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Abstract

Neural networks play an important role in system modelling. This is especially true if model build-
ing is mainly based on observed data. Among neural models the Support Vector Machine (SVM)
solutions are attracting increasing attention, mostly because they automatically answer certain cru-
cial questions involved by neural network construction. They derive an ‘optimal’ network structure
and answer the most important question related to the ‘quality’ of the resulted network. The main
drawback of standard Support Vector Machines (SVM) is its high computational complexity, there-
fore recently a new technique, the Least Squares SVM (LS–SVM) has been introduced. This is
algorithmically more effective, because the solution can be obtained by solving a linear equation set
instead of a computation-intensive quadratic programming problem. Although the gain in efficiency
is rather significant, for really large problems the computational burden of LS-SVM is still too high.
Moreover, an attractive feature of SVM, its sparseness is lost. This paper proposes a special new
generalized formulation and solution technique for the standard LS-SVM. By solving the modified
LS–SVM equation set in least squares (LS) sense (LS2–SVM), a pruned solution is achieved, while
the computational burden is further reduced (Generalized LS–SVM). In this generalized LS–SVM
framework a further modification weighting is also proposed, to reduce the sensitivity of the network
construction to outliers while maintaining sparseness.

Keywords: function estimation, least squares support vector machines, regression, support vector
machines, system modelling.

1. Introduction

System modelling is an important way of investigating and understanding the world
around. There are several different ways of building system models, and these ways
utilize different forms of knowledge about the system. When only input-output
observations are used, a behavioral or black box model can be constructed. In
black box modelling neural networks play an important role.

The most important questions of neural networks are about (i) their modelling
capabilities: what input–output relations can be implemented using a neural net-
work, and (ii) their generalization capabilities: what are the answers of a trained
network for inputs not used in its construction, not used during training.

The main reason of the importance of Neural Networks comes from their
general modelling capabilities. Some of the neural network architectures (e.g.
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multi-layer perceptrons, MLPs [1], [2], or radial basis function – RBF-networks)
are universal approximators [1]–[3], this means that an MLP or an RBF of proper
size can approximate any continuous function arbitrarily well [3]. A neural net-
work is trained using a finite number of training examples and the goal is that the
network give correct responses for inputs not used during training. Unfortunately,
the training data is often corrupted by noise, which – if not handled properly –
misleads the training.

Although there are theoretical results about the modelling capability of neural
networks, some important questions are not answered yet. One of these questions is
about the size of the network. What complexity network has to be used for a given
modelling task? Another important question is about the generalization capability
of a network. These questions are very difficult, theoretical answers that can also
be used in practice cannot be found in the classic neural network field.

Recently new approaches of learning machine construction, the Support Vec-
tor Machines (SVM) [4]–[11] and their least squares modification the LS–SVM
[12]–[18] have been introduced and are gaining more and more attention, because
they incorporate some useful features that make them favorable in handling the
above described situations.

The result of both methods can be interpreted as a neural network, as it will
be shown later.

The primary advantage of the SVM method is that for a given problem it
automatically derives the ‘optimal’ network structure (in respect of generalization
error). In practice it means that several decisions that had to be made during the
design of a traditional NN like the decisions about

• the number of neurons,
• the structure of the network,
• the length of the learning cycle,
• the type of the learning process.

etc. are eliminated. Another benefit of this method is that the resulting network
guarantees an upper bound on the generalization errors [4], [5]. While these ques-
tions are eliminated, some knowledge is gained about the result, which assures us
about the generalization performance. The SVM method was originally established
by VAPNIK [1].

According to the Structural Risk Minimization [4]–[11] principle, involved
by the construction of an SVM, the generalization error rate is upper bounded by
a formula containing the training error and the Vapnik–Chervonenkis (VC) dimen-
sion, which describes the capacity – ability to approximate complex functions – of
the network.

By minimizing this formula, an SVM produces a reasonably simple network,
which assures a low upper limit of the generalization error. On the other hand, the
construction of an SVM needs the solution of a convex constrained optimization
problem. The solution can be obtained via quadratic programming (QP) which is a
rather computation-intensive and memory-consuming method, especially if a large
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Fig. 1. Illustration of the Structural Risk Minimization Principle

training set of high-dimensional data are used. There are several iterative solutions
to speed up this process [19]–[25], however, a faster method is still needed.

The least squares Support Vector Machine is attracting more and more at-
tention, because its construction requires only the solution of a linear equation set
instead of the long and computationally hard quadratic programming problem. Un-
fortunately, there are some drawbacks of using LS–SVM. While the least squares
version incorporates all training data in the network to produce the result, the tra-
ditional SVM selects some of them (the support vectors) that are important in the
regression. This sparseness of traditional SVM can also be reached with the LS-
SVM by applying a pruning method [17, 18], but this requires the entire large
problem to be solved at least once. Another possibility is the use of the fixed LS–
SVM method, which is an iterative method for constructing an LS–SVM network
of a predefined size [16].

The LS–SVM method should also be able to handle outliers (e.g. resulting
from an additive non-Gaussian noise, such as a heavy-tail distribution). A modifi-
cation of the method, called weighted LS–SVM, is aimed at reducing the effects of
this type of noise. The biggest problem is that pruning and weighting – although
their goals do not rule out each other – cannot be used at the same time, because
the algorithms work in opposition.

This paper presents a generalized approach by allowing a more universal
construction and formulation of the kernel matrix or more precisely, the LS–SVM
equation set. Earlier in refs. [26, 27] we proposed the least squares modification
of the LS–SVM (LS2–SVM) which provided a sparse solution. This method is
generalized further and is extended with weighting. Our objectives include noise
reduction, sparseness and further reduction of algorithmic complexity while main-



232 J. VALYON and G. HORVÁTH

taining the quality of the results. The main topic of this paper is the weighted
extension of the sparse LS2–SVM, so the described method enables us to accom-
plish both goals at the same time.

Both the SVM and LS–SVM methods are capable of solving both, classifica-
tion and regression problems. The classification approach is easier to understand
and more historic. The present study concerns regression, therefore only this is
introduced in the sequel, along with the most common additional methods. Before
going into the details, the main and distinguishing features of the basic procedures
are summarized. Sections 2 and 3 describe the SVM and LS–SVM regression.
Section 4 presents the weighted LS–SVM. The LS–SVM method is generalized
in section 5, which is enhanced with weighting in section 6. Some experimental
results are presented afterwards.

2. The SVM Method for Regression

The goal of regression is to approximate a d D g.x/ function, based on a training
data set fxi ; di g

N
iD1, where xi 2 <p represents a p-dimensional input vector and di 2

< is the scalar target output. Our goal is to construct an y D f .x/ approximating
function which represents the dependence of the d training targets on the x inputs.

To start with, a loss function must be defined to represent the cost of deviation
from the target output di for each xi input. In most cases the "-insensitive loss
function (L"/ is used, but one can use other (e.g. non-linear) loss functions, too,
such as given in [6]. The "-insensitive loss function, shown in Fig.2, is:

L".d; f .x// D
�

0 for j f .x/� dj < "
j f .x/� dj � " otherwise : (1)

 

Fig. 2. The "-insensitive loss function

In this case approximation errors smaller than " are ignored, while the larger
ones are punished in a linear way.
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The estimator function f is defined as follows:

y D f .x/ D
hX

jD1

w j' j .x/C b D wT
'.x/C b;

w D Tw1; w2; : : : ; whU
T ; ' D T'1.x/; '2.x/; : : : ; 'h.x/UT : (2)

The '.:/ V <p !<h mapping is a mostly non-linear function, which transforms the
data into a higher (possibly infinite – h) dimensional feature space. Our f function
should minimize the risk functional defined as

RT f U D
Z

L.d; f .x//P.x; y/ dx dy; (3)

but unfortunately the P.x; y/ probability density function is almost never known.
Under certain conditions, defined in [4], [5], Eq. (2) may be replaced by an empirical
risk functional:

RempT f U D
1

N

NX
iD1

L.di ; f .xi //: (4)

This should be minimized, along with the use of the above described "-insensitive
loss function L".di ; f .xi //, and also subject to the constraint of kwk2 � c0 to keep
w as short as possible (c0 is a constant). The minimization of kwk corresponds to the
minimization of the Vapnik–Chervonenkis VC dimension [4, 5]. Eq. (5) shows the
constraints defined by the training points, where f�igN

iD1 and f� 0i g
N
iD1 slack variables

are introduced, to represent the cost of points outside the " insensitive boundary:

di � wT
'.xi /� b� " C �i ;

wT
'.xi /C b � di � " C � 0i ;

�i � 0; � 0i � 0; i D 1; : : : ; N :

(5)

The measure of this cost is determined by the loss function. The complex optimiza-
tion of SVM is solved by minimizing the following equation in w.

F.w; �; � 0/ D
1

2
wT w C C

 
NX

iD1

.�i C � 0i /

!

with constraints:

di � wT
'.xi /� b� " C �i ; �i � 0;

wT
'.xi /C b � di � " C � 0; � 0i � 0; i D 1; : : : ; N :

(6)

The wT w term stands for minimizing the length of the weight vector, while C
constant is the trade-off parameter between this and the minimization of training
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data errors. This constrained optimization can be formulated as a Lagrangian:

J .w; � ; � 0;�;�0;  ;  0/ D C
NX

iD1

.�i C � 0i /C
1

2
wT w

�

NX
iD1

�i

�
wT

'.xi /C b � di C " C �i

�

�

NX
iD1

�0i
�
�wT

'.xi /� b C di C " C � 0i
�
�

NX
iD1

�
i�i C  0i �

0

i

�
(7)

with �i � 0, �0i � 0 and i � 0,  0i � 0 Lagrange multipliers (i D 1; : : : ; N/. The
result is given by the saddle point:

max
���; ; 0

min
w;� ;�

0

J .w; � ; � 0;�;�0;  ;  0/: (8)

The primal problem deals with convex cost function and linear constraint, therefore
from this constrained optimization problem a dual problem can be constructed, in
which the Karush–Kuhn–Tucker (KKT) conditions [28] are used.

max
���;���0

Q.�; �0/ D

NX
iD1

di .�i C �i /� "

NX
iD1

.�i C �0i/

�
1

2

NX
iD1

NX
jD1

.�i � �0i/.� j � �0j /K .xi ; x j /

with constraints:
NX

iD1

�
�i C �0i

�
D 0; 0 � �i � C; 0 � �0i � C; i D 1; : : : ; N : (9)

where K .xi ; x j / D '
T .xi /'.x j / is the inner product kernel function.

Finally, the values of f are calculated from Eq. (10), where �i and �0i are
determined by quadratic programming (QP) from Eq. (9).

y D
NX

iD1

.�i � �0i /K .x; xi /C b: (10)

This most frequently used kernels are shown in Table1 [4].
The support vectors are the input data points corresponding to the (.�i � �0i/,

i D 1; : : : ; N) non-zero multipliers. The bias b can be calculated from the KKT
conditions [4]–[18].



A WEIGHTED GENERALISED LS–SVM 235

Table 1. The most typical kernel functions

Linear SVM @K .x; xi / D xT
i x

Polynomial SVM of degree n @K .x; x i / D
�
xT

i xC 1
�n

RBF SVM @K .x; xi / D exp
�
�kx � xik

2
=�

2
	

where � is a
constant.

MLP SVM @K .x; xi / D tanh
�
ixT

i xC �
�
, i and � are properly

chosen constants, since not all combinations may be
used.

The user-defined parameters C and " control the smoothness of the resulting
function. We must also choose the parameters of the selected kernel. In the case of
an RBF structure it means the selection of a suitable � or a � vector. In practice,
it’s very hard to determine the optimal values for these three parameters, because
no universal approach is available. This paper does not discuss these problems, but
some results can be found in refs. [29]–[31].

Support vector machines can be interpreted as neural networks, although in
practice the results are rarely formulated as actual networks. However, the neural
interpretation is important, because it provides an easier discussion framework
than the purely mathematical point of view. Training and operating a support
vector machine is a series of mathematical calculations, but the equation used for
determining the answer represents exactly the same calculations as a one hidden
layer neural network.

The hidden layer typically consists of non-linear neurons. Fig.3 illustrates a
neural network that can be considered as a Support Vector Machine.

The input is an M-dimensional vector. The nonlinear kernel functions are
used in the hidden layer neurons. The number of these nonlinear neurons equals
to the number of selected support vectors (N-Network size). The result (y) is
the weighted sum of the outputs of the middle layer neurons. The weights are the
calculated

�
�i � �0i

�
Lagrange multipliers (Weighting). Accordingly, the smaller the

network, the less calculations are required for getting an answer; therefore the goal
is to reach the smallest possible network size. Since the network size determines
the amount of calculations needed in the recall phase, this may be referred to as the
complexity of the result. This complexity differs from the algorithmic complexity
of the method used to reach this result!

This paper reasons with the neural interpretation throughout the discussions,
because the points and statements of this work can be more easily understood from
this neural point of view.

The main problem with the traditional SVM method is its high algorithmic
complexity, namely its slow construction and extensive memory requirements. To
overcome these problems, several modifications of the method have been proposed.
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Fig. 3. The neural interpretation of a Support Vector Machine

These algorithms are mostly iterative methods that decompose the large problem
into smaller optimization tasks [19]–[25]. These methods are commonly known
as ‘chunking’ algorithms, where the methods mainly differ in the way they deter-
mine the decomposed sub-problems. The traditional ‘chunking’ may not reduce
the problem enough, therefore different modifications are available. The two main
techniques are based on Osuna’s algorithm and SMO [25]. OSUNA et al. suggest
maximizing the reduced QP sub-problems of a fixed size. The Sequential Minimal
Optimization (SMO) brakes up the large quadratic programming task into a series
of the smallest possible QP problems, which can be solved analytically [21]. These
small problems consist of only two Lagrange multipliers, which are jointly opti-
mized at every iteration. Successive overrelaxation (SOR) has also been applied to
large SVM problems [25].

Another way to overcome the problem of algorithmic complexity is the use
of the LS–SVM described below. The LS–SVM solves this problem by replacing
the quadratic programming with a simple matrix inversion.

3. The LS–SVM Method

The basic idea is exactly the same as the one described above [12]–[18]. In the
least squares support vector machine regression, the "-insensitive loss function is
replaced by a quadratic cost function. The main difference from the standard SVM
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is in the constraints. The optimization problem and the inequality constraints are
replaced by the following equations (i D 1; : : : ; N/:

min
w;b;e

Jp.w; e/ D
1

2
wT w C C

1

2

NX
iD1

e2
i ;

with constraints: di D wT
'.xi /C b C ei ; where i D 1; : : : ; N : (11)

Again the first term stands for the minimization of the VC dimension, while the
second one minimizes the training errors (C is the trade-off parameter between the
terms).

From this, the following Lagrangian can be formed:

L.w; b; eI�/ D Jp.w; e/�
NX

iD1

�i

�
wT

'.xi/C b C ei � di

	
; (12)

where the �i parameters are the Lagrange multipliers. The solution concludes in a
constrained optimization, where the conditions for optimality are the following:

@L

@w
D 0 ! w D

NX
iD1

�i'.xi /

@L

@b
D 0 !

NX
iD1

�i D 0

@L

@ei
D 0 ! �i D Cei i D 1; : : : ; N

@L

@�i
D 0 ! wT

'.xi /C b C ei � di D 0 i D 1; : : : ; N :

(13)

This leads to the following linear equation set:

�
0 E1T

E1 �C C�1I

��
b
�

�
D

�
0
d

�
; d D Td1; d2; : : : ; dN U

T ;

� D T�1; �2; : : : ; �N U
T ; E1 D T1; : : : ; 1UT ; �i; j D K .xi ; x j /; (14)

where C 2 < is a positive constant, b is the bias and the result is: y D
PN

iD1 �i K .x;
xi /C b. This result can also be interpreted as a neural network, which contains N
non-linear neurons in its single hidden layer.

The LS–SVM method – when RBF kernels are used – requires only two
parameters (C and � ), while the time consumed by the learning method is reduced,
by replacing the quadratic optimization problem with a simple linear equation set.

If N is the number of training points, then the matrix representing the linear
Eq. (14) is of size .N C 1/ � .N C 1/. For large training data sets this matrix
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cannot be stored in memory, therefore an iterative solution is needed. For an easier
discussion, the notifications of Eq. (14) will be simplified as follows.

A D

�
0 E1T

E1 �C C�1I

�
; u D

�
b
�

�
; v D

�
0
d

�
: (15)

The Hestens–Stiefel conjugate gradient method for solving Au D v, where A 2
<N�N and b 2 <N can be applied. For convergence A should be positive definite,
therefore the system must be first transformed to meet this condition [16]. The
convergence of the conjugate gradient algorithm depends on the condition number
of the matrix which is influenced by parameter C .

So far we have described the algorithmic complexity of the solution. In the
sequel another complexity property is described, namely the complexity (size) of
the resulting solution (network).

The problem with the above described solution is that the result is not sparse.
The loss of sparseness is very important, especially in the light of the equivalence
between SVMs and sparse approximation [16]–[18]. Practically this means that the
net consists of – in its hidden layer – as many neurons as the number of training
vectors used. This means an unnecessarily large network, and therefore more calcu-
lations for every result in the recall phase. To overcome this problem, the following
pruning method was introduced. Pruning techniques are also well-known in the
context of traditional neural networks. Their purpose is to reduce the complexity
of the networks by eliminating as much hidden neurons as possible.

LS–SVM pruning: One of the main drawbacks of the least squares solution
is that the solution is not sparse in the sense that it incorporates all training vectors
in the resulting network. In the traditional SVM the result usually contains many
zero multiplier (the weights .�i � �0i/ D 0 – see neural interpretation in Section
3) values. In LS–SVM pruning all necessary informations are obtained from the
solution of the linear system [17]–[19].

The weighting of the least squares SVM reflects the importance of the inputs,
therefore by eliminating some vectors, represented by the smallest values from
this j�i j spectrum, the number of neurons can be reduced. The support values are
proportional to the errors at data points:

�i D Cei (16)

The irrelevant points are left out, by iteratively leaving out the least significant
vectors. These are the ones corresponding to the smallest j�i j values. The algorithm
is the following [16]:

1. Train the LS–SVM based on N points. (N is the number of all available
training vectors.)

2. Remove a small amount of points (e.g. 5% of the set) with the smallest values
in the sorted j�i j spectrum.

3. Re-train the LS–SVM based on the reduced training set.
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4. Go to 2, unless the user-defined performance index degrades. If the perfor-
mance becomes worse, it should be checked whether an additional modifica-
tion of C , � might improve the performance.

In the case of the classic SVM, sparseness is achieved by the use of such loss func-
tions where errors smaller than " are ignored (e.g. "-insensitive loss function). This
method reduces the difference between SVM and LS–SVM, because the omission
of some data points implicitly corresponds to creating an "-insensitive zone [19].

The described method leads to a sparse model, but some questions arise: How
many neurons are needed in the final model? How many iterations are necessary
to reach the final model? According to our experiments the number of iterations
and the results do not seem to be related. If the points are omitted in more than
one step, the results are not necessarily better than in the case when the reduction
is done in one step.

Another problem is that a usually large linear system must be solved in each
iteration. The pruning is especially important if the number of training vectors
is large. In this case, however, the iterative method is not very effective. Our
proposed method the LS2–SVM, described in section 5, leads to a sparse solution,
automatically answers the questions and solves the problem described above.

4. The Weighted LS–SVM Method

In this section, the weighted extension of the original LS–SVM is presented [16],
which was introduced to diminish the effects of outliers.

In the weighted LS–SVM, the importance of each constraint is modified by a
vi weight factor:

min
w;b;e

Jp.w; e/ D
1

2
wT w C C

1

2

NX
iD1

vi e
2
i ;

and di D wT
'.xi /C b C ei ; where i D 1; : : : ; N : (17)

The weighted solution concludes in a constrained optimization which can be for-
mulated as the following equation set:�

0 E1T

E1 �C V

� �
b
�

�
D

�
0
d

�
; d D Td1; d2; : : : ; dN U

T ;

� D T�1; �2; : : : ; �N U
T ; E1 D T1; : : : ; 1UT ; �i; j D K .xi ; x j /;

V D diag .T1=Cv1I : : : ICvN U/; (18)

where C 2 < is a positive constant, vi weights are determined according to the
ei D �i=C equation, b is the bias and the result is the well-known
y D

PN
iD1 �i K .x; xi /C b.
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The effects of outliers are reduced iteratively, by using a weighting factor
in the calculation based on the error variables determined from a previous – first
unweighted – solution. The weighting is designed in such a way, that the results
improve in view of robust statistics. A large ei means a small weight and vice versa.
A more detailed description can be found in ref. [17].

The same pruning method can be used as described earlier for the unweighted
case.

5. The Proposed Generalization

A. The generalized least squares LS–SVM method

If the training set consists of N samples, then our original linear equation set will
have (N C 1) unknowns, the �i -s, (N C 1) equations and .N C 1/2 multiplication
coefficients. These factors are mostly the values of the K .xi ; x j / kernel function
calculated for every combination of the training inputs. The cardinality of the
training set therefore determines the size of the coefficient matrix, which plays a
major part in the solution as the computational complexity of both the training and
recall phase depends on this. It is easy to see that, in order to reduce network size
and algorithmic complexity, this matrix has to be manipulated. Let’s take a closer
look at the linear equation set describing the problem."

0 E1T

E1 �C C�1I

# �
b
�

�
D

�
0
d

�
: (19)

The first row means:
NX

iD1

�i D 0; (20)

and the j th row stands for the

b C �1 K .x j ; x1/C : : :C � j TK .x j ; x j /C C�1U C : : :C �N K .x j ; xN / D d j (21)

condition.
The most important component of the main matrix is � whose every element

is a result of the kernel function for two training inputs:

�i; j D K .xi ; x j /: (22)

In order to reduce the number of elements, some of the training samples should
usually be omitted (see Fig. 3). This is the case in traditional pruning of LS–
SVM when by entirely deleting the insignificant samples a smaller kernel matrix is
obtained.
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A training vector however, can be ignored in three different ways: the cor-
responding column, the corresponding row, or both (column and row) may be
eliminated.

Each column stands for a neuron, with a kernel centered at the corresponding
input. If the i th column is left out, then the corresponding�i is also deleted, therefore
the resulting network will be smaller. The first row’s condition automatically adapts,
since the remaining �-s will still add up to zero.

However, the rows declare the input–output relations, represented by the train-
ing points, that the solution must satisfy. If the j th row is deleted, then the condition
defined by the .x j ; d j / training point is lost, because the j th equation is removed.
This may be useful in the case of noisy samples, but in this case the number of
columns must also be reduced, otherwise the equation set becomes underdeter-
mined. This noise reduction technique is described in detail in [27].

It can be seen that the network size depends on the number of columns only,
therefore to reach a sparse solution, the number of columns must be reduced. This
means that for this purpose two possible reduction techniques may be applied to
the equation set:

• Full reduction – a training sample .xi ; di / is fully omitted, therefore both the
columns and rows corresponding to this sample are eliminated.

• Partial reduction – a training sample .xi ; di / is only partially omitted, by
eliminating the corresponding i th column only, but keeping the i th row which
defines constraints. It means that the weighted sum of that row should still
meat the di goal (as closely as possible).

If full reduction is applied – meaning that only a subset of the training vectors
will play part in the solution – then these vectors must be the ones most accurately
representing the function. The vectors corrupted with the least amount of noise
seem to be the best choice. In this case, however, reduction means that the infor-
mation embedded in the omitted samples are lost. The next figure demonstrates
how the equation changes if full reduction is applied. The deleted elements are
coloured gray. Since rows and columns are omitted, the main matrix shrinks in
both directions.

When traditional pruning is applied to the LS–SVM solution, this is exactly
the case, because pruning iteratively drops some training points. The information
embodied in this subset is entirely lost.

To avoid this loss of information, a partial reduction technique can be used.
This proposition resembles to the basis of the Reduced Support Vector Machines
(RSVM) introduced for standard SVM classification in ref. [32]. In the case of par-
tial reduction, the omission of a training sample means that only the corresponding
column is eliminated, while the row is kept. By selecting some (e.g. M , M < N)
vectors as ‘support vectors’, the number of variables (�) is reduced, resulting in
more equations than unknowns. The effect of partial reduction is shown in the next
figure where the removed elements are coloured gray.

By applying this partial reduction our problem becomes overdetermined,
which can be solved as a linear least squares problem, consisting of only .N C1/�
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Fig. 4. The effect of full reduction

 
h ff f l d

Fig. 5. The effect of partial reduction

.M C 1/ coefficients.
In the equation set, every � variable stands for a neuron – representing its

weight – and each one of the M selected training vectors will be a center of a kernel
function, therefore these inputs must be chosen accordingly. This means that the
following question must be answered: How many and which vectors are needed?

Standard SVM automatically selects a subset of the training points as support
vectors. The linear equation set involved by the LS–SVM has to be reduced to
an overdetermined equation set in such a way, that the solution of this reduced
problem is the closest to what the original solution would be. This whole reduction
method can be interpreted as follows: Let’s select a linearly independent subset of
the column vectors and omit all the others that can be formed as linear combinations
of the selected ones. This can be easily done by finding a ‘basis’ (quotation marks
indicate that this basis is only true under certain conditions defined later) of the
coefficient matrix (A), which is by definition the smallest set of vectors enough to
solve the problem. A slight modification of a common mathematical method – used
for bringing the matrix to the reduced row echelon form – can be utilized to find
this ‘basis’. This is discussed in more detail in the sequel.

The basic idea of feature selection in the kernel space is not new. The nonlinear
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principal component analysis technique, the Kernel PCA is based on the same idea
[33]–[36]. A possible selection method for finding the basis of a kernel matrix has
been shown in ref. [37].

This reduced input set (the support vectors) is (are) selected automatically by
determining a ‘basis’ of the � (or the �CC�1I) matrix. This can be easily shown
as follows:

An Au D v linear equation defines v as the weighted sum of the column
vectors of A. The equation set has a solution if and only if v is in the space spanned
by columns of A. Every solution (x) means a possible decomposition of v to
these vectors. The solution is unique if and only if the columns of A are linearly
independent, therefore by determining a basis of A – any set of vectors that are
linearly independent, and span the same space as A – the problem is reduced to a
weighted sum of the basis vectors.

The linear dependence discussed above, does not mean exact linear depen-
dence, because the method uses an adjustable tolerance value when determining the
‘resemblance’ (parallelism) of the column vectors. The use of this tolerance value
is essential, because it is unlikely that the columns of � will be exactly dependent
(parallel). This tolerance ("0) can be related to the " parameter of the standard SVM,
because it has similar effects. If the chosen tolerance value is too small, a lot of
vectors will form the basis and therefore a larger network will be obtained. The
larger the tolerance, the fewer vectors will be selected. As it was shown earlier, the
sparseness of standard SVM is due to the "-insensitive loss function which neglects
the samples falling inside the "-insensitive zone. Keeping this in mind, it may not
be very surprising to find that an additional parameter is needed to achieve sparse-
ness in LS–SVM. This parameter corresponds to the one omitted originally when
changing from the SVM to the standard least squares solution.

This selection process incorporates a parameter which indirectly controls
the number of resulting basis vectors (M). Since M is the number of linearly
independent columns, this number does not really depend on the training sample
number (N), only on the problem. In practice it means that no matter how many
training samples are presented, if the problems complexity requires M neurons, the
size of the resulting network does not change.

The basis is achieved through transforming the � matrix into reduced row
echelon form [38], where the tolerance ("0) is used in the rank tests. The algorithm
uses elementary row operations [39, 40]:

• Interchange of two rows.
• Multiply one row by a nonzero number.
• Add a multiple of one row to a different row.

The algorithm operates as follows [38]:

1. Loop over the entire matrix (i – row index, j – column index).
2. Determine the largest element p in column j with row index i � j .
3. If p � "0 (where "0 is the tolerance), then zero out this part of the matrix

(elements in the j th row with index i � j );
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or else remember the column index because we found a base vector (support
vector), and divide the row with the pivot element p and subtract the row
from all other rows.

4. Step forward to i D i C 1 and j D j C 1. Go to step 1.

This method returns a list of the column vectors which are linearly independent
considering tolerance "0.

Each column ( j ) stands for a neuron, with a kernel centered on the corre-
sponding input (xj ). The formulation of this matrix can be generalized as follows:

• The kernels may be centered around any point (not just input samples), so
the columns may be represented by any chosen cj vector. For example, the
simplest construction of a fixed LS–SVM is to define the centers (e.g. M uni-
formly positioned vectors), and solve the equation set formulated accordingly
(see Eq. (13)).

• The kernel functions may be different from column to column.

The formulation of � changes as follows:

�i; j D K j .xi ; c j / (23)

and the result will be calculated from y D
PM

iD1 �i Ki .x; ci / C b, where M is the
number of kernels used.

It is also important to emphasize that the number of columns will be less than
the number of rows (M < N). This leads to an overdetermined equation set, which
can be solved as a linear least squares problem consisting of only .MC1/�.NC1/
coefficients.2
666666664

0 E1T
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:::

: : :
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:

(24)
As seen earlier in Eq. (15), this equation set is written shortly as Au D v, where A,
u and v are the matrixes of Eq. (24), respectively.

There is a slight problem with the regularization parameter C , since it can
only be inserted in the first M rows. This does not exactly reflect the same theo-
retical meaning as in the original Eq. (3), but it is enough to ensure us M linearly
independent rows, so the equation set can be solved.

In theory, the solution can be written as

AT Au D AT v: (25)
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The modified matrix A has .N C 1/ rows and .M C 1/ columns. After the matrix
multiplications the results are obtained from a reduced equation set incorporating
AT A which is only of size .M C 1/ � .M C 1/. Reducing only the number of
columns and not the rows means that the number of neurons is reduced, but all the
training information are taken into consideration. This is the key concept in trying
to maintain the quality, while the equation set is simplified.

This paper only describes this possible generalization, but it is only used as
the framework for weighting, therefore it does not deal with other possible usages or
specific questions not related to that method. These unrelated questions concern the
selection of ci centers, Ki kernels, and the advantages of their customisation. Even
the selection of the kernel centers is a complex problem which has been studied
much, mostly in respect of RBF. Briefly it can be stated, that the ci centers

• may be distributed uniformly for the simplest solution (e.g. for Fixed LS–
SVM),

• may be selected from the training sample set (just as in the original SVM),
• may be selected by utilizing a clustering method,

etc. A selection method along with a more detailed description on matrix reduction
techniques is presented in ref. [28].

B. Algorithmic complexity of the methods

This section deals with the algorithmic issues of the described solutions. Traditional
LS–SVM training requires the solution of a linear equation set. In the case of N

training vectors this can be solved using the LU decomposition in
1

3
N3 C N2 steps,

each with one multiplication and one addition [40]. If the training set has N training
samples, then the equation set consists of N C1 equations and the size of the matrix
to be manipulated is .N C 1/ � .N C 1/. To keep the formulas simple we will
consider a matrix of size N � N (since N � 1, the effect of the one additional
row is neglected). The reduced row echelon form of a matrix can be reached in
N2 steps. Let’s assume that the reduction leads to M ‘support’ vectors. In the
case of partial reduction, the calculation of AT A (defined in Eq. (25) requires M2 N

steps. Solving this new equation set costs
1

3
M3 C M2 steps. So the total cost of the

proposed algorithm adds up to N2 C M2 N C
1

3
M3 C M2.

If M � N , this means a smaller complexity compared to that of traditional
LS–SVM. It is important to mention that even if there is no algorithmic gain, or it
is rather small, this calculation provides a sparse solution with a good performance.
If the traditional LS–SVM is pruned for sparseness, then an equation set – slowly
decreasing in size – is solved in each iteration, which multiplies the complexity,
whilst the errors may grow.
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6. The Weighted Least Squares LS–SVM Method

The above described least squares LS–SVM, aims at achieving the same goals – such
as sparseness, a fixed version or noise reduction – as the standard LS–SVM. The
weighted version of the standard method has been introduced to deal with noisy
datasets, especially datasets containing outliers. This section shows a possible
weighting method for the least squares LS–SVM.

The problem is that the considered input–output relations, namely the rows
of the Ax D b equation set should be weighted according to their significance, and
the solution of the equation set must reflect the effects of this. Since the relations
represented in the training samples are formulated as rows in the equation set, we
have to weight the importance of the rows so that when minimizing for the mean
square errors, the effect of the rows (equations) reflects their importance in the final
summation. This means that the errors for the more exact equations (samples) have
a larger effect in the linear least squares problem than the noisier ones.

The AT A matrix is the sum of the diadic products of the row vectors. By
weighting this sum, the effect of each row – training sample – can be controlled.
The least squares equation of the weighted equation set becomes:

.v1aT
1 a1 C v2aT

2 a2 C � � � C vi a
T
i ai C � � � C vN aT

N aN /

�
b
�

�
D AT Tv1b1; : : : ; vi bi ; : : : ; vN bN U

T ; (26)

where the vi -s are the weights and the ai -s are the row vectors of A. The solution
of this weighted equation set reflects the accuracy of the samples.

There are two things to determine:

• the relative importance of the points,

• a weighting strategy to calculate the actual weight factors for each points.

The relative importance means that the exact samples should have larger,
while the noisy ones should have smaller weights. The weights corresponding to
each row can be determined by some a priori knowledge (e.g. about the amount
of noise for each sample) or iteratively like in the original unreduced case. In this
case the weights are calculated according to the results of a previous regression, by
considering how close the point is to this probably acceptable approximation.

To determine the vi multipliers, a weighting strategy must be chosen. This
strategy specifies how errors should be penalized thorough weighting. It can be
as simple as a linear function of the errors, but some more sophisticated strategies
(from the field of statistics) can be found in [19].

By using this method both pruning (since partial reduction is used) and weight-
ing are achieved.
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7. Experiments

This section splits the experiments into two parts. First we demonstrate the perfor-
mance of partial reduction applied together with the proposed reduced row ‘support
vector’ selection method and we compare the results with the standard LS–SVM.
After this the effect of the above described weighting is demonstrated.

Fig. 6. The results of a least squares LS–SVM, and the original LS–SVM for a sinc .x/
regression. (The training set contains 40 noisy data points).

Our results illustrated in Fig. 6 prove that by using an overdetermined equation set,
the network size can be effectively reduced without impairing from the quality of
the results. It can be seen that the partial reduction gives almost the same result
as the original LS–SVM, while in this case the network contains much less – 10
instead of 40 – neurons.

In Fig. 7, the function sinc .x/ is approximated by the use of the same size
support vector set for partial and full reduction. In the original LS–SVM pruning
method (full reduction), the results worsen, due to the information loss, because
some of the samples are left out. The fully reduced solution is only influenced by
the ‘support vectors’, which results in a distorted estimate, as it can easily be seen
in the figure. The partial reduction, however, maintains the quality.

The next figure shows the results of weighting for a sinc .x/ regression. The
training set contains 55 data points, about 30% of it is burdened with Gaussian noise
and five points are made outliers!
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Fig. 7. The results of a full and partial reduction for a sinc .x/ regression. (The training set
has the same properties as earlier).

It can be seen that the outliers mislead the solution, but the proposed weighting
effectively reduces the effect of these points, resulting in a much better solution. In
the presented experiment the weighting is done according to an a priori knowledge
about noise. The weighting strategy is extremely simple, since it punishes noise in
a linear fashion.

The following table summarizes the results for several test runs on different
training sets randomly generated with the same properties described above.

Table 2. Mean squares errors for several test runs with and without weighting

# Least squares LS–SVM Weighted least squares LS–SVM

1 0.0383 0.0117
2 0.0328 0.0240
3 0.0443 0.0316
4 0.0227 0.0043
5 0.0138 0.0216
6 0.0250 0.0318

6 0.1769 0.1250
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Fig. 8. The results of a least squares LS–SVM sinc .x/ regression without (full line) and
with weighting (dashed line), the chosen support vectors are marked.

It must be stated that this method works only well, if a large number of the
points are not noisy. The method has been successfully tested for a number of
problems but, of course, further experiments are needed. For example, a more
sophisticated weighting strategy than the presently used linear one could be imple-
mented.

8. Conclusion

The main idea is a generalized least squares modification of the LS–SVM, which
provides us with several advantages like simplified formulation, sparse solution
etc. This paper presents the weighted version of this, which is an important result,
since it shows that this method could be extended just like the standard version.
The described weighting technique effectively reduces the effect of outliers or,
more generally, heavy tail noise distributions, resulting in a more exact solution.
The weighting strategy used in the experiments is an extremely simple one, some
improvements may be achieved after further enhancements. Other such extensions
like Fixed LS–LS–SVM are to be published soon.

The proposed modifications provide a more effective way to achieve a sparse (or
fixed) solution, than standard pruning, while other improvements are still possible.
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