements and features covered by them. The overview concludes that none of
the well-known techniques provides complete solution for implementing concurrent
operation, that’s why a custom solution needs to be developed.

The second part of the article introduces an implementation strategy developed
by us based on the transformation from UML statecharts to Extended Hierarchical
Automata. The resulting pattern is capable of instantiating the most important
features of UML statecharts including state hierarchy and concurrent operation.
The modest hardware requirements of the pattern enable its usage even in embedded
systems based on low-end microprocessors or microcontrollers.

The problem has emerged in research targeting implementation possibilities
of automatic self-checking of the program execution. The expected outcome of this
project is a code generator extension that is able to create not only the state machine
engine (control core) of the application but to implement modules for run-time self-
checking, to insert methods supporting testing (observers, invariant checks) and to
create test cases and harnesses for classic testing as well. In this way the UML

pinterg@mit.bme.hu, majzik@mit.bme.hu

188 G. PINTÉR and I. MAJZIK

UML statechart model

Test harness and reference

information automatically

generated from the high-level

model.

Components implemented

by the programmer.

Automatically generated

components for testability

support

State machine engine

automatically implemented by

the code generator.

Test driver and test inputs

automatically generated from the

high-level model.

Automatically generated

embedded control flow and

constraint checking mechanism.

Fig. 1. Overview of the context

model serves not only as a formal basis for automatic implementation but as the
reference information for error detection as well (Fig.1).

In this context the design pattern used for code generation provides solution
for implementing the control core and enables run-time self-checking and classic
testing by providing points of observation of the control flow.

2. Describing Dynamic Behaviour in UML

This section introduces UML statecharts [10], the description methods used for
high-level modeling of program behavior. First we will define the abstract syntax
then outline the operational semantics.

The State Machine package of UML specifies a set of concepts that can be
used for modelling discrete behaviour through finite state-transition systems.

The syntax is precisely defined by the metamodel (i.e. a class diagram describ-
ing the model elements) in the standard (Fig. 2). Beside the fundamental building
elements (states and transitions) it provides several sophisticated constructs that
make the description of the control flow easier:

• States model situations during which some invariant condition holds. Op-
tional entry and exit actions can be associated to them to be performed when-
ever the state is entered or exited.

• Transitions are directed relationships between a source and a target state. An
optional action can be associated to them to be performed when the transition
fires.

• States can be refined into substates resulting in a state hierarchy. The decom-
position can be simple refinement (only one of the substates is active at the
same time) or orthogonal division where all the substates (called regions) are
active at the same time. Join and fork vertices can be used to represent tran-

PROGRAM CODE GENERATION 189

ModelElement

StateMachine

Transition

Pseudostate ActionState

SubmachineState

CompositeState SimpleState FinalState

Event

SyncState

StubState

StateVertex

Guard

behavior *

context 0..1

subvertex 0..*

container 0..1

*

exit 0..1

doActivity 0..1

deferrableEvent 0..*

trigger 0..1

effect 0..1

internalTransition *

outgoing *

incoming *

source 1

target 1

submachine 1

guard 0..1

top 1

transitions *

0..1

0..1

0..1

0..*

entry 0..1

0..1

*

0..1 0..1

Fig. 2. Metamodel of UML statecharts [10]

sitions originating from or ending in states in different orthogonal regions.
Transitions are allowed to cross hierarchy levels.

• Shallow and deep history pseudostates are available as shorthand notations
to represent the most recent active substate or configuration of the containing
composite state.

• Transitions can be guarded by Boolean expressions that are evaluated when
an event instance is dispatched by the state machine. If the guard is true at
that time, the transition is enabled, otherwise it is disabled.

The operational semantics are expressed only informally in the standard.
The execution of state machines is driven by events. Events are stored in an

event queue until they are selected by the dispatcher mechanism. The semantics
of event processing are based on the run to completion assumption i.e. an event
can only be dequeued and dispatched if the processing of the previous one is fully
completed.

A transition is enabled if all of its source states are active, the event satisfies
its trigger and its guard is enabled. Two transitions are in conflict if the intersection
of the states they exit is non-empty. The priority of transition t1 is higher than the

190 G. PINTÉR and I. MAJZIK

priority of t2 if the source state of t1 is a directly or transitively nested substate of
the source state of t2.

After receiving an event a maximal set of enabled transitions is selected that
are not in conflict with each other and there is no enabled transition outside the set
with higher priority than a transition in the set. The transitions selected in this way
fire in an unspecified order.

The exact sequence of actions to be performed when taking a transition is
specified by the standard: first the exit actions of all states left by the transition are
executed starting with the deepest one in the hierarchy, next the action associated to
the transition is performed finally, the entry actions of states entered by the transition
are executed starting with the highest one in the hierarchy.

In the case of the example in Fig. 3 if the state machine is in state s3 after the
arrival of the event x and the guard w evaluates to true then the exit action of s3 is
executed then the action y associated to the transition is invoked, finally the target
states are entered. The entry action of the containing composite state s4 is executed
first, then the entry actions of the substates in the regions (s7 is entered explicitly
by the transition, state s8 by default). The statechart in Fig.3 is used as example in
figures describing implementation patterns in the following sections.

s2

s3

s5

s4

s6

s10

s7

s8

s9cc

a[p]

a[p]

a/z

y

g

r

s1

s

s

x[w]/y
Simple state

Trigger event

Initial

pseudostate
Non-concurrent

composite state

Concurrent

composite state

Fig. 3. Example of a UML statechart diagram

In summary, the statechart package of UML is a rich toolkit that effectively
supports modelling but due to its complexity it is difficult to implement. The
metamodel-level representation of concurrency is not clear enough (e.g. there is
no metaclass-level representation of regions) and since the transitions are allowed
to cross hierarchy levels the calculation of the resulting state configuration is ex-
pensive and it is not formalized by the standard. As it will be seen in the section
discussing common approaches for instantiating statecharts, the widely used tech-
niques are unable to handle the complexity of the model. The implementation
strategy developed by us is based on the transformation of statecharts to an inter-
mediate representation reducing in this way the complexity of the model, separating
the concepts and providing a clearly structured model representation.

PROGRAM CODE GENERATION 191

3. Common Implementations of UML Statecharts

This section introduces the common approaches for implementing event-driven
control flow based on statechart specification. The discussion concludes that none of
the well-known techniques provides complete solution for implementing concurrent
operation.

3.1. Nested Switch Statements

The most common implementation approach uses two nested switch statements
for partitioning the event handler function to segments reflecting the behavior of
the object in specific states (external branches) and sub-segments for each event
handled in the state (internal branches) (Fig. 4). These latter sub-segments are
responsible for performing the action specified by the statechart in specific state –
event combinations.

Nested switch statements

+ eventHandler(evt: Event)

- state: State

Class

State_s1

State_s2

...

<<enumeration>>

State

+ type: EventType

Event

Event_g

Event_r

...

<<enumeration>>

EventType

User-defined states and event

types.

 switch (state) {

 case State_s1:

 switch (evt -> type) {

 case Event_g:

 /* Action */

 break;

 ...

 }

 case State_s2:

 ...

 }

Fig. 4. Implementation by nested switch statements

The most important drawback of this relatively simple and widely used struc-
ture is that it does not provide explicit means for reflecting the transition structure,
state hierarchy1 and entry/exit actions associated to states. The action chain to
be performed on state transitions must be coded in the appropriate sub-segments
resulting in code repetition (e.g. entry action of a state must be included in all
event-handler sub-segments that may perform transition to this state).

The code organized in this way is hard to maintain (e.g. modifying a single
statement in the entry action of a composite state requires the modification of all
sub-segments that perform transition to this state or one of its substates).

The repetition of source code can be avoided by grouping the actions (entry,
exit etc.) in functions, but changing the target or source state of a transition still

1‘No support’ means that the design pattern was not designed to explicitly reflect a specific feature
but does not mean that it can not be implemented at all.

192 G. PINTÉR and I. MAJZIK

requires modification at many places of the implementation.
Implementing and maintaining the code generated by following this pattern is

error-prone and labour intensive, but efficiently usable in automatic code generators
where the code maintenance is substituted by forward-engineering (the source code-
level implementation is re-generated after modifying the high-level model). I-Logix
Rhapsody [2] follows an approach similar to this pattern (with major enhancements).

3.2. Action-State Tables

Action-state tables store pointers to functions to be executed on the arrival of specific
events in specific states (Fig. 5). These functions are similar to the code sub-
segments mentioned in the discussion of nested switch statements.

Action-state table

+ eventHandler(evt: Event)

- state: Integer;

- handlerTable: HandlerFunction[numState][numEvent]

Class

(handlerTable[state][evt])();

handlerTable = {
 {handlerFunction0_0, handlerFunction0_1, ...}
 ...
}

Fig. 5. Implementation by action-state tables

Only a small minority of the events received by the object are handled since
typically in a specific state, most of the large pointer tables is unused (unhandled
events can be simply skipped in case of nested switch statements).

This approach is slightly faster than the nested switch structure (only one
indirect call) but requires much more memory (one pointer for all state – event
combinations). The other important disadvantages are the same as above: no sup-
port for hierarchy, history, concurrency, etc. and the resulting code is inflexible.

3.3. The ‘State’ Design Pattern

In the object-oriented “State” design pattern [1] states are represented as descen-
dants of a common interface class that declares handler functions for all events
possibly received by the class (Fig. 6). The actual state is reflected by a pointer to
be updated on state transitions.

This pattern groups behaviour is associated to the specific states of the object
into different classes enabling in this way the separation of concerns in an elegant
and efficient way. The most important weakness of this approach is that it does not
provide any means for implementing the dynamic parts of the model. The action

PROGRAM CODE GENERATION 193

State design pattern

Class

+event_gHandler();

...

State

+event_gHandler();

...

ConcreteState_s2

+event_gHandler();

...

ConcreteState_s1

Abstract interface for

declaring the virtual handler

functions for all event types.

Implementations

(concrete states).

state

concreteStates *

Fig. 6. Implementation by the State design pattern

chain to be performed on state transitions as defined by the UML behavioural model
must be coded in the event handler functions as it is seen in the previous approaches.
The other deficiencies remain unsolved as well: no explicit support for hierarchy,
history and concurrency.

3.4. The Quantum Hierarchical State Machine

The Quantum Hierarchical state machine (QHsm [7]) is an improved version of
the State oriented Programming (SoP [8]) pattern. It provides elegant solutions for
representing state hierarchy and efficient and flexible implementation of transition
dynamics based on handshaking of event handler functions.

Quantum Hierarchical state

machine

+ init()

+ dispatch(evt: Qevent)

tran(target: Qstate)

top(evt: Qevent)

- state: QState

QHsm

+ state_s1Handler(evt: Qevent): Qstate

+ state_s2Handler(evt: Qevent): Qstate

...

ConcreteQHsm

Event dispatcher

Qstate

ConcreteHsm::state_s3Handler(Qevent evt) {

 switch (evt.sig) {

 case ENTRY:

 /* Perform entry action */

 return NULL;

 …

 case Event_y:

 Q_TRAN(state_s4Handler);

 return NULL;

 }

 /* Return the handler of the parent state */

 return state2Handler;

}

Fig. 7. Implementation by Quantum Hierarchical state machine

The basis of the pattern (Fig. 7) is the abstract QHsm class that provides
implementation for the event dispatcher function and the function implementing the
state transitions. Classes derived from it have to implement functions for handling

194 G. PINTÉR and I. MAJZIK

events in specific states (one function for each composite and simple state). These
functions return either a NULL pointer if the event was successfully handled in the
actual state or the address of the parent state (i.e. a pointer to the parent state event
handler). The dispatcher function inherited from QHsm is responsible for delegating
events from the deepest state in the hierarchy until it is handled or the top state is
reached.

State transitions can be performed by simply calling the tran function inher-
ited from QHsm in the event handler function. It will collect the states to be exited
and the ones to be entered when performing the transition, only the target state must
be given as parameter. This is a very flexible implementation since modifying the
target of a transition requires the modification of one statement only in the event
handler of the source state – the maintenance is affordable even by hand.

Performing entry and exit actions on transitions and discovery of the hierarchy
is solved by sending special events to the handler functions by the tran method.

Although this pattern provides support for reflecting the state hierarchy and
the effective and flexible implementation of transitions, it does not follow strictly
the UML behavioral model: the action associated to the transition cannot be directly
represented, it has to be performed whether before or after the entry – exit action
chain. Deep history pseudostates can be implemented by using a feature of the
pattern but shallow history can not. Concurrency is not supported but a strategy is
suggested in [7] that can reflect some aspects of concurrent operation.

3.5. The Extended Quantum Hierarchical State Machine

This subsection suggests some modifications and additional design patterns ex-
tending the Quantum Hierarchical state machine. The extensions result in an im-
plementation strategy that supports the original UML model on state transitions
(actions can be associated to transitions), shallow and deep history pseudostates
and most cases of concurrent operation. Our approach is called Extended Quantum
Hierarchical state machine pattern (EQHsm) (Fig. 8).

Extended Quantum Hierarchical

state machine

+ init()

+ dispatch()

+ getShallowActive(container: Qstate)

+ getDeepActive()

+ isIn(state: QState)

tran(target: QState, trAction: TrAction)

- state: QState

EQHsm

+ state_s1Handler(evt: Qevent): Qstate

+ state_s2Handler(evt: Qevent): Qstate

...

- shallowHistory1: QState

- deepHistory1: Qstate

...

ConcreteEQHsm
Explicit support for

maintaining deep and

shallow history states.

State query function

Action can be associated

to transitions.

Fig. 8. Implementation by the Extended Quantum Hierarchical state machine

PROGRAM CODE GENERATION 195

Precise ordering of actions to be performed on state transitions can be achieved
by a minor modification of the transition function, namely adding a newtrAction
parameter to the function signature (pointer to the function representing the action
associated to the transition) and the insertion of a call to this function between
performing the exit and the entry action chain.

History states can be represented as pointers to event handler functions. The
EQHsm class provides functions for updating these pointers in the exit action of the
encapsulating composite state.

Cases of concurrent operation where the set of events handled by states in
concurrent regions and the set of events handled by the containing states are disjoint
(therefore no transition conflict occurs) and there are no transitions, crossing the
border of a concurrent region can be implemented by multiple communicating state
machines with wrapper states and special events. In Fig.9 events e4 and e5 belong
to regions of state s2. In case of this example the original statechart can be simulated
with three automata, one for storing the top-level states (s1 and s2) and two automata
representing one region each. Transitions targeting states in regions are substituted
by transitions targeting the containing composite state with an associated action
that sends an event (e.g. _entryFork) to the automaton representing the region
to force it to the appropriate state.

Top-level

S1

S2

S211 S212

S221 S222

e4

e5

e4

e5

S21

S22

e2

e3

e1

S1 exit/

 s1 -> dispatch(_exit)

 s2 -> dispatch(_exit)

S2

e1/s21 -> dispatch(_entryFork),

 s22 -> dispatch(_entryFork)

e2/s21 -> dispatch(_entryInitial),

 s22 -> dispatch(_entryInitial)

e3 [s21 isIn s212 and s22 isIn s222]

New non-concurrent

top-level statechart.

Regions
S21

_inactive

_active

S211 S212
e4

e5

_entryInitial

_entryFork

_exit

S21

Special events for

simulating possible

entry modes.

S22

New non-concurrent

statecharts for regions.

Composite state

containing the region

Fig. 9. Decomposition of concurrent composite states into individual state machines

This solution provides support for the majority of UML statechart features
while posing only modest CPU and memory requirements, therefore usable in
embedded systems equipped with small memory and weak CPU.

196 G. PINTÉR and I. MAJZIK

3.6. Feasibility of Common Approaches

The common approaches discussed here can be used for implementing only more
or less restricted subsets of UML statechart features. Although not even the most
sophisticated strategy is capable of correctly instantiating concurrent behavior, these
strategies can be used for implementing many kinds of statechart models. The
Quantum Hierarchical state machine pattern and its extended variant are especially
suited for implementing statecharts where automatic code generation is infeasible
and thus the manual maintenance of the code is required.

The complete solution for implementing concurrent operation (transition con-
flict resolution, interlevel transitions to regions etc.) has remained an open issue.

4. Implementation Based on the Extended Hierarchical Automaton
Representation

The syntactic transformation from UML statecharts to extended hierarchical au-
tomata (EHA) aims at the formalization of the specification and separation of con-
cepts obscured in the UML model (blurred representation of hierarchy and concur-
rency, interlevel transitions, etc.). It provides a clear and mathematically analyzable
model of state refinement, concurrency and transitions.

4.1. Syntax

The syntax of the extended hierarchical automata is described in a functional no-
tation in [5], a metamodel is presented in [14] (Fig. 10). In the following a short
informal overview is given mainly concentrating on the representation of UML
concepts. For explained definition refer to [5] and [4].

An EHA consists of sequential automata. A sequential automaton contains
simple (non-composite) states and transitions between them. These states represent
simple and composite states of the UML model.

States can be refined to any number of sequential automata. All the refinement
automata of a state are running concurrently, in this way UML concurrent composite
states can be modelled by EHA states refined to several automata representing one
region each. A non-concurrent composite state is refined to only one automaton.

Transitions may not cross hierarchy levels (i.e. their source and target state
are in the same automaton). Interlevel transitions of the UML model are replaced
by labelled transitions in the automata representing the lowest composite state that
contains all the explicit source and target states of the original transition. The labels
are called source restriction and target determination. The source restriction set
contains the original source states of the transition in the UML statechart while
the target determination set enumerates the original target states. Both sets contain

PROGRAM CODE GENERATION 197

HEvent

EHA HState HAutomaton

HTransition

HGuard

top 1

automatons *

refined 0..*

initial 1

autState 1..*

autTrans *

fromtosourceRest * targetDet *

actionEffect *

guard 0..1

eventTrigger 0..*

Fig. 10. Metamodel of Extended Hierarchical Automata

states of the (possibly transitively) refinement automata of the source or the target
state.

4.2. Operational Semantics

The operational semantics is expressed by a Kripke-structure in [5].
The execution of extended hierarchical automata is driven by events. A tran-

sition is enabled if its source state and all states in the source restriction set are
active, the actual event satisfies the trigger and the guard is enabled. The priority
of transition t1 is higher than the priority of t2 if the original source state of t1 in
the UML model is a directly or transitively nested substate of the original source
of t2. The original source of a transition is indicated by the source restriction set
associated to the transition.

An enabled transition can fire if there are no transitions enabled with higher
priority. On taking the transition the source state and active substates in its refine-
ment automata are exited and the target state and all states in the target determination
set are entered.

The extended hierarchical automaton of the example presented in Sect. 2
represents the statechart in a clear refinement hierarchy (Fig.11). Statechart states
(simple and composite ones) are mapped to EHA states (s1…s10). Concurrent and
non-concurrent refinement is expressed by automata assigned to states. In this way
the non-concurrent state s2 is refined to a single automaton containing the states
s3, s4 and s5 while the concurrent composite state s4 is refined to two automata
representing one region each. Note that automata can represent the internal structure
of a composite state and a region of a concurrent composite state as well.

The original EHA model used by [5] and [4] does not deal with entry and exit
actions since these features do not belong to the mathematical abstraction. If entry

198 G. PINTÉR and I. MAJZIK

s8 s9 s10
a[p] a[p]

s6 s7
c

c

s3 s4 s5
r

a {SR=s10}

y

g

x {TD=s7}

s1 s2
s

s Interlevel

transition from

s10 to s5.

Interlevel

transition from

s3 to s7.

Fig. 11. EHA representation of the example UML statechart

and exit actions do not generate new events their introduction does not modify the
mathematical model.

4.3. The Implementation Pattern

The implementation pattern proposed here can be divided into three parts: the
expression of the static structure (state – automaton hierarchy), a bit pattern for
storing the configuration (active states) and the interpreter that takes a static struc-
ture, a configuration and an event and performs the necessary actions and updates
the configuration.

As it will be seen the static structure is a modified, extended and preprocessed
form of the original EHA metamodel and the interpreter performs correspondence to
the PROMELA representation without implementing non-deterministic behavior.

The separation of the static structure and the actual configuration information
reduces the memory consumption since in an application that consists of several
instances of a class described by an EHA only one instance of the static structure
description is needed. The configuration of the instances can be expressed with bit
vectors.

The static structure (Fig. 12) is a modified and preprocessed form of the
EHA metamodel. Modifications were taken to enable faster navigation and smaller
memory consumption.

The topmost container of the static information is the EHA class. Its associa-
tion targeting automata, states and transitions are stereotyped with ordered, showing
that these associations must be implemented by containers that preserve the order of
elements (e.g. an array), thus the position of the objects in the list (e.g. the array in-
dex) can be used as unique identifier amongst objects of the same class (transitions,

PROGRAM CODE GENERATION 199

EHA Implementation patternEHA Implementation pattern

Automaton

Transition GuardEvent

Action

trigger 1

entryAction 1

refinement *

*

State

disabling *

guard 0..1

associatedAction 1

EHA

exitAction 1

Configuration
active *

enabling *

<<ordered>>

entered *

<<ordered>>

<<ordered>>

<<ordered>>

<<ordered>>

Fig. 12. Class diagram of the proposed pattern

states etc.).
The containment relation between automata and states, the state refinement,

transition triggers and guards, entry and exit actions and actions associated to tran-
sitions are represented by associations in the obvious way.

The operating rules are described by associations originating from the Tran-
sition class. States that must be active to enable the transition (the source re-
striction set and the source of the transition) are collected in an association with
the enabling role. States to be entered when taking the transition are collected in
an other association with the entered role. These associations are marked with the
stereotype ordered as well. In this way the order of states to be entered when taking
a transition can be pre-calculated and stored. Representing the source of the transi-
tion does not need a separate association, since it can be stored in the first element
of the ordered enabling set by convention.

Transitions that have higher priority than the actual one are collected in the
disabling set. The transition is fireable only if none of these transitions is enabled.

The class structure can be effectively implemented in ANSI C. State,
Transition and EHA classes can be represented by C structures, events and
guards can be implemented as functions. Associations targeting functions (Action
and Guard classes) can be function pointers while other associations can be im-
plemented by storing the identifier of the pointed object. Storing IDs instead of
pointers can greatly reduce the memory requirements since an identifier can be
much shorter than a pointer (e.g. if there are no more than 256 states, transitions

200 G. PINTÉR and I. MAJZIK

and automata then the identifiers can be bytes that are four times shorter than the
memory addresses in a 32 bit architecture).

The actual configuration (active states) is represented by the Configu-
ration class. The association targeting the State class can be implemented
by an ordered bit vector (i.e. the ith element of the vector is true if and only if the
state with ID i is active) providing in this way an extremely compact representation
of the object state. Note that only this bit vector should be stored for each instance of
the class described by the statechart, the static representation is read-only therefore
it can be stored in a single instance.

4.4. Dynamic Behavior

The interpreter function is based on the formal semantics (PROMELA code) as
described in [4]. In that approach a step of the process consists of the following
phases:

1. The selection of the available events. The storage method of the events (FIFO,
LIFO, set, multiset etc.) is not fixed by the model.

2. The selection of enabled transitions. A transition is enabled if and only if its
source state and all states in the source restriction set are active, the selected
event is the trigger event and the associated guard evaluates to true.

3. The conflict resolution based on priority relations (i.e. selection of ‘fireable’
transitions). A transition is fireable if there are no enabled transitions with
higher priority.

4. Non-deterministic selection of a maximal set of fireable transitions.
5. Firing the selected transitions (calculating the resulting state configuration

and performing actions associated to the transitions).

The programming language level representation follows the same algorithm
with minor modifications. The interpreter can be implemented as a function pa-
rametrized by the static structure description, the actual configuration and the event
to be dispatched (therefore the event selection method is out of the scope of the
interpreter).

The UML statechart model enables the existence of conflicting transitions
even after applying priority rules (e.g. there are two transitions originating in the
same state with the same trigger event and overlapping guards). In these cases
the selection of the maximal set of transitions to fire is non-deterministic. This
obscurity is acceptable in the design phase indicating non-elaborated parts but must
be eliminated from the final model especially in case of safety critical systems where
non-deterministic behaviour can lead to catastrophic consequences. In this way the
model instantiated by our pattern is required to be free from non-determinism in the
sense that all the conflicts amongst transitions must be resolved by priority relations.
Thus the non-deterministic selection does not take place, in this way all the fireable
transitions fire.

PROGRAM CODE GENERATION 201

The original model does not deal with entry and exit actions associated to
states. These actions are obviously essential in the implementation therefore the
interpreter must ensure their execution.

Entering a composite state requires entering one of its substates (in each one
of concurrent regions in case of concurrent composite states). Since a composite
state can be entered in several ways (default entry, explicit entry into a substate,
shallow or deep history, entry through a fork pseudostate or directly into a region
etc.) runtime calculation of the states to be entered and the order of entry actions
to be called would be very time-consuming. The implementation pattern proposes
the pre-calculation of this entry chain and storing it in the ordered association
between the Transition and State class (entered role). This solution greatly
simplifies the implementation of performing the state entry actions at the cost of a
little redundancy in the model. In this way the interpreter can simply walk through
this (ordered) list and call the entry actions associated to the states in the list.

States to exit form cannot be calculated during the code generation since they
depend on the actual state configuration of the object when receiving the event
triggering the transition. As [10] specifies, when exiting from a composite state its
active substate is exited recursively. This means that the exit actions are executed in
sequence starting with the innermost active state in the current state configuration.
When exiting from a concurrent state, each of its regions are exited.

The simplest solution for implementing this behavior is a recursive function
that traverses the refinement tree and calls the appropriate exit actions of states.
This function can be described with the following pseudocode:

recursiveExit(State s)
forEach r in s.refinement // r is an automaton, refinement of s

recursiveExit(activeSubstateOf r);
s.exitAction(); // Exit action of the state
markInactive(s); // Mark the state inactive

The complete operation of the interpreter function can be described by the
following pseudocode:

step(EHA eha, Configuration cfg, Event e)
enabledSet = collectEnabled(); // Collect enabled transitions
fireableSet = collectFireable(); // Collect fireable

transitions
forEach t in fireableSet // t is a fireable transition

recursiveExit(t.source); // Recursive exit from the
source

t.associatedAction(); // Action associated to the
transition

forEach s in t.entered // s is a state to be entered
s.entryAction(); // Entry action of s
markActive(s, cfg); // Mark the state active

Where collectEnabled stands for collecting the enabled transitions (i.e.
source states are active, the trigger is the actual event and the guard evaluates to

202 G. PINTÉR and I. MAJZIK

true) while the pseudo-function collectFireable represents the selection of
enabled transitions that are not disabled by any other transition with higher priority
(disabling set).

5. Code Generation Framework

The Extended Hierarchical Automaton equivalent of a statechart can be used as com-
mon intermediate representation used for both code generation and model checking
enabling in this way the automatic implementation of formally verified models
(Fig. 13).

s1

s2

s3

s4

s5

s6

UML
Statechart

s5

s6

EHA

s1

s2

s3

s4

SPIN

PROMELA

Program code
generation

Traslation to
PROMELA

Programming
language

C

Model checking
by the SPIN
model checker

Efficient
programming
language-level
implementation

Formalized,
precise syntax
and semantics

Transformation
to EHA

High-level
visual model
(not formalized)

Elimination of
design faults
discovered by the
model checker

Fig. 13. Model checking and automatic code generation unified in a single framework

A transformation method from EHA to the Process Meta Language (PROME-
LA, the specification language of the SPIN [3] model checker) is proposed in [4].
Automatic code generation can be based on the implementation pattern for Extended
Hierarchical Automata described in this paper. For more detailed discussion of the
connection to model checker systems see [11].

The prototype of the interpreter function and the static structure was imple-
mented in C. The memory consumption of the static structure depends on the length
of identifiers and the word size of the architecture. According to our calculations
in the case of the example presented in this paper the static description should fit
in about 1 kB on a machine with 32 bit long word size when choosing 32 bit long
identifiers and should fit in less than half kB on a machine with 16 bit long ad-
dresses when choosing 8 bit long identifiers. Since there are 10 states in the model
the configuration information of an object fits in 10 bits (for a detailed discussion
see [12]).

PROGRAM CODE GENERATION 203

6. Testability Considerations

Efficient testing and self checking requires additional methods that do not directly
belong to the implementation of the control core:

• Query functions for reliably reporting about the actual state configuration of
the application. This requirement can be satisfied by providing functions for
interpreting the bit vector describing the dynamic configuration.

• State invariant checks to enable the detection of inconsistency between the
explicit state (value of the bit vector) and the actual value of the object at-
tributes (e.g. the high-level state of a valve controller is “Closed” while the
valve is open). The code generator can be used for translating OCL [9]
constraints into functions that evaluate the invariants belonging to the actual
configuration and report the invariant violations.

• Temporal constraints assigned to internal data structures can be checked by
automatically generated assertions.

• The concurrent control flow checking can be based on an embedded statechart-
level watchdog [6]. Watchdogs are relatively simple coprocessor-like appli-
cations that are used to check the control flow of the main processor or the
tested application. In our case a software-implemented watchdog can be
applied to detect the deviations of the control flow traversed by the tested
program from the legal sequences of transitions specified by the statechart.
This approach necessitates the insertion of signature transfer operations in
the entry actions of the states. This can be implemented automatically by the
code generator.

• More sophisticated constraints can be assigned to the software control flow
by using temporal logic extensions of the OCL [13] (e.g. possible accepting
and resulting states on the arrival of specific events, avoidance of hazardous
configurations etc.). These requirements can be met by extending the ca-
pabilities of the embedded watchdog by adding memory to it enabling the
observation of multi-transition sequences.

7. Conclusion and Future Work

This article outlined our investigation aiming at discovery of an efficient and so-
phisticated implementation methodology for UML statecharts. An implementation
pattern was developed which is capable of implementing a major subset of UML
features therefore providing a stable and efficient control backbone for systems
instantiated from it. It provides methods for self checking and testing support as
well. Our next step on this way will be the development of a hierarchical control
flow checking and error reporting method.

204 G. PINTÉR and I. MAJZIK

References

[1] GAMMA, E. – HELM, R. – JOHNSON, R. – VLISSIDES, J., Design Patterns Elements of
Reusable Object-Oriented Software, Addison Wesley, 1994.

[2] I-Logix, Rhapsody, http://ilogix.com.
[3] Bell Labs, SPIN, http://spinroot.com.
[4] LATELLA, D. – MAJZIK, I. – MASSINK, M., Automatic Verification of a Behavioural Subset

of UML Statechart Diagrams Using the SPIN Model-checker, Formal Aspects of Computing,
Springer, 11 (1999), pp. 637–664.

[5] LATELLA, D. – MAJZIK, I. – MASSINK, M., Towards a Formal Operational Semantics of
UML Statechart Diagrams, Proc. FMOODS’99, the Third IFIP International Conference on
Formal Methods for Open Object-based Distributed Systems, February, 1999, Firenze, Italy,
pp. 331–347.

[6] MAJZIK, I. – JÁVORSZKY, J. – PATARICZA, A. – SELÉNYI, E., Concurrent Error Detection
of Program Execution Based on Statechart Specification, Proc. 10th European Workshop on
Dependable Computing, 1999.

[7] SAMEK, M., Practical Statecharts in C/C++, CMP Books, 2002.
[8] SAMEK, M. – MONTGOMERY, P. Y., State Oriented Programming, Embedded Systems Pro-

gramming, 2000.
[9] OMG, Object Constraint Language Specification, 2001.

[10] OMG, Unified Modeling Language (UML) Version 1.4, 2001.
[11] PINTÉR, G. – MAJZIK, I., Automatic Code Generation based on Formally Analyzed UML

Statechart Models, In: Formal Methods for Railway Operation and Control Systems, Budapest,
Hungary, May 15–16, 2003.

[12] PINTÉR, G. – MAJZIK, I., Automatic Implementation of Extended Hierarchi-
cal Automata, Budapest University of Technology and Economics, July, 2003,
http://www.inf.mit.bme.hu/^pinterg/publications.html.

[13] FLAKE, S. – MUELLER, W., An OCL Extension for Real-Time Constraints, Lecture Notes in
Computer Science, 2002.

[14] VARRÓ, D. – VARRÓ, G. – PATARICZA, A., Designing the Automatic Transformation of
Visual Languages, Science of Computer Programming, 44 No. 2 (2002), pp. 205–227.

http://ilogix.com
http://spinroot.com
http://www.inf.mit.bme.hu/~pinterg/publications.html

	Introduction
	Describing Dynamic Behaviour in UML
	Common Implementations of UML Statecharts
	Nested Switch Statements
	Action-State Tables
	The `State' Design Pattern
	The Quantum Hierarchical State Machine
	The Extended Quantum Hierarchical State Machine
	Feasibility of Common Approaches

	Implementation Based on the Extended Hierarchical Automaton Representation
	Syntax
	Operational Semantics
	The Implementation Pattern
	Dynamic Behavior

	Code Generation Framework
	Testability Considerations
	Conclusion and Future Work

