
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 47, NO. 3–4, PP. 297–309 (2003)

INVARIANT USER INTERFACES

Szabolcs BARANYI, Károly HERCEGFI and Károly TILLY

Department of Measurement and Information Systems
Budapest University of Technology and Economics

Magyar Tudósok körútja 1, Budapest, Hungary
e-mail: baranyi@mit.bme.hu

Received: Oct. 1, 2003

Abstract

In this article the term invariant user interface is introduced for a generic, stable backbone of all user
interfaces, which contain a set of predefined elements and rules to build complex interactive systems.
Invariant user interfaces specify fix points in using information systems. We argue that in interfaces of
complex software applications such fix points are increasingly necessary. Based upon psychological
assumptions and results of human computer interaction (HCI) studies, the necessity and benefits of
invariance is shown, among others increased efficiency, enhanced reliability of use and decreased
cost of software ownership. In this article invariance properties of state-of-the-art user interfaces are
summarized, and a simple interaction model is introduced. Types and limits of invariance is defined
using this model, and a set of fundamental criteria is characterized that invariant interfaces must meet.

Keywords: user interfaces, invariance criteria, mental models, abstract interfaces, abstract devices.

1. Introduction

Humans need fix points which control their behavior and help them in planning
actions for unforeseen situations. These fix points are rules and assumptions which
allow to interact with our environments, and to predict and react to events. In the
real world such fundamental rules are established upon social, biological or physical
laws (ATKINSON [2]). A user interface is considered invariant if its operation is
built around a set of predefined fix points of using information systems.

Users can nowadays access computer system services through platform, de-
vice and application-specific interfaces. An average computer user must be able
to work daily in different environments like desktop computers, laptops, palmtops
or handies. In the case of direct manipulation interfaces, metaphors of windows
and widgets span different operating system environments and are well known and
accepted by large user communities. On the other hand, elements having higher
complexity or higher level semantics like commands, navigation sequences or im-
portant user interface component layouts are not invariant even inside a single
operating system.

Designing user interfaces is based on tradition and guidelines of large software
vendors and consortiums like APPLE [1], IBM, the OSF group [8] or or Microsoft
[13]. These guidelines define metaphors and the widely used interface elements

baranyi@mit.bme.hu


298 S. BARANYI et al.

whith semantics widely known and accepted by the majority of users. Recommen-
dations comprise only widget-level visual design and some rules for widely used
menu items and shortcuts.

Certain criteria of consistency are contained in these recommendations, but
these are only based on tradition. It is obvious that currently no theory of invariance
exists, and the criteria and applicability limits of invariance are also unknown. The
lack of invariance leads to a set of significant problems.

The first problem is that the use of applications must be learned and relearned
for each domain, environment, vendor and even software version. Large software
owner firms spend millions of dollars year by year for software training of employ-
ees.

The second problem is that relearning decreases efficiency. A problem of
relearning and the importance of standards for commands are reported in KEITH
[11]. A number of independent software ergonomic research studies show [7] that
a user can handle a computer system efficiently if he can use a software product
without significant mental load. It is also shown that mental load is decreased
through practice and experience IZSÓ [9].

The third problem is that relearning increases the probability of user errors.
Thus, the stability of applicable knowledge at the user interface level is required to
increase reliability, which is especially crucial in cases like safety critical systems
where human errors have severe consequences.

It can be concluded that potential benefits of invariance in user interfaces in-
clude increased efficiency and reliability of use, a decreased burden of learning with
no relearning in the optimal case and thus a decreased cost of software ownership.

Furthermore, invariant user interfaces offer the possibility of creating a generic
symbol system and concepts that future communities of users can learn at grammar
school and apply them for a lifetime, without relearning or further customizing their
knowledge. So our vision could be summed up in a simple sentence: Learn once,
use for a lifetime.

2. A Model of Invariant Interaction

For the purposes of introducing and discussing the problems and elements of in-
variance, a user oriented model of information systems is applied. See Fig.1. This
model is based on the Arch reference model of interactive systems [3]. According
to this model a computer system offers a set of services to the user. The user can
formulate requests for the execution of services above a selected set of contents.
User requests are executed by appropriate providers (servers) and the results are
passed back to the user.

The user space is representing concepts as the user sees them, namely inter-
face elements, computer system services, contents and devices. The implementation
space contains software and hardware modules, which can execute services, imple-
ment user interface components and realize hardware IO devices. In the following



INVARIANT USER INTERFACES 299

sections we provide evidence that the organization of concepts and the elements of
the user space are crucial in defining fix points of information systems.

Fig. 1. User-oriented model of information systems

This model assumes that the user solves his problems with the help of a
computer system, which executes a set of services upon user requests. Service
requests are executed by providers, which assign a service to a list of arguments in
the form of pieces of contents. Users can request services through user interface
components, which also have the responsibility to display the results produced by
the computer system. User interface components are accessed through devices.

The presentation layer represents concepts as the user sees them, namely
interface components, services and contents. Interface components in the presenta-
tion layer are mapped to abstract devices which are introduced to describe a set of
higher level functionalities of pieces of real hardware. Invariant usage of functions
on various hardware products is called device independence, which is subject to
extensive research and standardization W3C device independence group [19].

The execution layer contains pieces of software, which can execute services.
Components in the execution layer must meet abstract service specifications, and
can be flexibly combined to form compound service structures.

The most important precondition of invariant interaction is a set of informa-
tion, independent of both the way of presentation and execution of services. This
is encoded into the abstraction layer. It separates the semantics and implementa-
tion of services and contents from their presentation and execution, and defines a
mapping between elements of the presentation layer and the execution layer.

The elements of the abstraction layer are abstract services and content types.
When implementing invariant interfaces, the abstraction layer serves as the basis of



300 S. BARANYI et al.

defining protocols between presentation and execution components.
Services are offered through interface components in the form of commands.

Interface components also display pieces of contents, which are either arguments
of service requests or results of service execution. When formulating requests, the
user selects arguments, selects a command, and activates it. These steps require
navigation (to find the place of a command or piece of content in the interface),
recognition (to realize that a command represents a desired service or that a piece
of content represents a desired argument) and activation (to formulate a request and
to start its execution).

3. The Importance of Abstraction and Separation

A major problem of current software applications is the large number of application
environments that a user must learn. In the following # denotes set arity, while S is
the set of abstract services a user requires, C is the set of content types the user can
interpret, E is the set of interface elements the user can apply to formulate requests
and A is the set of application dependent actions, a user must learn to formulate
necessary requests. So a user can access #S different services above #C different
types of contents through #E different user interface elements using #A different
actions that a user must learn to use different interfaces.

According to Fig. 1 #A >D #SC#C (1), since the user must at least learn the
meanings of services and content types to be able to formulate requests. In the case
of an ideal invariant interaction #A D #S C #C C #E (2), any service appears and
can be accessed the same way, independently of the content and the user interface
elements. The most pessimistic extreme is #A D #S#C#E (3), where any service
with a specific semantics appears differently for each kind of contents, can be
accessed through different user interface elements in each application environments.

State of the art is far from (2), but surprisingly is close to (3). It means that
current user interfaces are ad-hoc, application dependent ones, and the presentation
of services (mostly appearing as commands) strongly depend on the contents they
operate on. The major precondition of approaching (2) is that services and contents
can be combined orthogonally, so the abstraction layer must define the semantics
of abstract services independently of the semantics of content types (data objects).
Also user interface components must be orthogonally associated to services and
must be able to present any appropriate content types. Notice that a fully indepen-
dent orthogonal combination of services, content types and interface components
is a theoretical optimum.

4. Invariance in the User Space

The following sections specify important criteria for arranging the navigation/re-
cognition/activation process. The goal is to identify major blocks and structures



INVARIANT USER INTERFACES 301

that serve as a guideline to determine fix points of user interfaces based upon generic
regularities of users’ thinking.

The user space is analyzed according to Rasmussen’s model [15], which is
widely used for modelling the cognitive levels of human information processing.
It assumes that human activities are driven by goals. To achieve goals, humans
sense external signals and react to them by answers in the scope of the desired
goals. Actions are organized into a hierarchical structure, where higher levels are
composed of lower level entities and, at the end, elementary actions.

The lowest level includes skill based actions, which are sequences of senso-
motor activities without conscious control. Input events are recognized and some
elementary actions executed automatically in the scope of goals. Higher level
processes are built on skill-based reactions. Motor level activities are kinds of ac-
tivations like starting command execution through shortcuts, menus or keyboard
commands. Typing/selecting texts in an editor box, most frequent kinds of naviga-
tions among interface components or pieces of contents are also of motor level.

The next level describes rule-based behavior. It incorporates complex or
not so often practiced actions, which need human attention to execute. This level
can be characterized by well-known rules associated to signals. When a signal is
recognized, a rule is selected according to the goals, and sequences of elementary
actions are executed as a consequence of the rule. The major difference between
rule-based and motor level actions is conscious control. Signs mean much more
than signals, they require attention to recognize raw input and to associate it with a
concept, like seeing an icon and identifying a command represented by the icon.

The knowledge-based level of behavior is the highest. At this level we need
to analyze a situation described by signs, there are no well-known schemes of
reaction, so a plan must be created. Notice that this is the only level which is
inherently variant, so no invariance rules are applicable here.

Beyond this model we rely on the general model of Human Information Pro-
cessing, and rules of learning. As well-known, the cognitive memory is divided
into short-term (STM) and long-term memory (LTM). The storage capacity, infor-
mation organization of the LTM, the learning and retrieval processes, and features
like shadowing are important from the point of invariance [2].

5. Analyzing the Sensomotor Level

The generalized power law equation [5] points out that the probability of retrieving
data with given attributes depends on the number of repeated usage of the appropriate
object. From the point of view of invariance it means that a common function used
more times causes a more certain usage.

It takes a long time and practice to learn skill-based actions, and it is hard to
relearn new ones. Errors caused by an old action instead of a new one are highly
significant in safety critical systems.

Errors at the motor level are slips or lapses [16]. They can occur when



302 S. BARANYI et al.

something disturbs or confuses motor level actions. The probability of this type of
error increases when a new action for the same goal has to be learnt.

To analyze users’ performance, the family of GOMS (Goals Operators Meth-
ods Selection rules) models was suggested to provide an engineering aspect of
human performance. These models divide processing into three major subsystems,
the perceptual system the cognitive system and the motor system which act parallel.
Detailed description of GOMS and related models are described in [5, 4]. It is
useful for measuring motor level action and performance and there are different
variants on the same concepts for different purposes.

Our first conclusion is that any elements of the user space related to the
skill-based level must be invariant and common for all applications. Invariance is
mandatory for lower level building blocks of the interface hierarchy, and should be
valid up to the highest possible level.

6. Analyzing the Rule-Based Level

Information organization plays an important role in learning. Independent studies
show [13, 17] that users learn much faster and more efficiently if they have a
model to organize the information. It shows that we need to organize our invariant
entities into ontologies, and we have to define a model for these ontologies. Experts
obviously have a well-organized hierarchical mental model about the system, and
they use top-down strategies in problem solving [12].

Information retrieval is context-sensitive and pieces of information learned
together facilitate retrieval. User interface design patterns, layouts act as context
of work and have great importance in rule-based actions. If a user can identify
well-known interface elements on a layout, he will suppose certain rules to work.
For example, if a commander window appears with two panels, and lists of files
on each panel, experienced users will certainly have a Windows Commander style
interface in mind, so they may assume that the Tab key switches between panels,
and the F5 key activates a copy operation of the selected files. When an interface
pattern appears, there are rules associated to it in the user’s mind, like relationships
between viewers and services. Abstract viewers can also be categorized based upon
a set of predefined interface patterns which are more complex than widgets, and they
can be embedded into each other, forming compound interface structures Jenifer
TIDWELL [10]. We think that the most informative level of user interfaces are not
widgets but interface layout patterns.

As a result of relearning, it is possible that a wrong but frequently used rule
will be activated instead of the wanted one because of interference in information
retrieval [2].

Based on GEMS [16], errors at the rule-based level include faulty signal
recognition, the application of a wrong rule or the application of an out-of-date but
strong rule. Invariance cannot deal with the first two causes but it can decrease the
number of twisted rule applications caused by relearning. It has an importance in



INVARIANT USER INTERFACES 303

stress situations and in safety critical systems.
Research results mentioned above support the idea that modelling and orga-

nizing pieces of information help users to use and learn them better. In our model,
users are professionals knowing their domain and having exact knowledge about
the services they require. To aid them in finding and selecting the right service, it
is reasonable to organize them into a Service Ontology.

Our second conclusion is that services must be organized into service ontolo-
gies in a reproducible and extensible way. There are complex interface structures,
which can also be recognized by users, and thus, they can be made invariant and
organized into viewer ontologies.

7. Building Ontologies

When building ontologies the basic task is to classify services, viewers and content
types present in current computer systems. The basis of classification is the meaning
of services, viewers and pieces of contents for the user. Implementation details are
unimportant, the only significant issue is the set of requirements (preconditions)
for the user of applying a certain item and the set of results. Classification is based
upon a formal description of semantics for the given entities. We found that an
ETAG (Extended Task Action Grammar) – based formal description was suitable
to describe the user’s model of services (G. HAAN 2000 [22]). In the scope of
invariance the canonical basis introduced in ETAG has a great importance, since
it must be invariant and extensible. In the following section a canonical basis is
constructed and examples are provided for describing concrete services. Notice
that ETAG addresses user interface analysis and design which is a much broader
domain than service classification, so just a limited subset of ETAG is used for
semantic service specifications.

In a complex computer system, users perform operations above a C set of
contents. The computer system has the ability to execute these operations, and to
generate a set of contents as a result. A service can be defined as an s function
with n arguments of the form s V �nC ! C , where �n denotes an n-ary Cartesian
product.

Let us introduce the notion of Service Semantics Specifications (SSS, denoted
by S3

/. An S3 is defined by the following five tuples: S3
D fs; P; A;C; Eg, where

s is a service; P is a finite alphabet whose symbols can be used as predicates in
first-order logic statements; A is a finite alphabet whose symbols can be used as
attributes, which serve as variables of first-order logic predicates; C is the precon-
dition of s defined by a set of first-order logic statements over P and A, i.e. C can
contain predicates from C with arguments taken from AI E is the effect of s. Like
C , E is defined by a set of first-order logic statements over P and A, i.e. E can
contain predicates from E with arguments taken from A.

The set of predicates are formulated based upon an object-oriented world
model of service execution where operations are performed above sets of objects



304 S. BARANYI et al.

having their own types (classes), identities, values, lifetime and properties. Any
service is an operation which can be performed above a set of objects with given
types, and produces certain objects of given types.

According to the above object-oriented service model, a set of predicates were
defined. The following is a small subset of the initial predicates:

• argument(o). Object o is an argument of a service.
• create(o). Object o is newly created as an instance of a class.
• current(o,env). Object o is an active (tipically selected) object of object env

specifying an environment.
• reference(o,r). Object o can be accessed through reference r . Even if in a

concrete predicate o and r are the same, o is and object with an identity and
value, while r is just a reference to o. It also means that any object can serve
as a reference.

• storage(o), storage(o,st). Object o is stored at location st. The value of st is
one of {TRANSIENT, PERSISTENT, REMOTE, LOCAL, PRINT}. If st is
omitted, the storage of o is TRANSIENT.

• type(o,t). The type of object o is t . The value of t is one of {EXPRESSION,
OBJECT}.

• type(t). Declares a t type variable whose values can take the name of any
type.

• value(o,v). The value of object o is v.

There are some additional predicates related to viewers, which are device-
independent abstract (high-level) objects for presenting pieces of contents to the
user, and for handling user interaction using various devices and events. Viewers
can be associated to services using type constraints. So we do not define a con-
crete viewer or viewer type for a service, but we may specify rules that describe a
functionality that a presentation object must meet.

We analyzed a search program called ‘Copernic Agent Professional’ [6] using
the above mentioned methods and we built an ontology of its services. As an
example, Fig. 2 presents the S3 description of the Copernic Agent Save page as
service

8. Generating Service Ontologies

First the S3 specifications of the services must be described. In the next step the S3

specifications are converted to so-called service graphs, whose nodes are labeled by
either predicates or attributes of the S3, and there is an edge between a p predicate
node and an a attribute node whenever predicate p refers to attribute a.

As an implementation concept graph (CG) based representations were applied
(SOWA [21]), which can express meaning in a form that is logically precise and
computationally tractable, furthermore are easy to generate from predicate-based
descriptions.



INVARIANT USER INTERFACES 305

service(’save page as’, ’Copernic’)
Precondition:

Argument(*wd);
Storage(?wd,’’REMOTE’’);
Current(*rwd,results);
Reference(wd,?rwd);
Argument(*name);
Type(*t);

Effect:
Create(?o);
Type(?o,?t);
Storage(?o,’’LOCAL’’);
Reference(?name,?o);
Value(?o,?wd);

Fig. 2. A sample S3 description: The Copernic Agent Save page as service

The equivalent Concept graph description of the Copernic Agent Save page
as service is shown Fig. 3. Concept [TR: type-name] refers to a sub-concept, which
expresses a type constraint referenced by type-name.

Fig. 3. The graph representation of the Save page as service of Copernic.

The generation of ontologies over elements of sets always require an ordering
relation. This ordering relation is based upon isomorph intersections of pairs of
service graphs. An isomorph intersection is a maximal isomorph subgraph presents
in both service graphs. An isomorph intersection shows that two service specifica-
tions contain equivalent parts. There are tools, which help building and analyzing
concept graphs. During the analysis a hierarchical ontology of services can be
generated using graph-matching algorithms. Another advantage of concept graph
like representations is that there are methods and automatic tools for generating the
minimal lattice of service ontologies based upon formal concept analysis (FCA)
developed by Bernhard GANTER and Rudolf WILLE [20].



306 S. BARANYI et al.

9. Implementation

As discussed above, a major concern is orthogonal combination of services, con-
tents and user interface elements. To turn this theory into practice, an architecture
is needed which supports dynamic loading of user interface elements and services
providers and has the functionality to combine them together according to the con-
straints defined in abstract service descriptions (see Fig.4).

It is important to notice that component-based software environments like
.NET or J2EE provide a sound technical background for implementing such sys-
tems.

Fig. 4. The architecture of the GENUIN invariance user interface system

When a user starts to work with an interface, he refers to the name of an
interface definition which is basically an application in the invariant user interface
environment. The invariant interface is a working set of software and interface
components loaded and executed according to an interface definition. The system
determines the device that the user interacts with (like command line, GUI, WEB
browser or handy). Depending on the device type and the required viewers, the in-
terface realization is retreived from a repository and displayed by the actual device
using a presentation framework called the object browser. The object browser acts
as an assembly for user interface elements, it has the responsibility to dynamically
load interfaces delivered through the interface channel. Invariant user interfaces
can be used at any devices that implement the object browser, which, in general,
is a main window or a WEB/WAP browser. The system processes user inputs and
forwards requests to providers through the service channel, which has the respon-
sibility to select the appropriate provider. Providers have no user interface, and are
able to perform predefined services on behalf of the user. Providers accept requests
originating from viewers, they execute requests, and return execution results to
the appropriate interface element. The separation between services and user inter-
faces is clear. Services do not take care of implementation and specialties of user
interfaces, while the user does not know anything about service implementations.



INVARIANT USER INTERFACES 307

The outlined architecture is inherently distributed, i.e. interface components,
providers can reside physically anywhere in a computer network. Information
flow between system components takes place through the interface channel and the
service channel. Since viewers must run at the client machine in the environment of
the object browser, their code must be physically downloaded to the client side. This
can be done through the interface channel. The execution of requests, in general,
does not require downloading the appropriate providers, though messages must be
passed for specifying the request, and results must be received. This is accomplished
through the service channel. The idea is to build software components with well-
defined interfaces. Larger programs can be composed of elementary components
in the Lego style. They recommend a uniform description of component interfaces
using preconditions and postconditions. An algorithm is provided for selecting
interface implementations. In our case we follow the same scheme while separating
definitions from implementation. Our specifications are abstract services defined
based on user needs. At this point we only deal with services that directly appear at
the user level, so we do not care about hidden system components. For a detailed
discussion of the GENUIN architecture see [18].

10. Conclusions and Further Work

In this article the elements, benefits, and limitations of invariance in user interfaces
were analyzed based upon related research results. We can conclude that invariance
is a highly desirable and useful property of user interfaces, though there is a long
way ahead till it will be reached. Necessary steps can be characterized by our
model.

We studied user interaction at different cognitive levels and specified two
major ways of invariance.

Our first important conclusion is that any elements of the user space related
to the skill-based level must be invariant and common for every applications.

The second one is that there are complex interface structures which can also
be recognized by users, and thus can be made invariant and organized into a Viewer
Ontology.

The first step is to clearly separate interface entities with a semantic meaning
to the user. Important entities are abstract services, abstract contents and abstract
viewers. This requires a careful analysis of the specified entities in current computer
systems. We did certain initial steps towards analyzing abstract services. The goal
is to define a set of orthogonal items which can be combined in an arbitrary way.
So the number of entities a user must learn can be drastically decreased.

It is important to separate presentation from execution, which means that
invariant interfaces will not depend on different application environments or oper-
ating systems. Fortunately, this requirement can be fulfilled using state-of-the-art
distributed object technologies. We implemented an experimental architecture de-
scribed in [18].



308 S. BARANYI et al.

The next issue is to associate semantic entities with appropriate presentation
attributes. So abstract services must be associated with standard access attributes
like key combinations, command strings, button and menu labels, icons or others,
while abstract viewers must be associated with predefined layout schemes, with
specific gestures, basic navigation sequences and use cases.

The last step is to organize the entities into fixed ontologies to assure invariance
of features related to navigation like menu structures and access paths of different
dialogs.

Notice that there are higher-level operations which can change between ap-
plication domains. These introduce the notion of domain-dependent invariance.
Domain-specific features are related to domain analysis, which is a relatively new
approach, and it seems to have high significance in invariant interfaces.

A further important remark is that invariance criteria are not rigid standards,
but they just define a set of necessary conditions for user interfaces which still allow
different designs.

The limits of our invariance rules seem to be close to the applicability limits
of the GOMS model.

The answers to the previously mentioned questions will definitely lead to
standards. At the beginning it will be interesting to decide which nowadays used
commands and actions will take part in it. In order to find an answer, we are
analyzing existing interfaces and user interface building tools.

References

[1] Aqua Human Interface Guidelines: Apple Computer Inc. 2002.
[2] ATKINSON, R. L. et. al., Hilgard’s Introduction to Psychology, Harcourt Brace Collage Pub-

lishers Fort Worth, 1996.
[3] BASS, L. – COUATZ, J. – UNGER, C., A Reference Model for Interactive System Construction,

1992.
[4] JOHN, B. E. – KIERAS, D. E., Using GOMS for User Interface Design and Evaluation: Which

Technique? ACM Trasactions on Computer-Human Interaction, 3 No. 4 (1996), pp. 287–319.
[5] CARD, S. K. – MORAN, T. P. – NEWELL, A., The Psychology of Human–Computer Interac-

tion, Lawrence Erlbaum Associates, 1983.
[6] Copernic Terchnologies Inc., CopernicAgent,

http://www.copernic.com/en/index.html.
[7] HELANDER, M. – LANDUER, T., The Handbook of Human–Computer Interaction. North Hol-

land, Amsterdam, 1996.
[8] IBM Ease of Use User Interface Architecture 2nd ed.:IBM Corp. 2001.
[9] IZSÓ, L. – ZIJLSTRA, F., Efficiency in Work: An Approach to Interface Evaluation and Design,

Proceedings of the 8th European Conference on Organizational Psychology, (1997), p. 39.
[10] TIDWELL, J., COMMON GROUND: A Pattern Language for Human–Computer Interface

Design, http://www.mit.edu/^jtidwell/common_ground.html.
[11] BUTLER, K. A., Usability Engineering Turns 10, Interactions, 3 No. 1 (1996), pp. 58–75.
[12] LARKIN, J. H. – MCDERMOTT, D. – SIMON, D. P – SIMON, H. A., Expert and Novice

Performance in Solving Physics Problem, Science, 208 (1980), pp. 1335–1342.
[13] Official Guidelines for User Interface Developers and Designers: Microsoft Corporation 2002;

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnwue/html/welcome.asp.

http://www.copernic.com/en/index.html
http://www.mit.edu/~jtidwell/common_ground.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnwue/html/welcome.asp


INVARIANT USER INTERFACES 309

[14] NILSEN, E. – JONG, H. – OLSON, J. S. – POLSON, P. G., Method Engineering: From Data
to Model to Practice, Proceedings of the CHI’92, pp. 313–320.

[15] RASMUSSEN, J., Skills, Rules, and Knowledge; Signals Signs, and Other Distinction in Human
Performance Models, IEEE Transactions on Systems Man, and Cybernetics, Vol. Smc-13, No. 3,
(1983).

[16] REASON, J., Human Error, Cambridge University Press, 1994.
[17] FEIN, R. M. – OLSON, G. M. – OLSON, J. S., A Mental Model can help with Learning to

Operate a Complex Device, Conference on Human Factors and Computing Systems, (1993),
pp. 157–158.

[18] TILLY, K., Genuin: An Application Programming Environment for Invariant User Interfaces,
Technical Report, Budapest University of Technology and Economics, Department of Measure-
ment and Information Systems.

[19] W3C Working Draft, September 2001, Device Independence Principles
http://www.w3.org/TR/2001/WD-di-princ-20010918/.

[20] GANTER, B. – WILLE, R., Formal Concept Analysis � Mathematical Foundations, Springer,
ISBN: 3-540-62771-5.

[21] SOWA, J. F., Conceptual Graphs, draft proposed American National Standard, NCITS.T2/98-
003.

[22] DE HAAN, G., ETAG, a Formal Model of Competence Knowledge for User Interface Design,
PhD thesis, Department of Mathematics and Computer Science, Free University Amsterdam,
2000.

http://www.w3.org/TR/2001/WD-di-princ-20010918/

	Introduction
	A Model of Invariant Interaction
	The Importance of Abstraction and Separation
	Invariance in the User Space
	Analyzing the Sensomotor Level
	Analyzing the Rule-Based Level
	Building Ontologies
	Generating Service Ontologies
	Implementation
	Conclusions and Further Work

