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Abstract

This paper discusses the on-line identification of non-local static hysteresis functions, which are en-
countered in mechanical friction, magnetic materials, and piezoelectric actuators and cause problems
by the design of controllers. In this article we want to introduce a compensation method for friction
in presliding regime, based on the simplified Leuven Friction Model and on technology borrowed
from neural networks. We present a solution how to identify the hysteresis caused by the friction,
and how to use this identified model for the compensation of the friction effects. Results from both
simulations and experiments will be shown.
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1. Introduction

Hysteresis phenomena appear in many systems of engineering interest, such as
piezoelectric actuators [1, 2] structures being stressed beyond their elastic limit,
magnetic materials in the presence of alternating electromagnetic fields, and friction
force as a result of micro displacements [3, 4, 5]. Accurate control of systems
with hysteresis requires a model of this non-linear phenomenon. According to
MAYERGOYZ [6], hysteresis non-linearities can be classified into two categories:

• non-linearities with local memory where the future output depends only upon
the future input and the present output,

• non-linearities with non-local memory where the future output does not only
depend upon the current output and the future input but also on the past
extreme values of the input. This type of effect can be observed in magnetic
and piezoelectric materials and also in friction.

The modelling of the second type of hystereses presents more difficulties
because it requires a solution that is able to store all extreme values of the input
even through a long time period.
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This paper describes a model for static hysteresis functions with non-local
memory, where the term static indicates that the speed of the input variations has
no influence on the branch of the hysteresis curve. The Preisach model [7] is a
well known approach to model the considered hysteresis functions. The Preisach
model has two important properties, which must be valid for the hystereses being
modelled: the congruency and the wiping-out properties. The first is about the
similarity of the loops of the hysteresis, and the second ensures that the loops are
closed and the input history of the hysteresis is overwritable. The Preisach model is
a good generic theoretical hysteresis model, however, it requires an accumulation
of the past extreme values of the input, which needs in a practical implementation a
dynamic allocation facility and the model parameters are also difficult to compute.

Another modelling approach is developed by KRASNOSELSKIand POKROV-
SKI [8]. The model is based on a weighted superposition of many elementary
hysteresis operators, which differ in one or more parameters depending on the
operator type. A small amount of elementary operators suffice for a quite accurate
modelling of arbitrary hysteresis functions due to the continuity of the operators.
KUHNEN et al. [5] use the so called linear stop operator (LSO). LAMPAERT et al.
[9] use an extended version of the linear stop operator, called the extended linear
stop operator. The model described in this paper uses a simplified version of the
original Preisach model, as explained in Section 2. The models in this second group
are equivalent regarding their modeling capabilities which correspond to a subset
of the hystereses that are modellable with the Preisach model.

One way to identify the parameters of a hysteresis model is curve fitting
[10], which has a drawback that it is an off-line procedure. KUHNEN et al. use a
gradient estimator technique which is an on-line identification method. LAMPAERT
et al. use the recursive least squares (RLS) method for estimation. This paper uses
neural approximation as explained in Section 2. This is not the first example of
using neural networks for hysteresis approximation, WEI and SUN in [11] describe
a similar approach, however, they approximate the continuous weight function
of the Preisach model with the neural network, while KUCZMANN in [12] and
[13] describes an approximation method for magnetic hystereses using multi-layer
perceptrons.

Simulation and experimental results for static systems are presented in Sec-
tion 3 and 4. The on-line identification methods (like the gradient estimator) are
preferable against the off-line procedures because they allow the adaptation of the
generated models during the operation of the system in which the model is used.
That allows a quicker reaction to the changing operational environment.

2. Neural Hysteresis Model

The neural hysteresis modelling system is based on a simplified version of the
original PREISACH model [7]. The main difference is that this model uses a one-
dimensional weight function instead of the two-dimensional one of the Preisach
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model. A further difference is that the weight function is not continuous, it is
approximated by a step-like function. (SeeFig.1 for an example of weight functions.
The weights are defined as a function of the differences of the input valuesu – the
input distances – and will be determined during the identification process.)

Fig. 1. An example weight function

Using the weights defined by this weight function as the weights of a sim-
ple neural network, an easy-to-calculate, elementary neural hysteresis model can
be constructed, which can model only symmetric hystereses (not due to the step
function but due to the 1D function). For the current modelling task this should
prove satisfactory, and using a combination of these simple hystereses asymmetric
models can also be constructed.

The hysteresis model is actually a one-layer neural network withN inputs (see
Fig. 2) combined with a special non-linear transformation that maps the hysteresis
input values to the input values of the neural network, and allows the storage of
previous extreme values infinitely long.

As it can be seen from the figures above, in the following we will have to
distinguish the input of the whole model, i.e. the position signal, and the input of the
neural network that is actually the model input after the non-linear transformation.

The input range of the hysteresis to be modelled is divided intoN different
intervals equal to the number of weights (seeFig. 2). (The input range of the hys-
teresis is the interval between the first full saturation points in positive and negative
directions.) The weights of the neural network are assigned to selected intervals of
the input range. In the example above, the intervals are equally distributed over the
range which is a simple but not necessary solution. Other interval selections allow,
for example, the changing of approximation precision, or better approximation with
fewer weights using some a priori knowledge about the properties of the hysteresis
being modelled. Each intervali got by this division has one statexi (this will be
called activation). The input of the neural network consists of a vector built from
these activation values. Let us now introduce the first part of the neural hysteresis
model, the non-linear mapping.
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Fig. 2. The neural model structure

2.1. Calculation of the Activations

The activations are calculated with a non-linear mapping from the input of the
hysteresis, i.e. from the position signal. This section describes how this non-linear
transformation works.

The non-linear transformation needs the storage of a few state variables, such
as the previous input [u.k � 1/] and the previous activation values. The non-linear
transformation will map the values of the real input into a distance based system.

To calculate the next values of the activation values – the real input [u.k/] of
the hysteresis is first converted into a distance [d.k/] and a direction [dir.k/] using
the stored value of the previous input [u.k � 1/]. The distance is

d.k/ D ju.k/� u.k � 1/j (1)
and the direction is

dir .k/ D sgnTu.k/� u.k � 1/U: (2)

For further explanation seeFig. 3.
These variables are used to calculate the activation values according to the

following method.
Let us assume that the system was started with a positive input. If the actual

input moves the system in the same positive direction, as before, the calculated
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Fig. 3. a.) The input-output relaion of a hysteretic system, b.) The weight function

distance will be added to the interval used last time. Here we compare the current
distance with the part of the interval not activated until now, starting with the first
interval, activate as many as possible and subtract the size of the part activated in this
step from the distance. If the distance is still bigger than zero, the same procedure
will be carried out on the next interval until all the distance is used to activate the
model or the model is fully saturated. (Fig. 4).

Fig. 4. The activation of the intervals in positive direction

If the current direction of the system is negative, the process differs from
the above-mentioned algorithm only in the fact that the distance will be used to
deactivate the intervals.

If the input changes the direction, the calculated distance will be used from
the first interval in the same way as described before. So a positive distance will be
used to activate, and negative distance to deactivate the intervals.

In a more mathematical way, the calculation of the weight activation for the
different cases can be given as follows:

xi .k/ D min

8<
:xi .k � 1/C max

2
4d.k/�

i�1X
jD0

.a j � x j .k � 1//;0

3
5 ; ai

9=
; (3)

if the actual direction is positive, whereaj is the size of the working interval of the
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Fig. 5. Deactivating the intervals after a direction change

j th weight. If the actual direction is negative the formula has the following form:

xi .k/ D max

8<
:xi.k � 1/� max

2
4d.k/�

i�1X
jD0

x j .k � 1/;0

3
5 ;0

9=
; : (4)

The output of the system will be the weighted sum of the activation valuesxi . This
model doesn’t require the storage of previous turning points of the input because over
the working interval of one weight the weight value is constant, so it is not relevant
where exactly the activated part lies within that interval. As we will see next, this
property will make it also possible to model easily the initial curve (anhysteretic
state of the systems).

Now that we have formulated a method to calculate the activation values of
the intervals from the previous one using the actual input of the system, we only
have to define a starting point for our algorithm, an initial setup for the interval
activation values.

As it is known about systems with hysteresis, they all have an initial state that
is called anhysteretic state. It would be just natural if the initial state of the model
had represented the anhysteretic state and the behavior of systems with hysteresis.

This special initial activation setup is very simple; each interval needs to be
activated halfway, as it can be seen in theFig.6.

The anhysteretic state of a hysteretic system (for example a magnetic material)
can be reached by applying a dampening periodic input signal to the system. If we
translate this to the calculation method of the modelling system, we get that thin lines
of activated and not activated intervals follow each other along the input range. Each
activated interval has inactive intervals as neighbours and vice versa. However, in
each weight interval the activated and inactive parts can be summarized, thus leading
to the result that the starting point or the anhysteretic state of the model is by half
activating each weight interval in the model:

xi .0/ D
ai

2
; (5)
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D)

Fig. 6. The initial setup to simulate the anhysteretic behavior

wherexi is still the input of thei th weight – thei th activation value – andai the
size of the working interval of the same.

With this type of networks, by setting up different weight combinations, we
are able to model different hystereses. However, our goal is to set up the weights
according to the measured hysteresis data, so we need some training procedure.

2.2. Calculation of the Model Output

The output of the model was calculated in most of the investigated cases with the
simplest possible neural network, a linear perceptron. The output of the model is
defined by the following formula:

h.u.k// D
NX

iD0

wi � xi.k/Cwbias; (6)

whereN is the number of weights,wi is the value of thei th weight,xi .k/ is the
actual activation of thei th weight andwbias is the bias weight.

However, more complex models can also be constructed using such simple
models over different input ranges and combining the results with other simple
neural networks.

2.3. Training of the Model

As it can be seen from the above description, the modelling system is similar to
a neural network, but the normal neural training procedure must be reconsidered,
because the hysteresis is a multivalued function if defined ash.u/. By the training,
the memory effect of the hysteresis must also be taken into account therefore only
a serial training procedure can be used with a weight modification rule, similar to
normal neural networks.
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The training uses the well-known gradient method to adjust the weights of
the neural network. The error on the output is:

error.k/ D H.u.k//� h.u.k//; (7)

whereH.u.k// is the desired hysteresis value.
A weight modification rule can be formulated through the derivation of the

quadratic output error function as follows (similarly as in [12]):

dwi .k/ D � error.k/xi.k/; (8)

where� is the learning factor.

3. Friction Identification with the Neural Hysteresis Model

The above described model was tested on a setup using a sliding weight, a DC
motor to move the weight, a dSpace 1103 board to run the algorithm and a laser
interferometer to measure the position of the weight (seeFig.7).

Fig. 7. The measurement setup in the laboratory KU Leuven

Simulations of an ideal environment were also made, using the Leuven Fric-
tion Model [14] as a reference for the simulation and the neural model to identify
and compensate the friction hysteresis. A scheme of the setup can be seen inFig7.
The first one shows the identification setup and the second one the compensation
setup.

These schemes are also valid for the real setup, as far as the simplified Leu-
ven Friction Model is correct. As we can see, the original system with friction is
modelled by an accelerating mass and a position feedback through a built-in hys-
teresis. In the simulation the stop model of the hysteresis was used to simulate the



NON-LOCAL HYSTERESIS FUNCTION 261

Fig. 8.a. Scheme of the system for the
identification

Fig. 8.b. Scheme of the system for com-
pensation

required hysteresis for the Leuven Friction Model. The acceleration of the mass
was controlled by a position-driven proportional controller. The hysteresis force
was measured on the output of the controller –Fapplied, – while the output of the
system was the position of the mass –position. So the friction hysteresis is defined
as

FappliedD h.position/: (9)

In the identification phase these two values were used to train a neural hysteresis
model that was used later to predict the hysteresis force and by connecting it to
the model – as it is done inFig. 8.b – to compensate the hysteresis effect. In the
experiments the applied force was controlled by the input voltage of the DC motor
and the position was measured in micrometers. Thus, the resultant plots show the
relation between the position and the input voltage.

The stop model of the hysteresis is a good reference for the simulated evalua-
tion of the neural hysteresis model because it can be easily set up to create different
symmetric hystereses modifying the weights of the model and the stop model and
the neural model, can model the same type of hystereses. But there is also a signifi-
cant difference in the training properties of the two models that justifies the research
of the neural model. Due to the activation mode of the stop hysterons in the stop
model, each non-zero input produces a non-zero output value on all of the hysterons.
So the weight modification changes in each step all the weights, while in case of
the neural model it is well probable that even after many non-zero hysteresis inputs
there will be intervals in the non-linear transformation that have zero activation
value. This has the effect that the weight modification does not affect any weights,
so the model fits better the local properties of the hysteresis. Naturally, by certain
training sets this leads to worse generalization, however, local errors in the training
data appear localized in the trained model as well.

The same experiments were done using the simulated and the real setup to
gain comparable results and to be able to validate the model.
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The following sections show the results for the identification and compensa-
tion experiments on both the real system and the simulated setup.

3.1. Identification Results on the Simulated Setup

Using the simulated setup, the biggest problem was to find correct controller pa-
rameters for the proportional controller to get a good approximation of the friction
hysteresis without unnecessary oscillations, thus to create the simulated setup and
to simulate the measurement process. The best possible way to do this was the trial-
and-error method. The problem was mainly the high sensitivity of the simulation
against the parameters that resulted in instability in many cases.

However, after finding a correct gain, the hysteresis model had no trouble
approximating the ‘measured’ friction hysteresis.

Even the presence of some artificially generated measurement noise caused
no noticeable differences.

The convergence speed was reasonably fast as well (� 60 training cycles
with 1000 samples pro cycle for an error limit of 5% of the output) to try the same
identification method in the real setup.

Fig. 9.a. Simulation – identifying the
hysteresis in ideal case

Fig. 9.b. Simulation – identifying the hystere-
sis in the presence of measurement
noise

Fig. 9.a and9.b show the results of two identification tests on the simulated
system using the same number of intervals (20) in the model. The only difference
is that in the second test a small noise – with an amplitude of about 5% of the
maximum difference – was added to the simulated measured position values.
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3.2. Identification Results in the Real Setup

The experiments in the real setup, however, have shown a quite different image.
First, the convergence of the approximation was much slower than in the sim-

ulation. In the beginning, the measurement noise was thought to be responsible for
the difference, but this hypothesis was dropped after the experiments with artificial
noise on the simulation because there even the visible noise caused no problems,
and in the real setup the measurement noise was nearly below the visible level.

Fig. 10. Real setup – identifying the hysteresis using the main loop

After examining the measured friction hysteresis in detail, a possible source of
the problems could be identified: the measured hysteresis was not exactly symmetric
and also the congruency property [7] was not exactly valid (as it can be observed in
the next figures). (However, according to friction theory, both properties should be
valid.) In Fig. 11.a we have plotted the main loop of the measured hysteresis with
a continuous line and its mirrored counterpart with a dashed line. If the loop would
be symmetric, the two lines should overlap each other so we would see only the
solid line. InFig. 11.b we have plotted the raising and falling sections of the major
and minor loops setting the turning points to the origo. If the measured hysteresis
were congruent, there would be a maximum of two lines visible as the minor loops
would follow the same trajectory as the major loop. (The two trajectories would
mean that the hysteresis is not symmetric but congruent.)

So while the simulation worked with a symmetric and congruent hysteresis,
in reality neither properties were exactly right. As it seemed unlikely that such a
minor flaw in these properties could cause a major slowdown in the training, to test
the effect about the same flaws were introduced into the simulated setup. The result
was that in the simulation there also appeared a drop in the convergence speed. So
it seems that these properties – symmetry and congruency – are overall important
for good approximation results.

The approximation performance was also tested when the training was done
using only samples from the major loop, and when samples also from minor loops
were used. In the first case, as the next figures show (Fig.12.a and 12.b), the
estimated curve was smoother, but the approximation error on the minor loops was
large.

In the second case the performance on the minor loops got better but decreased
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Fig. 11.a. Simmetry test Fig. 11.b. Congruency test (plotted with a
small linear distortion to empha-
size the differences between the
curves)

Fig. 12.a. Performance in minor loops Fig. 12.b. Identifying the hysteresis using
also minor loops

on the major loop, however, the average performance was better than in the first
case. This behavior was also verified using the simulated setup with an asymmetric
hysteresis model.

As an interesting byproduct of these experiments, a possible way of speeding
up the convergence on the asymmetric training data could be determined. Additional
output noise made the training faster because it blurs the asymmetry in the data.
The speed gain using measured data from the real setup was larger than in the
simulation, but it was also less asymmetric than the simulated data.

4. Friction Compensation with the Neural Hysteresis Model

As mentioned before, the identified model was tested by using it to compensate the
friction hysteresis present in the real setup and in the simulation. The following
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figures show the desired position – actual position graphs for the different setups.
Now all units are in�m.

Fig. 13.a. Simulation – desired position,
actual position without friction
compensation

Fig. 13.b. Real data – desired position,
actual position without friction
compensation

Fig. 14.a. Simulation – compensation
with the identified model in the
ideal case

Fig. 14.b. Real data – compensation with
the identified model – major
loop

As it could be expected from the training results, the compensation capability
of the model in the simulation was extraordinarily good, but in the real setup the
approximation errors cause visible ‘bumps’ of about 5�m. These appear due
to the fact that the model does not fit correctly the steepest parts of the hysteresis
branches, and, of course, the simple linear controller that was used together with the
hysteresis model cannot compensate this strongly non-linear difference. Currently
further input interval setups are under investigation that are thought to provide better
approximation on the fast changing parts of the hysteresis. However, the best way
to deal with the problem would be an algorithmic solution to automatically optimise
the interval setup during the training process.
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Fig. 15. Compensation in minor loops

5. Conclusions

This article introduced and investigated a modelling approach based on neural net-
works for hysteresis effects. The introduced neural model is a much simplified
version of the traditional Preisach hysteresis model using only a one dimensional
and discrete weight function to calculate the output. Thus its modelling ability is
also simpler, limited to the domain of symmetric hystereses. However, to function
properly the model still requires that the two necessary properties – congruency and
wiping-out property – for the Preisach model are fulfilled. The model was found
to be very effective in the simulated environment, but it has a considerable error
in a real setup. As these result were examined, the asymmetry of the measured
hysteresis and the lack of congruency in the minor loops could be determined as a
possible cause for this effect. Naturally, the real physical effect fulfils these prop-
erties, however, even a slight distortion in the measurements can cause quite big
problems in the modelling by disturbing these properties. So the neural modelling
approach must be reconsidered and refined using these experiences.

References

[1] GE, P. – JOUANEH, M., Modeling Hysteresis in Piezoactuators,Precision Engineering, 17
No. 3 (1995), pp. 211–221.

[2] GOLDFARB, M. – CELANOVIC, N., A Lumped Parameter Electromechanical Model for De-
scribing the Non-linear Behavior of Piezoelectric Actuators,Trans. of the ASME, Journal of
Dynamic Systems, Measurement, and Control, 119 (1997), pp. 478–485.

[3] FUTAMI , S. – FURUTANI, A. – YOSHIDA, S., Nanometer Positioning and its Micro-Dynamics,
Nanotechnology, 1 No. 1 (1990) pp. 31–37.

[4] SWEVERS, J. – AL-BENDER, F. – GANSEMAN, C. – PRAJOGO, T., An Integrated Friction
Model Structure with Improved Presliding Behaviour for Accurate Friction Compensation,
ITAC, 45 No. 4 (2000), pp. 675–686.

[5] K UHNEN, K. – JANOCHA, H., Adaptive Inverse Control of Piezoelectric Actuators with Hys-
teresis Operators,Proceedings of European Control Conference, 1999.



NON-LOCAL HYSTERESIS FUNCTION 267

[6] M AYERGOYZ, I. D., Mathematical Models of Hysteresis, Springer-Verlag, New York, 1991.
[7] PREISACH, F., On Magnetic Aftereffect,Zeitschrift für Physiks, 97 (1935), pp. 277–302.
[8] K RASNOSELSKI, M. A. – POKROVSKII, A. V., Systems with Hysteresis, Springer-Verlag, New

York, 1989.
[9] L AMPAERT, V. – SWEVERS, J., On-Line Identification of Hysteresis Functions With Non-local

Memory,Proceedings of the International Conference on Advanced Intelligent Mechatronics,
1 (2001), pp. 833–837.

[10] AWABDY, B. A. – SHIH, W.-C. – AUSLANDER, D. M., Nanometer Positioning of a Linear
Motion Stage Under Static Loads,IEEE/ASME Trans. on Mechatronics, 3 No. 2 (1998), pp. 113–
119.

[11] WEI, J.-D. – SUN, C.-T.,Constructing Hysteretic Memory in Neural Networks,IEEE Trans-
actions on Systems, Man and Cybernetics – Part B: Cybernetics, 30 No. 4 (2000), pp. 601–609.

[12] KUCZMANN, M., A New Neural-Network-Based Scalar Hysteresis Model,IEEE Trans. On
Magn., 38 (2002) pp. 857–860.

[13] KUCZMANN, M., Neural Network Model of Magnetic Hysteresis,COMPEL, The International
Journal for Computation and Mathematics in Electrical and Electronic Engineering, 21 (2002),
pp. 364–376.

[14] LAMPAERT, V. – SWEVERS, J. – AL-BENDER, F., Modification of the Leuven Integrated
Friction Model Structure,Transactions on Automatic Control, 47 No. 4 (2002), pp. 683–687.


	Introduction
	Neural Hysteresis Model
	Calculation of the Activations
	Calculation of the Model Output
	Training of the Model

	Friction Identification with the Neural Hysteresis Model
	Identification Results on the Simulated Setup
	Identification Results in the Real Setup

	Friction Compensation with the Neural Hysteresis Model
	Conclusions

