
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 47, NO. 3–4, PP. 213–228 (2003)

UML BASED SOFTWARE PROCESS MANAGEMENT

Orsolya DOBÁN and András PATARICZA

Department of Measurement and Information Systems
Budapest University of Technology and Economics

H–1521 Budapest, Hungary
e-mail: \protect\LY1\textbraceleftdoban,pataric\protect\LY1\textbraceright@mit.bme.hu

Received: Oct. 1, 2003

Abstract

The main objective of software project management is to assure that a software product will be
delivered in time, keeping the cost limits and a proper quality. The key problems are the proper
estimation of the effort needed to implement a specific design, the sufficient and effective allocation of
resources and the development environment. An appropriate project plan has to have a good or optimal
scheduling of the individual development sub-tasks. Finally, a project management methodology has
to cope with the risks evolving during the project. These project management activities have to
start in the very early phases of the development process in order to keep the deadlines and have to
continuously accommodate with the progress of the development process.

UML, the Unified Modelling Language [1] is increasingly widely used to design applications in
a very broad range of software products. One of the major benefits of using UML as a design language
is that it can be thoroughly used from the very initial phases to the implementation. Exploiting the
property of the UML by which it’s able to model also the dynamic behaviour of a system, it can be
interpreted for workflows, this way can be used to describe also the development process itself.

In this way our main objective was to provide a methodology, which is able to take into
account all the main factors influencing the project efforts and scheduling for UML based design,
and to generate the mathematical model of a software process optimization problem based on UML
diagrams.

Keywords: UML, software development, cost estimation, process optimization.

1. Introduction

A radical growth in software complexity was noticeable in the field of information
technology in the former decades. Cost efficiency and development time became
the most important factors of the software development process according to the
international trends.

While project management methodologies traditionally support the assess-
ment of the feasibility of a software development plan in the terms of time and
human resources, only a minority of methodologies support the estimation of the
cost factors related to this process. This way cost prediction remains a difficult
problem till yet, despite of the use of standard, easy to understand modelling lan-
guages.

The current paper:

protect LY1	extbraceleft doban,pataricprotect LY1	extbraceright @mit.bme.hu

214 O. DOBÁN and A. PATARICZA

• gives a short overview on the main principles of the model-based cost esti-
mation models, recapitulating the main features of one of the most widely
used cost estimation model (COCOMO II);

• demonstrates the main challenge of integrating the UML based software de-
velopment environment and the effort prediction process pointing out the
main advantages of the automated cost estimation;

• provides an overview about the aspects of the software development process
optimization problem, and

• presents an UML based integrated environment adequate to carry out auto-
mated cost estimation and development process optimization procedures.

2. Cost Estimation

According to the difficulties sketched above, intensive research is going on to give
an adequate cost prediction. A variety of cost estimation models was developed in
the last two decades, including commercial and public models as well. All of these
major cost estimation methodologies like COCOMO II. [2] or industrial ones like
CostExpert [3] assess the estimated project cost from the following main factors:

• the complexity of the software in the terms of its functionality (like func-
tion point analysis assessing the number of source lines of code, size of the
database, etc.)

• the development process including organizational aspects, life-cycle models,
etc.

• the human factors characterizing the skills of the development team.

These cost estimation methodologies derive an own extrapolation formula on
the basis of a set of real project time and effort log data.

2.1. COnstructive COst MOdel (COCOMO II.)

Our objective was to select for our pilot experiment a cost estimator having its
algorithms open for the wide public. This way COCOMO II., one of the most
popular model well accepted in the practice was used.

The COCOMO II. model is the result of the evaluation of a large number of
project logs and the estimation of a best fitting empirical curve to their factors.

From this point on, we refer by COCOMO both the original method [4] and
its refinement known as COCOMO II.

The main formula of COCOMO expresses the predicted effort in units of the
Person Months (PM), amount of time one person spends working on the software
development project for one month Eq. (1).

P M D A �

17Y

iD1

E Mi

!
� SizeB (1)

UML BASED SOFTWARE PROCESS MANAGEMENT 215

Its inputs can be divided into three categories (Fig.1):

• 5 scale-drivers, which are specific to the development process, and determine
the value of the exponent B in the main COCOMO II formula;

• 17 effort-multipliers (EM), related to the target software product and to the
development environment;

• the estimated Size of the software to be developed in units of thousands
of source lines of code (KSLOC). The goal is to measure the amount of the
intellectual work put into the program development, but difficulties arise when
trying to define consistent measures for different programming languages.
Fortunately, additionally to the direct, heuristic estimation of the code length
the function point (FP) based prediction can be used as well. FP extrapolates
the code size from the number and complexity of the product’s designated
functionality from the system requirement list.

The multiplier A is an empirical constant serving the best fit of the curve to
the logs.

Scale drivers Effort multipliers

Product factors

Database Size (SIZE)

Product Complexity (CPLX)

Platform factors

Personnel factors

Programmer Capability (PCAP)

Platform Experience (PEXP)

Language and Tool Exp. (LTEX)

Size

Precedentness (PREC)

Development Flexibility (FLEX)

Architecture/Risk Resolution (RESL)

Team Cohesion (TEAM)

Process Maturity (PMAT)

Applications Experience (AEXP)

Personnel Continuity (PCON)

Execution Time Constraint (TIME)

Platform Volatility (PVOL)

Required Reusability (RUSE)

Documentation (DOCU)

Software Reliability (RELY)

Main Storage Constraint (STOR)

Analyst Capability (ACAP)

Use of Software Tools (TOOL)

Development Schedule (SCED)

Multi-site Development (SITE)

Project factors

Fig. 1. Input parameters in the COCOMO II model

The large number of multipliers takes advantage of the greater knowledge
available in the later development phases, to support gradually refined estimations.

216 O. DOBÁN and A. PATARICZA

Each factor has an associated range of rating levels (‘very low’, ‘low’, ‘nominal’,
‘high’, ‘very high’, ‘extra high’). COCOMO II assigns to each qualitative category
a corresponding empirical numerical value. The first step of the cost estimation in
a new project is the classification of the factors into one of these categories.

The first factors related to the application design can be extracted from the
UML product design itself. Here the basic idea is to assign costs to the different
fragments of the target product which can be done either by an expert estimator in
a heuristic way or in an automated way derived from the complexity of the UML
sub-diagrams and synthesize a system wide model from these [5].

In the subsequent sessions we deal with the estimation of the five scale drivers
and 17 effort multipliers which depend on the development process, development
environment and on the product itself.

3. UML Integrated Cost Estimation

Since UML is increasingly widely used for object-oriented software product design
as a standardized formal modelling language, our aim was to exploit this property in
the field of project management. Obviously, a common graphic language accepted
by every member of the project team can be extremely useful for mutual understand-
ing, moreover if this language is identical with that used for product development
then a single environment can capture both the product and the development process
features.

The traditional way of cost estimation is to derive its input factors from three
different sources (Fig. 2).

Fig. 2. General way of cost estimation

UML BASED SOFTWARE PROCESS MANAGEMENT 217

Fig. 3. Integrated way of cost estimation

One possibility is to determine the project factors on the base of a project
database containing empirical data of former processes, and to derive the personnel
data from a personnel database. Such a personnel database has to contain skills and
experience characteristics of the participating members in the development process.
The product and the platform related factors can be derived directly from the UML
based models. The result of the cost estimation is usually stored in a knowledge
base. This database can serve as a starting point for ongoing cost estimations. Such
an empirical database can contribute to realistic cost predictions.

Our aim was the use of UML to describe the target product and the devel-
opment process itself. The use of an identical modelling paradigm supports the
integration of all important factors into a single model (Fig.3). From this model
a cost prediction method can be used to automatically derive effort estimations.
During the progress of the development process the product specification is grad-
ually refined, the efforts made to finish the project cardinally decrease this way a
gradually refined series of cost estimations can be produced.

The goal of the integration was

• to decrease the additive effort needed to determine the cost related factors
during the UML based software development;

• to support change management if product has to be altered, by delivering cost
estimator for the modification process.

To realize this integration the main tasks were

1. to enrich the UML model with the input parameters needed for the cost
estimation. This had to be done in a well defined, unique way;

218 O. DOBÁN and A. PATARICZA

2. to extract the needed, cost related information from this extended model.

In this integrated environment the standard UML modelling language is used
to describe the target software product. As UML profiles were created to use the
UML language in different fields of application areas, an OMG standard UML
profile is used to model the software development process.

OMG did elaborate a standard profile to describe the software process engi-
neering metamodel (SPEM) [6]. SPEM is adequate to describe the workflow of the
development process in UML (Fig. 4).

One of the main insufficiencies in the current SPEM is that only little support
is offered for the quantitative characterization of the software development process.
For this reason we did integrate the standard SPEM with the General Resource
Model (GRM), originally introduced for the quantitative characterization of the
resource usage in real-time systems [7].

GRM describes the application-resource interactions in the terms of services
required by the application and offered by the resources of the underlying platform.
Obviously, in a software development process the resources are the developers,
who offer their services to the software development process. The service required
from the developer is to perform some activities during the process for instance to
develop some codes in a given language, or to test a module.

The quantitative characteristic assigned to this development process is the
time needed to perform the task. The GRM profile is used to model both the hu-
man resources of the software development process and the infrastructure available
during the project. The resource model is parametrized by the human factor values
which are usually stored in different personnel databases at enterprises.

Fig. 5 describes the main concept of our project management framework.
The product model is modelled in standard UML, where the package diagram
describes the product modules, the individual parts of the software which can be
developed separately from the other ones. Several factors related to the product
need information on the platform like platform volatility, execution time or main
storage constraints. In this way, additionally to the product model, these factors are
modelled by the standard UML GRM.

The effort-related parameters assigned to a software package are:

• product factors (RELY, SIZE, CPLX, DOCU, RUSE)
• four of the scale factors (PREC, FLEX, RESL, TEAM)
• estimated source lines of code (SLOC)
• the module’s programming language (LANG)
• applied developer tool (TOOL)

Two additional parameters have to be determined at the software module level,
as the

• type of application (APPL) which is an important reference point at the qual-
ification of the developers’ experience;

• module’s priority (PRIO), determining an importance factor, a priority for
the sub-product. This factor is only used during the process optimization,
and it is out of the scope of the COCOMO model.

UML BASED SOFTWARE PROCESS MANAGEMENT 219

Projects

Infra-

structure

Personnel DB

Human

resources

Fig. 4. Model integration in UML environment

The SPEM UML profile describes the development phase of a given software
module by the means of an UML activity diagram. This development phase is mod-
elled according to one of the most widely used life-cycle models, the Controlled
Iteration Model which determines four sub-phases of the software engineering pro-
cess, like inception, elaboration, implementation and transition.

To every unique software process sub-phase a developer is assigned whose
model element defines the required personnel conditions and properties (estimator’s
personnel factors, except the personnel continuity [PCON] factor characteristic for
the whole group of the developers) needed to fulfil the corresponding tasks. In
this way the project manager can determine the experiment and skill level which is
required for the developers or for a group of developers being responsible for the
given subphase.

Two resource models are used, the first one describes the underlying platform
for the target applications, the other one models the available human resources
together with their skills offered for the development process. The resource diagram
connecting to the SPEM workflow model determines the set of developers available
during the entire process.

220 O. DOBÁN and A. PATARICZA

Fig. 5. Model hierarchy

3.1. Technical Realization of the Integration

Fig. 6 summarizes the cost estimation input factors assigned to the different UML
diagrams.

As it is shown in the figure the standard UML product model contains the
product related parameters, as well as the four scale factors characteristic for every
single software module. The number of source lines of code is one of the main
input parameters of the estimation model, which can be determined either on a
heuristic way by expert prediction or with size estimation models, like function point
analysis, which extrapolates the size of the code from the designated functionality
of the product.

The additional parameters as the applied programming language, the appli-
cation category, etc. determine the application field on which the developers’ skills
are to be classified. The underlying GRM describes the available human resources
to which diagram of the personnel factors are assigned. The run time platform is
also modelled with the cost related platform factors by the GRM profile.

UML BASED SOFTWARE PROCESS MANAGEMENT 221

Standard UML UML SPEM

UML
[PMAT] [SCED] [PCON]

<product factors>

<4 scale factors>

[SLOC]

[LANG]

[APPL]

[TOOL]

[PRIO]

<personnel factors>

(except PCON) UML GRM

(human resources)

UML GRM (platform)<platform factors>

Fig. 6. UML integrated cost factors

The three remaining input factors are:

Process Maturity (PMAT) which factor is organized around the Software Engineer-
ing Institute’s Capability Maturity Model (CMM). This factor is characteristic
for the company carrying out the development process, and in this way it can
be taken as a constant for a usual project.

Required Development Schedule (SCED) which rating measures the schedule con-
straint imposed on the project team developing the software. The ratings are
defined in terms of the percentage of schedule stretch-out or acceleration with
respect to a nominal schedule for a project requiring a given amount of effort.
Accelerated schedules tend to produce more effort in the later phases of the
development process because important issues are postponed due to the lack
of time. Please note, that in our case the scheduling tends to decrease by
the automated optimization of the subtasks. In this way this factor has to be
estimated in an iterative way starting from an initial schedule set up by the
project manager, to estimate the required development schedule factor, by
deriving from the time effort estimation, and after a subsequent optimization
of the process schedule by the re-evaluation of the corresponding factors.

Personnel Continuity (PCON) describes annual turnover at the company involved
in the project. In the case of a high personnel turnover an additional cost can
arise, as a series of logically ordered activities will be carried out by different
persons.

Fig. 7 shows the way of the UML based automated cost estimation.
The source of the cost estimation is the personnel and project database which

serves as a knowledge base containing the former empirical, and the human resource
related data. After deriving the necessary empirical data from this database all
the needed parameters of the cost estimation are included in the different UML
diagrams in identical environment. As the standard UML metamodel elements can
be extended by UML tags, these parameters are assigned to the diagram elements in

222 O. DOBÁN and A. PATARICZA

Standard UML UML SPEM

UML GRM

UML

Personnel

& project

DB

Transformator

program

XMI
Cost

estimator

XMI

Fig. 7. Automated cost estimation

the same way. The hierarchy describing the entire development process (including
also the product package diagram) is stored as a template, in this way it can be
imported to any UML based environment. Consequently only the product diagrams
have to be created by each individual software development project, the process and
resource diagrams can be reused inside a given company.

The transformer program has the function to take the standard UML model
in the standard XMI format, to filter out from it the information relevant to cost
estimation and to perform a syntax transformation to the input language of the cost
estimator.

3.2. The Advantages of the Integration

As described above, extended UML by SPEM and GRM is able to completely
describe the development process both in quantitative and qualitative terms, this
way

• the automated cost estimation can reuse the existing methodology at the
enterprise (please note that COCOMO is one of the richest cost estimator
models in the terms of input factors taken into account);

• if a proper modelling style is used by the developers, some main parameters
needed to cost estimation can automatically be derived from the UML dia-
grams created during the functional development process. One example is the
derivation of the complexity parameter from class diagrams, or the derivation
of the SLOC estimators from use-case diagrams describing the target func-
tionality of the software. This latter example clearly indicates the importance
of the proper modelling style as the detail level of use-case diagrams is not
uniquely defined in the UML standard.

• The enterprise specific cost constants can simply be substituted into the esti-
mator.

UML BASED SOFTWARE PROCESS MANAGEMENT 223

At the same time the uniform use of UML and the possibility to automatically
estimate the predicted cost offer additional potential to such a method.

Frequently the designer has to cope with several design alternatives to imple-
ment specific functions of the target system. For instance one alternative is to create
a generic solution for a part of the target application or to go for component integra-
tion and to develop only the necessary interfaces. The fully automatic derivation or
the reduction of cost estimation to the expert estimation of smaller modules offers
a possibility to compare these design alternatives from the point of view of cost and
to automatically select the best approach from the point of view of cost efficiency.

4. Software Development Process Optimization

Another possibility to optimize a development process is to generate a standard
mathematical resource allocation and scheduling problem out of it and to solve it
by some existing tool. This can deliver an optimal task assignment to the project
and the best effort scheduling as well.

The two most important candidate objective functions in the optimization of
software projects are the duration of the development and the cost of the develop-
ment process.

1. As a scheduling problem the objective function is to find the development
process of the minimal duration by keeping a predefined budget.

2. As cost optimization problem there is to find the most effective assignment
of resources of the lowest cost while keeping the deadline.

For setting up the correct mathematical model of these optimization problems,
the basic elements of the scheduling and resource allocation should be identified,
namely the software development process has to be described in the terms of opti-
mization units, as

resources correspond to the developers or developer teams participating in the
project

activities which have to be sequenced and fulfilled are the four different subphases
of every given module development

dependencies among that tasks are determined by the precedence rules of the prod-
uct modules described in the software package diagram

duration of an activity is calculated by the applied cost estimator for every possible
task-resource combination

cost of an activity is the result of the production of the activity’s time duration and
the corresponding developer’s salary rate.

To determine the software development project our system is dealing with,
the following boundary conditions were defined.

1. Exactly one developer is assigned to each task, and we do not assume that an
elementary activity will be carried out by different persons.

224 O. DOBÁN and A. PATARICZA

2. The activities are non-breakable, they can not be interrupted by any other
task.

3. Every resource (in our case the developers) has a capacity limit which defines
the percentage of availability the developer can work on the project.

4. Each activity has a predefined set of candidate developers who are able to
perform this task, and the optimization has to select the best developer out of
this set.

5. Every product module has a priority level which determines its importance
during the development. There are three priority categories

(a) core module which is essential for the target product
(b) complementary module which can be sequenced with a less priority

during the project
(c) optional module which can be omitted due to the lack of time or a low

budget limit.

Please note that different software development strategies, like extreme pro-
gramming can be modelled by these priorities.

From these definitions a mathematical optimization problem can be con-
structed in an automated way from the UML diagrams delivering the cost or time
optimal solution.

In our work OPLStudio [12] was applied whose tool provides a high level
constraint programming language for the declaration of a mathematical model.
Similarly, OPLStudio supports the separate definition of the problem structure in
the form of a high level programming language, and the parametrization of this
model with numerical values for instance from a database.

According to the first results, in the case of a small scale problem the opti-
mization takes approximately 15,84 seconds with a commercial optimizer engine
for a system consisting of 4 modules and 4 programmers. However, dedicated
solvers may improve the speed by more than 1 order of magnitude.

Theoretically it is still possible to perform an enterprise level of global op-
timization which may solve the same resource allocation and scheduling problem
by covering multiple, parallel projects as well. However, one of the limiting fac-
tors is the computational time, current experiments aim to solve this problem with
dedicated solution algorithms.

4.1. Decomposition of COCOMO Model into Factors

The predicted effort has to be calculated for every possible activity-developer com-
bination during the resource allocation problem in order to determine the duration
of the different tasks. In the case of complex development processes the number
of these calculation steps can be extremely high which could decrease the effec-
tiveness of the optimization process. Our aim was to decompose the different cost
factors for the optimization in order to have a more efficient search of the optimal
solution.

UML BASED SOFTWARE PROCESS MANAGEMENT 225

As already described above, the main equation of the COCOMO cost estima-
tor has a product of terms form. In order to determine the module cost independently
from the developer working on it, the main task was to separate the module- and
the developer related components of the estimated cost. Taking the logarithm of
both sides of the equation, the sum of the estimation’s input parameters appear on
the right side (Eq. (2))

P M D A �

17Y

iD1

E Mi

!
� Si zeB

log.P M/ D log.A/C

17X
iD1

log.E Mi /C B � log.Size/ (2)

These input parameters can be divided into two groups, the product related com-
ponents (5 product, 3 platform, 2 project factors) and the personnel components
(5 personnel factors). It’s important to note that 3 input parameter values (SCED,
PCON, PMAT) are either fixed or determined on an iterative way during the opti-
mization process, this way they are missing from the used estimation formula.

log.P M/ D

"
log.A/C

10X
iD1

log.E Mi /C B � log.Size/

#
C

"
16X

iD11

log.E Mi /

#

log.P M/ D log.P Mmodule/C log.P Mpersonnel/

This way the logarithm of every module cost can be calculated, the individual
aspects can be analyzed separately, and the mathematical problem can be derived
from the separate part of our UML based model. By the help of these partial results
the number of calculation steps needed for the data initialization can be decreased,
as instead of 15 input parameters (10 module related and 5 personnel) only the 5
personnel factors have to be scaled and calculated together with the already known
module costs.

4.2. UML Based Integrated Environment

The integrated environment of our pilot system (Fig. 8) implements the automated,
UML based cost estimation and software development process optimization. As
already described above, the target software product is described by a package
diagram, the platform conditions are included in the underlying GRM model. The
use-case diagram based on the SPEM notation defines the needed skill levels and
properties of a developer assigned to a given activity, and the connected GRM
diagram contains the available human resources during the project.

The first step of the automated process optimization is to fill the optimization
database with the basic elements, as the resources, the tasks and their dependencies.

226 O. DOBÁN and A. PATARICZA

This information is extracted from the UML diagrams by using the standard interface
of the development environment, the XMI description language.

OPL Studio

Data

Matematical

model

UML

<APPL>

<LANG>

<PLAT>

[tasks,

precedence,

developers]

[rate, capacity]
[Duration]

platform2platform1 platformNGRM

Personnel

DB

...GRM

SQL query

Filter

(enterprise)

<human factors>

logPM
[product]

XMI

<product factors>

<platform

factors>
C

O

C

O

M

O

Fig. 8. UML based integrated environment

The next step is to execute a cost calculation for every given module indepen-
dently from the assigned developer. To estimate the cost of a module the needed
product and platform parameters are exported from the UML environment in the
standard XMI form, and transformed into the input language of the applied cost

UML BASED SOFTWARE PROCESS MANAGEMENT 227

calculator. Using the decomposition method for the cost estimator equation the
logarithm of the module cost can be imported back into the UML diagrams.

The following step is a database search for the set of the candidate develop-
ers and for their associated parameters. To select the needed parameters upon the
personnel database, the type of the software application and platform as well as
the applied programming language have to be known, this way they are extracted
from the product related UML diagrams. The required properties of the develop-
ers assigned to a given task are derived from the GRM human resource diagram.
Selecting the related human parameters from the personnel database the estimated
effort can be calculated in this case extended by the personnel parameters.

The result of these two estimations is a data matrix containing the time duration
of every possible developer-task combination. By selecting also the rating and
capacity data of the developers from the personnel database, the cost factor of a
task can be computed, and stored in the data initialization database.

After data initialization optimization can be performed. As OPLStudio offers
a variety of different visual representations the received optimal software devel-
opment scheduling can be represented for instance by means of the most popular
Gantt diagrams.

5. Conclusion and Further Works

UML is able to model both the target application and the process developing it.
The uniformity of the notation allows capturing all the important aspects relevant
to project management.

The information fusion and mathematical model transformation technologies
allow for an exact optimization of the costs related to the development process.

It has to be pointed out, that this support to the project management can be
provided from the very early phases of the design through a series of more and more
refined cost estimation as the system design makes its progress and produces more
and more fine granular models.

During the software development process optimization an emerging question
is the accuracy of effort estimations. The COCOMO model based cost estimations
are one of the most widely used estimation methodologies in the USA, and a research
is going on in Hungary [9] to test this method in our particular environment. At the
same time it is important to emphasize that additionally to the absolute values of
the estimators the relative relation between alternate solutions is important as well,
as this helps the project management to select the most effective implementation
strategy.

In the future we would like to extend our work to handle multiple parallel
projects as it is typical at enterprise level, and to exploit the experiments of our
actual method which is currently under industrial testing.

228 O. DOBÁN and A. PATARICZA

References

[1] Object Management Group (OMG), Unified Modelling Language, http://www.omg.org.
[2] BOEHM, B. W., Software Cost Estimation with COCOMO II., Prentice Hall PTR, 2000, New

Jersey.
[3] Cost Expert, http://www.costexpert.com.
[4] BOEHM, B., Software Engineering Economics, 1981.
[5] UEMURA, T. – KUSUMOTO, S. – INUOE, K., Function Point Measurement Tool for UML

Design Specification, Proc. of the METRICS’99, Boca Raton, Florida, November 1999, pp. 62–
69.

[6] OMG Group, Software Process Engineering Metamodel (SPEM), http://www.omg.com.
[7] OMG Group, General Resource Model (GRM), http://www.omg.com.
[8] DOBÁN, O. – PATARICZA, A. – PINTÉR, G., Data Collection through Knowledge Base, IKTA

00194/2000 – 1., Foundation for the Hungarian Higher Education and Research project.
[9] DOBÁN, O., COCOMO Based Cost Estimation, IKTA 00194/2000 – 2., Foundation for the

Hungarian Higher Education and Research Project.
[10] DOBÁN, O. – PATARICZA, A. – PINTÉR, G. – SZÉCSI, G., UML Based Cost Estimation,

IKTA 00194/2000 – 3., Foundation for the Hungarian Higher Education and Research project.
[11] DOBÁN, O. – PATARICZA, A., Quality Guaranteed System Design, IKTA 00194/2000 – 4.,

Foundation for the Hungarian Higher Education and Research Project.
[12] OPLStudio: http://www.ilog.com.
[13] OPLStudio User Manual, http://www.ilog.com.
[14] DOBÁN, O. – PATARICZA, A.: Cost Estimation Driven Software Development Process, Pro-

ceedings of the 27th EUROMICRO Conference, ISBN 0-7695-1236-4, Warsaw, Poland, 4–6
September 2001, pp. 208.

[15] PATARICZA, A. – CSERTÁN, GY. – DOBÁN, O. – GÁBOR, A. – SZIRAY, J., Process Mod-
elling and Optimization in UML, IEEE International Conference on Intelligent Engineering
Systems, INES-2001, Proceedings, Helsinki, September 16–18, 2001. pp. 457–461.

http://www.omg.org
http://www.costexpert.com
http://www.omg.com
http://www.omg.com
http://www.ilog.com
http://www.ilog.com

	Introduction
	Cost Estimation
	COnstructive COst MOdel (COCOMO II.)

	UML Integrated Cost Estimation
	Technical Realization of the Integration
	The Advantages of the Integration

	Software Development Process Optimization
	Decomposition of COCOMO Model into Factors
	UML Based Integrated Environment

	Conclusion and Further Works

