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Abstract

In this paper signal-based and physics-based sound synthesis methods are described, with a particular
emphasis on our own results achieved in the recent years. The applications of these methods are given
for the case of organ, piano, and violin synthesis. The two techniques are compared based on these
case studies, showing that in some cases the physics-based, in other cases the signal-based realization
is more advantageous. As a theoretical result, we show that the two methods can be equivalent under
special circumstances.
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1. Introduction

Musicians and music students – especially those playing the organ, the piano or
other large instruments – require to have small size, economic and light musical
instruments for portable, stage or home applications. Composers would like to
try all kinds of instruments they otherwise do not play for searching new ways
of expression. Thus, models of traditional instruments are needed to satisfy these
requirements. Naturally, the sound quality of these artificial instruments needs to
be comparable to that of the original ones. By modelling traditional instruments
(like guitar, piano, organ, strings, winds, brass, etc.) and modifying the model
parameters, novel, never-heard sounds can be generated. In addition, with more
insight and better description of the physical operation of these instruments, new
and efficient algorithms can be developed from which other fields of digital signal
processing can benefit.

Sound synthesis methods can be classified in many ways. Here we divide
them into three groups, by unifying two groups of the classifications found in [1].

The first group is the family of abstract methods. These are different al-
gorithms which can easily generate synthetic sounds. Methods like frequency
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modulation [2] and waveshaping [3, 4] belong to this category. Modelling real
instruments with these methods is fairly complicated as the relationship between
the parameters of the technique and those of the real instruments cannot be easily
formulated. Thus, these methods are beyond the scope of this paper.

The second group (signal modelling) is the one which models the sound of
musical instruments. In this case, the input to the model is only the waveform or a set
of waveforms generated by the instrument and the physics of the sound generation
mechanism is not examined in detail. Synthesis methods like sampling [5] and
SMS (Spectral Modelling Synthesis) [6] belong to this category. The corresponding
groups in the taxonomy of [1] are processing of pre-recorded samples and spectral
models.

The third group (physical modelling) is the one which instead of reproducing
a specific sound of an instrument, tries to model the instrument’s physical behaviour
itself. Usually, the physical system (such as a string on an instrument or the skin
of a drum) can be described with a set of partial differential equations and transfer
functions. Given the excitation of the instrument (such as bowing the string or
hitting the drum), the difference equations can be solved (or the general solution
can be applied for the given input), and the output of the model is expected to be
close to the output of the real instrument. One well-known method in this category
is the digital waveguide synthesis [7] which efficiently models the vibration of a
one-dimensional string, based on the solution of the wave-equation.

In this paper, the signal- and physical-model based synthesis methods are
examined, based on our own results achieved in the last years. In Section2 an effi-
cient signal model based synthesis method is introduced and applied for modelling
the sound of organ pipes. Then Section 3 describes an extended digital-waveguide
based physical model with the application of modelling the sound of the piano and
the violin. Finally, in Section 4, the equivalence of the two methods for a given ex-
citation is proven, and detailed comparison is given from the viewpoint of efficiency
and applicability. The results are summarized in Section5.

2. Signal Modelling

Nowadays, the most commonly used signal-model based synthesis method is the
sampling method (sometimes referred as PCM – Pulse Code Modulation). This
method samples the sound of the instrument to be modelled, stores the samples in
a digital memory and plays it back when required. To reduce the required memory
for a waveform, usually the quasi-steady state of the sound is stored as one period,
and this period is repeated continuously at playback. To be even more effective,
usually not all the notes are sampled (e.g. all the 88 keys of a piano), but only a few,
and the missing waveforms are generated by resampling the stored ones.

It can be readily deducted from the above description that the sampling syn-
thesis technique has some limitations. One limitation is the lack of controllability.
As the method simply plays back the wavetables, the musician has only limited
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tools to modify the characteristics of the sound (such as linear filters and amplitude
envelopes). Other limitation is the absence of random effects. Most instrument
(especially bowed string instruments and wind instruments) produce different tran-
sients at the start of the sound and random effects exist also in the stationary state
(e.g. the so-called wind-noise in the case of wind instruments).

Thus, a signal model has to take into account all these effects. In the fol-
lowing, first the organ and its characteristics from a signal modelling viewpoint
are described. Then a conceptual signal model and its application to the sound
synthesis of the organ pipe is introduced which is flexible enough to model all the
required parameters.

2.1. The Sound Characteristics of the Organ

The pipe-organ is one of the largest musical instruments. A small, efficient and
high fidelity instrument substituting the church organ is long awaited by the organ
players and students. Accordingly, the organ is among the most intensively studied
instruments.

The sound generators of the organ are the flue and the reed pipes. As in a real
organ flue pipes are dominant (small organs do not even have reed pipes), only the
most important properties of the sound generated by the flue pipes are examined in
the following.

It is well known that a significant and also easy-to-measure part of a musical
instrument’s sound is the stationary spectrum. Accordingly, the organ stops have
also different characters, and the spectrum is strongly dependent on the pipes’ phys-
ical parameters [8]. In addition, the way the sound builds up and tails off (the attack
and decay transients of the sound) and the modulations on the harmonics, or other
quasi-steady processes are important parts of a musical sound, too. Examinations
prove that without the attack and decay transients some instruments cannot be iden-
tified [9], and in some other cases only the specific modulations of an instrument
on a sine wave are enough to recognize the instrument itself [10]. Hence, a good
synthesis has to take into account both the transient and the quasi-steady processes.

Another property of some musical instruments is the effect of the ambience of
the sound source. The organ normally sounds in a church or in a hall, far away from
the listeners. Closer to the pipes (without reverberation) the organ sounds unfamiliar
[11]. Another external effect is the sometimes observable coupling mechanism of
two pipes [12]. The localization of the sound-sources (which originates from the
different positions of the pipes) falls also under this category [13].

2.2. Model Structure

The main concept of the proposed synthesis method is the periodic signal model
which is based on the Fourier-expansion of the periodic signals. Such a generator
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can generate a band-limited periodic signal, consisting of N complex components
[14]. In sound synthesis it realizes directly the discrete spectrum components (the
partials) of the instrument, and it is usually referred to as additive synthesis [5].
Studying the organ sound, the attack and decay transients can be easily realized by
modifying the amplitude-envelope of these partials at the beginning and at the end
of the sound.

For the organ pipes, the most important quasi-steady sound is the wind-noise.
In some stops, this is the component which characterizes the pipe, thus it needs to
be modelled. It can be seen in Fig. 3, that the noise is a wide-band component of
the sound, with a typical spectral shape. To integrate it into the signal model, the
periodic generator can be completed with a noise-generator. Naturally, during the
transients the envelope of the noise has to be changed as well.

The applied periodic signal model for sound synthesis is displayed in Fig.1.
The periodic signal generator has two main parameters – the fundamental frequency
and the volume – and each harmonic component has further parameters, the relative
magnitude and the phase. The noise generator produces filtered white noise, which
is added to the magnitude-modified outputs of the periodic generator. At the end
the summarized output is modified by the external effects discussed above, such as
reverberation.
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Fig. 1. The integrated signal model.

2.3. Parameter Estimation

In order to determine the correct parameters of the signal model, real pipe sounds
were recorded and processed off-line with MATLAB, using the analysis process
displayed in Fig. 2.
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Fig. 2. The analysis process.

First, the stationary and the transient parts (the attack and the decay) were
separated in the time-domain. From the stationary part the fundamental frequency
and the magnitudes of the harmonic components can be readily calculated.

A novelty of the introduced method (first proposed in [15]) is that for data and
computation-time reduction the attack and decay envelopes of the harmonics are
implemented as step responses of IIR-filters. Using this method, the kth harmonics
at time step n can be computed as

yk;n D hk;n Ak cos.2�.k f0= fs/n C 'k/; .k D 1 : : : N/; (1)

where yk;n is the harmonic component, Ak and 'k are the relative magnitude and
phase of the component, f0 and fs are the fundamental and the sampling frequency,
respectively, and hk;n represents the samples of the step-response of the designed
envelope-filter.

The envelope-generator filter can be designed as follows. After isolating all
the harmonics by FIR filtering, the envelopes can be determined as the absolute
value of the harmonics’ analytical signal which is a complex signal originated from
the real signals and their Hilbert-transform [16]. To get the best time-domain result,
the obtained envelopes were smoothed, and a step-response of a 2nd or 3rd order
IIR filter was fitted on each of them using Prony’s time-domain filter design method
[17].

To realize the important wind-noise, a noise-filter was designed as follows.
After subtracting the discrete components from the spectrum, 2nd order resonant
filters were fitted to the specific peaks (given by the center frequency, gain level
and damping factor) in the averaged noise spectrum. The resulted filter consists of
6-10 2nd order resonators.

The examined external effects were only the reverberation of the hall and the
location of the pipes. This latter one can be modelled by intensity and time-delay
stereo soundfield, while the reverberation can be simulated using hall-simulators.
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2.4. Synthesis Results
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Fig. 3. The stationary spectrum of two original pipes and their models.

The spectrum of two organ pipes and their models can be seen in Fig.3. The
first one is a C4-pipe of a Bourdon register (closed, wooden pipe), the second is a
Diapason E4-pipe, which is an open organ-metal pipe. It can be seen clearly that
both the original and model Bourdon pipe have more noise, and their odd harmonics
have smaller magnitude, than those of the Diapason pipe. Furthermore, the metal
pipe has much more relevant components than the wooden one.

An example of the averaged original attack transients and the estimated 3rd
order IIR filter step-responses can be seen in Fig. 4. The higher the order of the
component, the smaller its signal-to-noise ratio, this is why the modelling is worse
for higher order components. Note that their precise synthesis is not required,
according to their small magnitude (cf. Fig. 3).

To test the efficiency of the introduced synthesis method, both an off-line
MATLAB implementation and a real-time (16-bit Digital Signal Processor) imple-
mentation have been examined. For comparison, original and synthesized samples
are available through the Internet, at [18].
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Fig. 4. The envelopes of the first 8 harmonics of a Diapason pipe (dashed lines), and the
fitted step-responses (solid lines).

3. Physical Modelling

3.1. Model Structure

Since the physical modelling approach simulates the structure of the instrument,
the parts of the model correspond to the parts of real instruments. In every string
instrument, the heart of the sound production mechanism is the string itself. The
string is excited by the excitation mechanism, which corresponds to the hammer
strike in the case of the piano, or to the bow in the case of the violin. The string
is responsible for the generation of the periodic sound by storing this vibrational
energy in its normal modes. One part of this energy dissipates and an other part is
radiated to the air by the instrument body. The body can be seen as an impedance
transformer between the string and the air, which increases the effectiveness of
radiation significantly. The body provides a terminating impedance to the string,
therefore it also influences the modal parameters of string vibration, i.e., partial
frequencies, amplitudes, and decay times. The model structure is displayed in
Fig. 5.
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Fig. 5. The structure of the physical model.

3.2. String Modelling

A very efficient technique has been presented for string modelling in [19, 7]. The
digital waveguide modelling is based on the discretisation of the solution of the
wave equation. Every travelling wave which retains its shape is a solution of the
wave equation. Coming from the linearity of the string, the general solution is a
superposition of two travelling waves; one of them going to the right, the other to
the left direction [8]:

y.x; t/ D f C.ct � x/C f �.ct C x/ (2)

This equation holds for other wave variables (velocity, force, curvature) too. The
digital waveguide model of the ideal string is obtained by sampling Eq. (2) tempo-
rally and spatially in a way that the two travelling waves move one spatial sampling
interval during one time-instant [7]. This is implemented by two parallel delay
lines, where the transversal displacement of the string is calculated by adding up
the output of the samples of the two delay lines at the same spatial coordinate.

The termination of the string can be modelled by connecting the two delay
lines at their endpoints. An ideally rigid termination corresponds to a multiplication
of�1, meaning that the travelling waves are reflected with a sign change. In practice,
the string is terminated by a frequency dependent impedance, introducing losses to
the string vibration. This is taken into account by a digital filter Hr.z/ at the end
of the delay line. Moreover, the distributed losses and dispersion of the string can
also be approximated by the lumped reflection filter Hr.z/ [7]. Fig. 6 displays the
digital waveguide model in its physical form, where M represents the length of the
string in spatial sampling intervals, Min denotes the position of the force input, and
Hr .z/ refers to the reflection filter.

3.2.1. Reflection Filter Design

The impulse response of the digital waveguide is a quasi-periodic set of exponen-
tially decaying sinusoids, whose frequencies and decay times can be controlled by
the careful design of the reflection filter Hr .z/. In practice, the model parameters are
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Fig. 6. The digital waveguide with consolidated losses and dispersion realized by the filter
Hr .z/. The z�Min and z�.M�Min/ stand for delay lines of Min and M�Min samples,
respectively. The hammer force is referred by Fin and the force at the bridge is
referred by Fout.

estimated from recorded tones, since that requires the measurement of one signal
only. The partial frequencies produced by the digital waveguide of Fig.6 are de-
termined by the phase response of the reflection filter Hr .z/, together with the total
length of the delay lines. On the other hand, the decay times of the partials are influ-
enced by the magnitude response of the loss filter. Therefore, it is straightforward to
split the design process into three independent parts: Hr .z/ D �Hl.z/Hd.z/H f d.z/,
where Hl.z/ is the loss filter, Hd.z/ is the dispersion filter, and the fractional delay
filter H f d.z/ is required for fine-tuning the fundamental frequency of the string.

The role of the loss filter Hl.z/ is to set the decay times of the partials.
Therefore, the decay times of the recorded tone should be estimated, based on the
amplitude envelopes of the partials [20]. The partial envelopes can be calculated
either from analytical signals (cf. Section2), or with heterodyne filtering [21] or with
sinusoidal peak tracking utilizing Short Time Fourier Transform [20]. As the nearly
exponential decay becomes approximately linear using logarithmic amplitude scale,
the decay time and initial amplitude parameters can be estimated by linear regression
[20, 21].

The specification for the loss filter can be computed as follows:

gk D
��Hl

�
e j#k

��� D e�
k

fk �k ; (3)

where �k is the decay time of partial k, fk is the frequency of partial k and gk is the
desired amplitude value of the loss filter at the angular frequency #k . Fitting a filter
to gk coefficients is not trivial, even if the phase part of the transfer function is not
considered, as the error in the decay time is a nonlinear function of the amplitude
error. When the magnitude response of the loss filter exceeds unity, the stability of
the feedback loop is at risk.

Instead of designing the loss filter with respect to magnitude error, [19] sug-
gests to optimize the loss filter with respect to decay times. We have also developed
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filter design algorithms based on the decay-time error [22, 23]. Decay-time based
optimization assures that the overall decay time of the note is preserved and the
stability of the feedback loop is maintained, as negative decay times can be ex-
cluded. Moreover, optimization with respect to decay times is perceptually more
meaningful.

Founded on these ideas, we have proposed a simple and robust method for
high-order loss-filter design based on a special weighting function [23]. The result-
ing decay times of the digital waveguide are computed from the magnitude response
Ogk D jH.e j#k/j of the loss filter by the inverse of Eq. (3):

O�k D d. Ogk/ D �1=. f0 ln Ogk/ (4)

If the function d. Ogk/ is approximated by the first-order Taylor polynomial around
the specification gk , the mean-square error with respect to decay times is obtained
by:

e
�
D

KX
kD1

. O�k � �k/
2 D

KX
kD1

.d. Ogk/� d.gk//
2 � (5)

�

KX
kD1

.d 0.gk/. Ogk � gk//
2 D

KX
kD1

wk. Ogk � gk/
2 (6)

which is a simple mean-squares minimization with weights wk D .d 0.gk//
2, and

can be done by any standard filter design technique.
The first derivative of d.gk/ is d 0.gk/ D 1=. f0gk.ln gk/

2/, which can be ap-
proximated by d0.gk/ � 1=. f0.gk � 1/2/. Since 1= f0 does not depend on k, it can
be omitted from the weighting function. Hence, the weighting function becomes:

wk D
1

g2
k .ln gk/4

�
1

.gk � 1/4
: (7)

The phase specification of the loss filter is computed by the Hilbert transform [16]
from the interpolated magnitude specification, corresponding to a minimum-phase
filter.

Fig. 7 depicts the results of loss filter design for a filter order of 8 with solid
line. The measured decay times of the piano note A]4 are displayed with crosses. The
resulted decay times using a one-pole loss filter designed by polynomial regression
[22] are displayed with dashed line. Although the general trend and the decay times
of the first ten partials are already modelled precisely by the one-pole loss filter, in
some cases it is still advantageous to use higher-order loss filter. We have used 3rd

order loss filters for piano modelling, and one-pole loss filters for the modelling of
the violin. This distinction is motivated by the fact that the piano has a decaying
tone, therefore the decay rates have a great perceptual importance, while the violin
is a continuously excited instrument, where the precise rendering of the decay rates
are less significant for the listeners.
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Fig. 7. Loss filter design for A]

4 piano note: prescribed decay times (crosses), the decay
times approximated by the one-pole loss filter of [22] (dashed-line), and by an 8th

order loss filter designed by the method based on a special weighting function (solid
line).

In the case of piano modelling, the audible effect of string dispersion cannot be
neglected. Dispersion denotes an increase in wave velocity for higher frequencies.
This can be modelled by having a ‘shorter’ delay line for the higher partials than for
the lower ones. For that, a filter with a decreasing phase delay is required. Since
the magnitude response of the reflection filter Hr.z/ D �Hl.z/Hd.z/H f d.z/ should
only be affected by the loss filter Hl.z/, it is straightforward to use an allpass filter
as dispersion filter Hd.z/. For the design, we have used the method based on an
iterative least-squares algorithm [24, 25]. A filter order N D 16 has been required
for the lowest piano notes to provide good results, while for the middle register
a fourth-order dispersion filter has been found to be enough. For the violin, the
dispersion is negligible, therefore the dispersion filter Hd.z/ does not need to be
implemented.

The string needs to be fine tuned because delay lines can implement only an
integer delay and this provides too low a resolution for the fundamental frequencies.
Fine tuning can be incorporated in the dispersion filter design or, alternatively, a
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Fig. 8. The multi-rate resonator bank. The basic digital waveguide is referred by S
v
.z/ and

R1.z/ : : : RK .z/ stands for the parallel resonators. Downsampling and upsampling
operations are marked by # 2 and " 2, respectively.

separate fractional delay filter Hf d.z/ can be used in series with the delay line. In
this study, we have used a first-order allpass filter for this purpose. Another type of
fractional delay filters could be also used, [26] provides an exhaustive overview on
their design.

3.2.2. Modelling Beating and Two-Stage Decay

In real pianos, except for the lowest octave, the vibration of two or three strings
are coupled through the bridge, when one note is played. This produces beating
and two-stage decay in the sound [27]. This effect can be simulated by having two
coupled waveguides in parallel [28], but this leads to high computational cost and
complicated parameter estimation.

Instead, we suggest to use some second-order resonators R1 : : : RK parallel
with the string model S

v
.z/ [22, 29]. This is depicted in Fig.8. The transfer function

of the resonators Rk.z/ are as follows:

Rk.z/ D
Re fakg � Re fak pkgz�1

1 � 2 Re fpkgz�1 C jpk j2z�2

ak D Ake j'k pk D e j
2� fk

fs
�

1
fs �k ; (8)

where Ak , 'k , fk , and �k refer to the initial amplitude, initial phase, frequency and
decay time parameters of the kth resonator, respectively. The overline stands for
complex conjugation, the Re sign for taking the real part of a complex variable, and
fs is the sampling frequency.
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The resonators are tuned close to the frequency of the distinct partials of the
digital waveguide. Thus, every partial corresponds to two slightly mistuned sinu-
soids with different decay times and amplitudes, and their superposition produces
beating and two-stage decay. The efficiency of the structure comes from the fact
that only those partials have parallel resonators, where the beating and two-stage
decay are prominent. The others have simple exponential decay determined by the
digital waveguide model S

v
.z/.

If the resonators are implemented in a multi-rate manner [29], the method
provides significant computational savings compared to having a second waveguide
in parallel (5–10 operations/cycle instead of 30–40). Moreover, the parameter
estimation simplifies to finding the parameters of the mode-pairs. The stability
problems of a coupled system are also avoided.

3.2.3. Finger Modelling

On the violin, the player has to use his fingers to change the length of the strings
and thus to change the fundamental frequency of the tone. These note transitions
are important in determining the characteristics of the instrument. Physically the
finger acts like a damper attached to the string, which can be modelled by a scattering
junction with variable position. The frequency-dependent low pass filtering effect
of the finger can be realized within the reflection filter Hr .z/ as well. The scattering
junction is similar to finger hole models in woodwinds [30].

In our experiments we have used a simplified junction combined with a simple
fractional delay for fine tuning the frequency of the sound (see Fig.9). With the
increase of the pressure of the finger (p), the right side of the delay lines gets less
signal. Finally, when p D 1, the shortened left side string is terminated properly
with �1 (and tuned with the fractional delay D).

`

z
-1

-p

1-p

1-D D

z
-1

z
-1

z
-1

z
-1z

-1

 +

 +

Fig. 9. Simplified model of a string terminated by a finger. The z�1 sign stands for a unit
delay, 0 � p � 1 is the finger pressure coefficient, and 0 � D � 1 stands for the
length of the fractional delay.
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The finger model described above models only the transitions from an open
string note to a finger-terminated one and vice versa. However, in most cases the
player uses another finger to change from one note to the other, therefore two finger
junctions need to be included in the model. In practice, two types of transitions have
to be simulated depending on the direction of change. Changing to a higher note
requires that the first finger is already on the string and the second one is being used
normally, with increasing finger pressure. Changing to a lower note may assume
that the second finger is already in its place (behind the other) while the pressure of
the first finger is lowered to zero. By properly choosing the shape and the speed of
the pressure change several effects can be modelled.

Furthermore, differences in the four strings of the violin can be considered
to refine the model. Each string has its own properties (fundamental frequency,
specific impedance, stiffness, etc.), thus, each has different tone. The player has
the flexibility of choosing a string for a given note. The decision depends on the
pitch of the actual note, the notes following and preceding the actual one and the
timbre the musician wants to achieve. When a new note is started on a new string, a
previously excited open string or finger-terminated string might still vibrate, or the
latter might change to open string (if the player lifts away his finger). When off-line
synthesis is used, these subtleties can be set individually for each tone manually,
or transition rules can be formed to take them into account. On the contrary, for
real-time synthesis only general rules can be used for easier controllability.

3.3. Body Modelling

The radiation of the soundboard or any instrument body is generally treated as a
linear filtering operation acting on the string signal. Thus, body modelling reduces
to filter design. Theoretically, this filter should be somewhat different for all the
strings. This is feasible for the four strings of the violin, but for modelling the piano
having hundreds of strings, this would lead to very high computational load, which
is not acceptable. In practice, the string signals are summed and lead through a
single body filter to reduce the required computational complexity.

Instrument bodies exhibit a high modal density, therefore high-order filters
are needed for their simulation. In the case of the guitar body, the required filter
order was about 500 [31]. We have found that the piano requires even higher filter
orders. In the case of FIR filters, 2000 taps were necessary to provide high quality
sound. Commuted synthesis [32] could overstep this problem, but that would
require simplifications in the excitation model. Feedback delay networks [33] are
capable of producing high modal density at a low computational cost, but due to the
difficulties in parameter estimation, they have not been used for high-quality sound
synthesis.

To resolve this problem, we have proposed a novel multi-rate approach for
instrument body modelling [34]. The body model is depicted in Fig.10. The string
signal Fs is split into two parts: the lower is downsampled by a factor of 8 and
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filtered by a high order FIR filter Hlow.z/, precisely synthesizing the instrument
body response up to 2.2 kHz. Above 2.2 kHz, only the overall magnitude response
of the body is modelled by a low order FIR filter Hhigh.z/. This signal is delayed
by N samples to compensate the delay of the decimation and interpolation filters of
the low frequency chain. We have found that a downsampling factor of 8 is a good
compromise between sound quality and computational efficiency.

Fig. 10. The multi-rate body model. The body modes below 2.2 kHz are precisely syn-
thesized by the filter Hlow.z/ running at a lower sampling rate, while the higher
modes are approximated by a low order filter Hhigh.z/. Down- and upsampling
by a factor of 8 are referred by # 8 and " 8, respectively.

As an example, the magnitude response of a piano soundboard model is
depicted in Fig. 11. It can be seen in the figure that the magnitude response is
accurately preserved up to 2 kHz. Although not displayed, but so is the phase
response. Above 2 kHz, only the overall magnitude response is retained. The
proposed model is capable to produce high sound quality at around 100 instructions
per cycle and provide a very similar sonic character compared to the original 2000
tap FIR filter.

3.4. Excitation Modelling

The string and body models are of the same structure for the different string instru-
ments, only their parameters are different. On the contrary, the excitation models
differ for the violin and the piano, as their excitation mechanisms are completely
different, and their precise implementation is essential for rendering the sonic char-
acteristics of these instruments.

3.4.1. The Hammer Model

The piano string is excited by a hammer, whose initial velocity is controlled by the
player with the strength of the touch on the keys. The excitation mechanism of
the piano is as follows: as the hammer hits the string, the hammer felt compresses
and feeds energy to the string, then the interaction force pushes the hammer away
from the string. Accordingly, the excitation is not continuous, it is present for some
milliseconds only. The hardwood core of the hammer is covered by wool felt,
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Fig. 11. The magnitude transfer function of a multi-rate soundboard model.

whose hardness increases in the function of compression. This is the reason why
playing harder on the piano results not only in a louder tone, but also in a spectrum
with stronger high-frequency content.

The piano hammer is generally modelled by a small mass connected to a
nonlinear spring [35]. The equations describing the interaction are as follows:

F.t/ D f .1y/ D

�
K .1y/p if 1y > 0
0 if 1y � 0 (9)

F.t/ D �mh
d2 yh.t/

dt2
; (10)

where F.t/ is the interaction force, 1y D yh.t/ � ys.t/ is the compression of
the hammer felt, where yh.t/ and ys.t/ are the positions of the hammer and the
string, respectively. The hammer mass is referred by mh , K is the hammer stiffness
coefficient, and p is the stiffness exponent.

These equations can be easily discretized with respect to time. However,
the straightforward approach (assuming F.tn/ � F.tn�1/) can lead to numerical
instabilities for high impact velocities. This can be avoided by rearranging the
nonlinear equations to known and unknown terms [36].

We have suggested a simpler approach for avoiding the numerical instabil-
ity [37]. The proposed multi-rate hammer model is depicted in Fig. 12. If the
continuous-time system is stable, the stability of the discrete system can always be
assured with a sufficiently high sampling rate fs , as for fs D 1, it will behave
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Fig. 12. The digital waveguide model of Fig. 6 connected to the hammer running at a
double sampling rate (# 2 and " 2 stand for down- and upsampling). The string
impedance is referred by Z 0.

as the continuous-time equations. However, increasing the sampling rate of the
whole model would lead to unacceptable computational overhead. When only the
sampling rate of the hammer model is increased, it leads to a small computational
overhead, while still assures that F.tn/ changes a little at every time-step. Imple-
menting the hammer at a double sampling rate has been found to provide stable
results. For downsampling (# 2 in Fig. 12) simple averaging, for upsampling (" 2
in Fig. 12) linear interpolation is used.

3.4.2. The Bow Model

In the case of bowed instruments the excitation is based on the sticking friction
between the string and the bow hairs. The bow, moving perpendicularly to the
string, grips the string (gripping phase). This friction force is highly nonlinear.
Due to the increasing displacement of the string, the elastic returning force is also
increasing until its level reaches the sticking friction. At this point the bow releases
the string, the string swings back (release phase) and then vibrates freely. This
vibration is damped partly by the own losses of the string and partly by the slipping
friction that develops between the string and the bow hairs. This state lasts as long
as the bow grips the string again, which occurs only when the velocity of the bow
and the string equals. In this case, their relative velocity is zero, the frictional force
is maximal. This alteration of the stick and slip phases is the so-called Helmholtz
motion. The excitation is periodical and generates a sawtooth-shaped vibration.
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The excitation depends on several control variables. The primary control
variable is the velocity of the bow, other important factors are the force of the bow
exerted on the string and the position of the bow along the string. Less important
variables are the angle between the bow and the string, the size of the contact
surface of the bow, and the grip of the bow hair (which can be increased by rosin).
In order to keep the model manageable and realizable, usually only the primary and
some other important variables (such as the bow force and position) are taken into
account.

The bow-string interaction is usually modelled by a scattering junction [38]
(Fig. 13). This junction is controlled by differential velocity (vC

1

), which is the
difference of the bow velocity and the current string velocity. The position of
bowing determines the insertion point of the junction into the delay lines. Other
control variables (bowing force and angle, etc.) are changed by modifying the
parameters of the reflection function (�.vC

1

/). This function also depends on the
characteristic impedance of the string and on the friction coefficient between the
bow and the string.

vs,l
+

vs,l 
−

vb ×ρ(v∆
+
)+

+

+

vs,r
+

vs,r 
−

Fig. 13. The scattering junction for modeling the bow-string interaction. The incoming
and outgoing wave velocities for the left-hand part of the string are referred by v C

s;l

and v�s;l . Similar notation is used (vCs;r and v�s;r ) for the right-hand part, too. The

reflection function is referred by �.vC
1

/ and vb stands for the bow velocity.

Besides modelling the bow-string interaction, the player has to be modelled
as well. The problem of modelling the left hand was discussed in Section3.2.3. An
exact model of the right (bowing) hand should provide enormous degrees of freedom
using interactive controllers. This would result again an unmanageable instrument,
and/or it would require a real violin player at the control keyboard/violin. Similarly
to the proposed finger model, this problem can also be resolved by an automatic
system based on real playing styles on bowed instruments. For each bowing style the
time variations of the primary control variables can be represented by characteristic
envelopes, so only one parameter needs to be adjusted for a given style. A MIDI
based implementation of this idea can be found in [39].
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4. The Comparison of the Two Synthesis Methods

Here we compare the two methods described in this paper, namely the signal mod-
elling based on envelope-filters and the physical modelling based on digital wave-
guides. When mentioning signal modelling and physical modelling throughout this
section, we are referring to these two models covered in the paper. As our signal
model describes the partial envelopes by linear filters, even theoretical connections
can be found between the two methods. The theoretical investigations are followed
by practical considerations.

4.1. Theoretical Connections

We show that the impulse response of both formulations can be expressed as a sum
of exponentially decaying sinusoids, which can be realized as a resonator bank.
Naturally, the resonator bank implementation is not an efficient realization, its only
purpose is to serve as a common base for the comparison of the two methods. We
show that for certain circumstances the two modelling approaches produce the same
output signal.

4.1.1. The Signal Model

Recalling Eq. (1), the signal model was based on the idea of switching on a sine
wave when a note is played and multiplying it with the attack and decay envelope
of the given harmonics:

yk;n D hk;n Ak cos.2�.k f0= fs/n C 'k/; .k D 1::N/ (11)

Here the attack envelope hk;n is realized as step responses of 2nd or 3rd order filters.
The step response can be further rewritten as

hk;n D wk;n � "n; (12)

where wk;n is the impulse response of the filter, "n is the step function and � denotes
convolution. The main effects of Eq. (11) in the time domain are depicted in Fig.14.

Multiplication in the time domain with a sine wave is a simple modulation.
Hence, in the frequency domain it becomes the convolution of the sine wave and
the step response of the envelope filter, i.e.

Y .z/ D .W .z/E.z// � X .z/: (13)

In this special case, this equation can be rewritten as follows:

Y .z/ D .W .z/ � X .z//.E.z/ � X .z// D R.z/.E.z/ � X .z//: (14)
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Fig. 14. Signal model of a given partial realized with envelope filters. (a) step response of
the envelope filter(hTnU); (b) output of the system (yTnU D hTnUxTnU).

Note that R.z/ D W .z/ � X .z/ in the time domain is rTnU D wTnUxTnU, i.e. a sine
wave multiplied with a second order system’s impulse response. In the frequency
domain, the convolution with the sine wave shifts up the original filter poles located
at DC to the frequency of the sine wave. Thus, this expression can be realized with
the same number of resonators as the number of poles of the original filter. The
input to these resonators is the sine wave triggered by the trigger signal "TnU. Fig.15
shows the time-domain signals of this realization.
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Fig. 15. Signal model of a given partial realized with resonators. (a) impulse response of
the two resonators r TnU; (b) output of the system (r TnU excited by a sinusoid).

Thus, the signal model with envelope filters applied to the partials of the sound
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can be realized with a set of resonators. The required number of resonators depends
on the number of partials to be generated and on the order of the envelope filters.

4.1.2. The Physical Model

The transfer function of the digital waveguide model of Fig.6, assuming that the
reflection filter is constant for all the frequencies (i.e, Hr .z/ D �r , 0 < r < 1) is:

Fout

Fin
D

1

1 � r z�N

�
1 C z�2Min

�
z�.M�Min/ (15)

After the fractional expansion of the denominator of Eq. (15) we obtain the transfer
function of a set of complex exponentials:

Fout

Fin
D

�
a1

1 � z�1r1e j#1
C : : :C

aN

1 � z�1rN e j#N

�

ak D j
2

N
sin.2k�

Min

N
/e� j#k M

r1 D : : : D rN D r
1
N ; (16)

where #k D .2k�/=N is the frequency of the kth mode, N D 2M is the total length
of the delay line, ak are the complex amplitudes and rk are the pole radii. The
impulse response h.n/ of the digital waveguide can be obtained from Eq. (16) by
the inverse Z transform:

h.n/ D
NX

kD1

ak

�
rke j#k

�n
D

N=2X
kD1

ak

�
rke j#k

�n
C aN�k

�
rN�k e j#N�k

�n
: (17)

As#N�k D 2��#k , the corresponding pole pairs will be conjugate pairs rN�k e j#N�k

D rke� j#k , and so the amplitudes aN�k D ak , where the overline refers to complex
conjugation. Therefore the impulse response h.n/ can be expressed as a sum of
exponentially decaying sinusoids:

h.n/ D
N=2X
kD1

r N
k

�
ake j#kn C ake� j#kn

�
D

N=2X
kD1

jak jr
N
k sin .#kn C 'k/ (18)

where jak j is the magnitude, and 'k is the phase of the complex coefficient ak .
It can be seen from Eq. (18) that the impulse response of the digital waveguide

with Hr .z/ D �r is the sum of exponentially decaying sinusoids, whose frequencies
are equally distributed on the unit circle, and their decay rates are equal. For an
arbitrary reflection filter Hr .z/ the modal frequencies and decay times cannot be
derived in a closed form, however, they can be determined by numerical iterations.
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In any case, the digital waveguide can always be substituted by a set of parallel
resonators. Their impulse responses are exponentially decaying sinusoids with
arbitrary initial amplitudes and phases, thus, they can be implemented as second
order IIR filters in parallel.

Similar derivations with a different formulation were presented in [28], and it
was shown that if two or three waveguides are coupled, the partials can be expressed
by the sum of two or three sinusoids. Obviously, when the beating and two-stage
decay of the piano is modelled by the multi-rate resonator bank of Section3.2.2,
the equivalent resonator structure can be obtained by adding the parallel resonators
R1 : : : Rk of Fig. 8 to the equivalent resonators of the waveguide. In this case, two
resonators will correspond to some of the partials.

4.1.3. The Link

So far, the digital waveguide model has been substituted by a set of resonators
connected in parallel, behaving in the same way as the original string model. Now,
the question is in which cases the signal model of Section2 can produce an equivalent
output compared to the digital waveguide.

In the case of the piano, the hammer excitation is impulse-like, thus, its
main role is to set the initial amplitudes of the partials. After the hammer has
left the string, the partial envelopes decay exponentially in the string signal (here
we neglect the transients introduced by the soundboard). Therefore, for a specific
hammer velocity, each partial can be modelled by a sine generator connected to an
envelope-filter, as described in Section 2. Thus, in the case of the piano, the signal
model produces the same output as the physical model, except the initial transients.

For the violin and for the organ the link between the physics of the instruments
and the envelope-filter based signal model is not as clear as for the piano. As these
two instruments are continuously excited, and their excitations are of nonlinear na-
ture, the partials cannot be synthesized by a set of exponentially decaying sinusoids.
Accordingly, the partial envelopes cannot be precisely described by linear filters.
From a physical point of view, the organ pipe and also the violin can be modelled
by a single digital waveguide connected to a nonlinear exciter. In our signal model
approach this nonlinear system is modelled with a linear system of a higher order.
Third order envelope-filters have been found to be adequate for modelling the organ
sound, this is equivalent to three digital waveguides coupled to each other. In other
words, three linearly excited and coupled acoustic tubes produce similar sound to
one tube connected to a nonlinear exciter.

4.2. Practical Considerations

In this section, our signal-based and physics-based approach is compared, from the
point of view of their applicability to different instruments.
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4.2.1. The Methods

The signal-based approach models the sound of the instrument itself. Accordingly,
it does not make any assumptions on the structure of the musical instrument, only
that the generated sound is periodic. Therefore, it can model a wide range of
instrument sounds. As it is a general representation, its parameter estimation is
simple, basically reduces to tracking partial envelopes, which can be easily auto-
mated. As the structure of the instrument is not modelled, the interaction of the
musician cannot be easily taken into account, meaning that, e.g., for different bow
forces or velocities in the case of the violin different parameter sets are required for
resynthesis. In practice, this means that for a single note the analysis procedure has
to be run for all the different playing styles that a player can produce, and a large
amount of data has to be stored or transmitted. As it treats the notes separately, the
interaction of the different notes, e.g., the coupled vibration of strings, cannot be
easily modelled. The quality and the computational load of the synthesis is usually
varied by changing the number of simulated partials, which is probably not the best
way from a perceptual point of view.

The physics-based approach models the functioning of the instrument, rather
than the produced sound itself. It makes assumptions about the instrument it models,
therefore, it looses generality. Consequently, the parameter estimation cannot be
completely automated, at least the model structure has to be determined by the user.
As the model structure already describes the main features of the instrument, only
small numbers of parameters are needed, and modifications to these parameters
produce perceptually meaningful results. For example, the user now controls the
bow force, rather than the loudness of a single partial, and the instrument reacts
in a way as a real violin would do. Therefore, only one parameter set is required,
since the different playing styles according to the interaction of the musician are
automatically modelled. As it describes the physical structure, the interaction of
the different model parts are also taken into account, e.g., the string coupling on
the piano is easily modelled. A drawback that none of the tones will be perfectly
modelled: the model may sound as a piano, but will be always different from that
piano where its parameters come from. The quality and the computational load is
varied by, e.g., changing the accuracy of modelling losses and dispersion, rather
than changing the number of simulated partials, which is less noticeable for the
listener. These characteristics are summarized in Table1.

4.2.2. The Instruments

The choice between the two approaches strongly depends on which instrument
should be modelled. The features which are relevant from this viewpoint for the
instruments covered in this paper are listed in Table2. Naturally, other factors also
influence the choice of the user, e.g., if automatic parameter estimation is required,
the signal modelling approach should be chosen.
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Table 1. Main features of the synthesis methods described in the paper.

Method Signal modelling Physical modeling

Assumptions on the structure Poor Yes
Generality Yes No
Parameter estimation Simple Complicated
Nature of parameters Abstract Meaningful
Modelling a specific sound Precise Approximate
Interaction of the musician Hard to modell Modelled
Interaction of instrument parts Hard to modell Modelled

The sound of a specific organ pipe cannot be influenced by the player. More-
over, the coupling between the different pipes is negligible, therefore the different
tones can be synthesized independently. As signal modelling describes a specific
sound almost perfectly, it is the best choice for organ synthesis. Its computational
load is acceptable, since the number of partials is low in the case of the organ flue
pipes.

In the case of the piano, the player can vary only one parameter for a given
note, by changing the impact velocity of the hammer, thus, the timbre space of
one note is one-dimensional. For a signal model, this would mean storing different
parameter sets for a few hammer velocities, and interpolation could be used between
sets. Although it is also possible with the signal model, the effect of the player is
much easier modelled by the physics-based approach. Moreover, the strings of the
piano are coupled when the damper pedal is depressed which is also controlled by
the player: this can be modelled by the physics-based approach only. As the low
piano tones may contain about hundred partials, the signal based model would be
computationally more demanding than the physical model based on digital wave-
guides.

For the violin, the freedom of the player is enormous: he can vary the bow
force, velocity, position, and angle, the finger position and pressure, and decide on
which string he plays the given note. Therefore, the timbre space of the violin is
multi-dimensional: for signal-based synthesis many sounds along all these dimen-
sions should be recorded and analyzed. Since the goal is not only to render the
sound of a specific violin note, but to create a playable instrument, the only choice
which remains is physical modelling. The inputs of the physical model are the real
physical parameters (e.g., bow force and velocity), therefore the effect of the player
is automatically taken into account.
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Table 2. Main features of the different instruments, serving a base for choosing the proper
synthesis approach.

Instrument Organ Piano Violin

Number of partials < 20 5–100 10–50
Number of playing parameters 0 Few Many
Coupling between the instrument parts Negligible Present Significant

5. Conclusion

In this paper signal-model and physical-model based sound synthesis methods have
been described, namely additive synthesis with envelope-filters and digital waveg-
uide modelling. Three case studies (applications of the methods to the sound syn-
thesis of the organ, piano and the violin) have been introduced, and detailed analysis
of the effectiveness of the different synthesis methods have been discussed.

The proposed additive synthesis method utilizing efficient and physics-base
envelope generation is capable of the accurate reproduction of a specific sound of
an instrument, but primarily the sound from which its parameters are derived from.
The model can be made more realistic by analyzing more than one waveforms
and including both the systematic and the random variations of each parameter.
Realizing these instrument-specific variations, the signal model is able to behave as
a real instrument. However, as the parameters of the model are not related directly
with those of the instrument, the efficient control of the model is not an easy task.

As the physical model is based on the physics of real instruments, its transient
and random behavior is close to those of the instrument to be modelled. In addition,
its parameters are derived directly from those of the instrument (such as string
length, bow velocity), thus, controlling a physics-based instrument is a much easier
task. In this paper, computationally efficient physical modelling based methods
were presented. It was shown that the models need to be evaluated also from a
perceptual point of view and this way the trade-off between efficiency and high
fidelity can be controlled.

As a theoretical result, it was shown that the signal model and the physical
model can be equivalent under specific circumstances. Finally, we have seen that
all methods can be used for realistic instrument modelling, but their computational
efficiency varies according to the function of the instrument to be modelled.
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