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Abstract

In this paper the electromagnetic field of a metal half-space with corrugated surface is investigated in
the case when the exciting magnetic field is parallel to the enveloping line of the corrugated profile.
The partial differential equation of the two-dimensional field computation is solved by the Galerkin
method. A computer program has been developed to analyse the effects of different parameters.
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1. Introduction

The efficiency of induction heating is higher if the resistance of the heated load
with invariance of the resistance of the inductor coil is higher. Decrease of the
effective thickness of the eddy current increases the resistance of the charge and
the efficiency. Therefore it is expedient to investigate the relations of quantities
in the case of a metal load with a corrugated surface. The simplest case is a half-
space metal with a sinusoidal corrugated surface, and the decrease of the effective
thickness of the eddy current can be developed if the exciting magnetic field is
parallel to the straight enveloping line of the corrugated profile. Based on the
presented algorithm, a computer program was developed. It contains substitution
of numerical values into the formulas and solution of a linear equation system, thus
the detailed description of the program would unnecessarily increase the length of
the paper.

2. The Mathematical Model

Fig. 1 shows the arrangement of the modelled infinitive half-space in a Descartes co-
ordinate system, where the current exciter is supposed to be parallel to the surface
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with infinitive length in y direction. The domain ‘air-gap’ can be another non-
metal material as well. It follows from the model and from the arrangement of the
excitation, that the field quantities are independent of the co-ordinate y, furthermore
the electric field intensity has only y-component, and the magnetic field intensity
has no y-component:

∂

∂y
= 0, E = Ey, Hy = 0. (1)

Here and in the following the bold letters note (complex) phasors according to the
sinusoidal time-dependent excitation with frequency ω. The Maxwell equations
with respect to (1) are:

in load and also in air-gap:

∂E
∂x

= − jωµ0Hz, (2)

∂E
∂z

= jωµ0Hx . (3)
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Fig. 1.

Because of unusually low frequencies and with a usual air-gap the displacement
current can be neglected, therefore

in the load
∂Hx

∂z
− ∂Hz

∂x
= σE,

(4)
in the air-gap
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∂Hx

∂z
− ∂Hz

∂x
= 0,

where σ represents the conductivity of the load. Substituting (2) and (3) into (4)
we can get

in the load

∂2E
∂z2

+ ∂2E
∂x2

= jωµ0σE ≡ 2 j

δ2
E,

in the air-gap

∂2E
∂z2

+ ∂2E
∂x2

= 0, (5)

where

δ =
√

2

σωµ0
(6)

is the skin depth. The z-component of the magnetic field intensity beside the

exciting conductors is (Hz)x=0 = H0 = N I

l
, where N turns are along length l of

the periodicity. (I is real, the complex rms. value of the current). The boundary
conditions for the electric field intensity are:(

∂E
∂x

)
x=0

= − jωµ0 H0 and lim
x→∞ E = 0, (7)

with respect to (2) and the infinity half-space of the metal conductors. In addition
E must be periodic in direction z, with periodicity l .

3. The Solution

Here the differential equation (5) with boundary conditions (7) will be solved with
the Galerkin method. In the whole domain the following basis functions are selected
so that they satisfy the prescribed boundary conditions:

ϕm (x, z) =
cos

(
2n arc tg

x

b

)
√

1 +
(x

b

)2
cos

(
2πk

l
z

)
;

(8)

m = k N + n + 1,

{
k = 0, 1, 2, . . . , K − 1,
n = 0, 1, 2, . . . , N − 1,
m = 1, 2, 3, . . . , K N .
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The basis functions are periodical in z direction with periodicity l , and satisfy the

homogeneous boundary conditions (at x = 0
∂ϕm

∂x
= 0 and at x → ∞ ϕm = 0),

and form a complete set (MICHLIN, 1966). Here b is a suitable constant of length
dimension in x . Thus, the electric field intensity can be expressed as:

E ∼=
K N∑
i=1

Ciϕi − jωµ0 H0 f (x) ,

where

f (x) = x

1 +
( x

b

)2 , (9)

i = κ N + ν + 1, κ = 0, 1, 2, . . . , K − 1,

ν = 0, 1, 2, . . . , N − 1, i = 1, 2, 3, . . . , K N .

The function f (x) provides the inhomogeneous boundary condition at x = 0. The
task is to determine the complex coefficient Ci .

According to the Galerkin method, the inner product of all the basis functions
ϕm with the differential equations (5) reduced to zero along the whole domain in
the co-ordinate plane x − z is:

∫
(V1)

ϕm · div grad E dV +
∫

(V2)

ϕm ·
(

div grad E − 2 j

δ2
E
)

dV = 0,

m = 1, 2, 3, . . . , K N,

where V1 is the air-gap, and V2 is the metal. With identities

ϕm · div grad E = div (ϕm grad E) − grad ϕm · grad E and n · grad E = ∂E
∂n

and with the Gaussian formula we can obtain:∫
(V1+V2)

grad ϕm · grad E dV + 2 j

δ2

∫
(V2)

ϕm · E dV −
∫

(�)

ϕm
∂E
∂n

dA = 0,

m = 1, 2, 3, . . . , K N, (10)

where � is a closed surface around the whole investigated region, and n is the
external normal vector of this surface. (It is sufficient to take length l of the region
in z direction, because of the periodicity.) Due to the periodicity and the second
equation of (7) it is easy to understand that only the integral along the plane x = 0
remains from the surface integral. On this plane the normal vector tends into −x ,
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therefore
∂E
∂n

= −∂E
∂x

= jωµ0 H0. So the expression (10) takes the following

form:∫
(V1+V2)

grad ϕm · grad E dV + 2 j

δ2

∫
(V2)

ϕm · E dV = jωµ0 H0

∫
(�0)

ϕm dA,

m = 1, 2, 3, . . . , K N, and �0 denotes the plane x = 0. (11)

On the basis of (9) we can write

grad ϕm · grad E = ∂ϕm

∂x

∂E
∂x

+ ∂ϕm

∂z

∂E
∂z

=
∑

i

Ci

(
∂ϕi

∂x

∂ϕm

∂x
+ ∂ϕi

∂z

∂ϕm

∂z

)
− jωµ0 H0 f ′(x)

∂ϕm

∂x
,

furthermore,

ϕmE =
∑

i

Ciϕiϕm − jωµ0H0 f (x)ϕm . (12)

Taking unit length in y-direction and introducing the following matrix symbols:

Pmi =
∫ l

z=0

∫ ∞

x=0

(
∂ϕm

∂x

∂ϕi

∂x
+ ∂ϕm

∂z

∂ϕi

∂z

)
dx dz, (13)

Qmi = 2

δ2

∫ l

z=0

(∫ ∞

x=x p(z)
ϕmϕi dx

)
dz,

where the equation of the corrugated surface:

x p(z) = a + h

2

[
1 + cos

(
2π

l
z

)]
≡ bγ (z), (14)

qm = 1

l

∫ l

z=0

∫ ∞

x=0
f ′(x)

∂ϕm

∂x
dx dz, (15)

wm = 2

δ2l

∫ l

z=0

(∫ ∞

x=x p(z)
ϕm f (x) dx

)
dz, (16)

sm = 1

l

∫ l

z=0
ϕm(0, z) dz. (17)

Substituting (12)–(17) into (11) we obtain the following complex linear system of
equations suitable to determine the complex coefficient Ci .

K N∑
i=1

Pmi Ci + j
K N∑
i=1

Qmi Ci = ωµ0 H0l [−wm + j (sm + qm)] ,

m = 1, 2, . . . , K N . (18)
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In knowledge of the coefficient Ci the electric field intensity can be calculated from
(8) and (9). Expressions for the magnetic field intensity can be obtained through
(2), (3), (8) and (9):

Hz = j

ωµ0

∂E
∂x

= j

ωµ0

[
K N∑
i=1

Ci
∂ϕi

∂x
+ H0 f ′(x)

]
,

Hx = − j

ωµ0

K N∑
i=1

Ci
∂ϕi

∂z
. (19)

To determine the active and passive power per unit surface propagating from the
excitation toward the metal, the average complex Poynting vector must be averaged
on length l of the corrugated surface because of the periodicity. The z-component
of the magnetic field intensity and – with (8) and (9) – the electric field intensity at
the inductor at x = 0 are

(Hz)x=0 = H0 = N I

l
, E0 = (E)x=0 =

K N∑
m=1

Cm cos

(
2πk

l

)
.

Evaluating the required average of H0E0 only the terms with k = 0 remain, so the
active and passive power per unit surface at the inductor can be expressed as:

S = H0

N∑
m=1

Cm = H0

N∑
m=1

Re (Cm) + j H0

N∑
m=1

Im (Cm) = P + j Q. (20)

(The absolute values of field quantities are rms values, because current I is also an
rms one.) To calculate the complex specific power transmitted into the conductive
half-space through a plane boundary surface fitted to the top of the corrugated
surface (and containing air, see Fig. 2)

Sw = Pw + j Qw, (21)

then the effective power component remains unchanged in (20) (Pw = P), but to
determine Qw, it is necessary to subtract the reactive power of the smallest air gap
Qa from Q. Thus, neglecting the distortion of the field caused by the corrugated
surface, the reactive component of the transmitted power can be applied as:

Qw = Q − Qa. (22)

Denoting field quantities by index 1 at x = a, we come to Qa = E0 H0 − E1 H1. To
obtain clearly arranged formulas, the distortion of H is not taken into consideration
and H1

∼= H0, so Qa = E0 H0 − E1 H0 = (E0 − E1)H0. Finally, according to the
induction law:

Qa = H 2
0 ωµ0a = H 2

0
1

σδ
· 2a

δ
. (23)
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Fig. 2.

The influence of waviness

w = h

l
(24)

on the effective and reactive power can be examined by determining the complex
power (SP) per a unit surface in the case of a plane (zero waviness, w = 0) metal
surface. According to the known relations:

SP = H 2
0

1

σδ
(1 + j) = PP + j Q P . (25)

Introducing factors

κP = Pw

Pp
(26)

and

κQ = Qw

Q p
, (27)

they represent the ratio between the effective and reactive power per a unit surface
of the infinite metal half-space having a corrugated surface closed by a plane and
the power values of the infinite half-space with a plane surface. Otherwise, these
numbers also give the ratio between the components of the complex inner impedance
values (AC effective resistances and inner reactance values).

On the basis of the calculated results, it can be seen that κP and κQ are larger
than 1. From the point of view of induction heating, the first result (κP > 1) is
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advantageous, because it means increasing electrical efficiency of the inductor load
system. The last result (κQ > 1) seems to be disadvantageous, because it predicts
a decreasing power factor (cos ϕ) of the inductor load system. But it must be taken
into consideration that the effective power is also greater, furthermore, the generated
larger reactive power has a smaller weight in the resultant reactive power because
of the reactive power of the additional air gap. To calculate the power factor, it
would be necessary to know the complex power generated in the inductor coil, or
to know the value of the inner impedance. However, it would not be practical to
involve an inductor coil with a complicated geometry in the investigation, because
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of the simplicity of the computational model. Thus, the quantitative comparison of
the power factors must be discarded. Therefore the examinations will be carried
out by taking into consideration only the air gap in the following way. Based on
(22), (23) and (25), the following resultant reactive power can be obtained for a
corrugated metal surface by an air gap with a thickness of a

Q = Qw + 2Q p · a

δ
(28)

and

Q ′ = Q p

(
1 + 2 · a

δ

)
, (29)

for a plane metal surface. Ratio Q/P directly describes the power factor, because
if it is smaller, the power factor is greater and vice-versa. Its value for a corrugated
surface is

Q

PW
= QW

PW
+ 2

Q P

PW

a

δ
,

while in the case of a plane metal surface it is

Q ′

PP
= Q P

PP

(
1 + 2a

δ

)
.

According to equation Qp = Pp and (26), (27),

Q

PW
= κQ

κP
+ 2

κP
· a

δ
(30)

and
Q ′

PP
= 1 + 2a

δ
. (31)

Both quantities are linear functions of a/δ. In the following it can be seen, that
κQ > κP and κP > 1. Therefore there must be a critical a/δ ratio where the values
of the two quantities are the same:(a

δ

)
cr

= κQ − κP

2 · (κP − 1)
. (32)

This critical ratio is important because, in the case of
a

δ
>
(a

δ

)
cr

relation
Q

PW
<

Q ′

PP
is valid, so a load with a corrugated surface produces a better power factor.

4. Computational Results, Evaluation

The change of comparative factors (κP , κQ and
(a

δ

)
cr
) computed according to the

method introduced above is shown in figures. The results are plotted as a function
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of the waviness of the metal surface (w = h/ l) in domain 0.0 ≤ w ≤ 1.0 at
different relative wave depths (h/δ = 0.5, 1.0, 2.0, 3.0). At these parameters the
variation of κP and κQ with respect to the relative air gap (a/δ) is small. Deviations
larger than the computational and plotting error limit can only be demonstrated in
domain 0.0 ≤ a/δ ≤ 2.5; the largest deviance values related to the case a/δ = 0
are �κP = 2.21%, �κQ = −0.32%. The second small deviance confirms that the
approximation introduced in (22) was correct. Therefore the diagrams representing
the change of κP and κQ can be related to relative air gap values a/δ > 2.5.

Fig. 5.

In Fig. 3 the change of κP and κQ can be seen. It can be noticed, that κP in-
creases monotonously with increasing waviness (w) and relative wave-depth (h/δ),
while κQ decreases monotonously with increasing w and decreasing h/δ.

The primary goal of the application of a load with a corrugated surface in-
stead of a plane surface is to increase the efficiency of the inductor load system by
increasing the effective power streaming into the load, namely, to obtain as high
κP value, as possible. Even a large degree of power increment can be achieved. Its
largest value in the investigated case is 46% (κP = 1.46) at w = 1.0 and h/δ = 3.0.
To obtain larger values than these parameters may hit against practical difficulties.
Furthermore, it is not expedient to choose h/δ higher than 3.0, because – for ex-
ample – at h/δ = 4.0 only κP = 1.4966 can be achieved, which is only by 2.5%
higher than the previous one. On the basis of Fig. 3, taking the change of κQ into
consideration, it is practically recommended to choose the values of the parameters
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in domains 0.4 ≤ w ≤ 1.0 and 1.5 ≤ h/δ ≤ 3.0.

Fig. 4 represents the change of the values of the critical relative air gap
(a

δ

)
cr

.

These values are strongly decreasing with increasing w up to approx. w = 0.5.
Above that waviness, the grade of decrement is smaller. Curves connected to
different h/δ parameters intersect each other. Anyway, it can be clearly seen that
choosing the parameters in domains 0.4 ≤ w ≤ 1.0 and 1.5 ≤ h/δ ≤ 3.0 is useful
not only from the point of the efficiency of the inductor load system, but from the
aspect of the increment of the power factor as well.

 

Fig. 6. Isometric lines of the absolute values of electric field strength, which are at the
same time the field lines of the magnetic field in 2D, when the current of inductor
is maximal.

Finally, in Fig 5 the isometric lines of rms values of the electric field strength
are plotted at a/δ = 3.0, w = 0.667, h/δ = 4.0. In the figure it can be seen that the
electromagnetic waves practically cannot intrude into the bottom of the waves of
the corrugated surface, therefore the current density is high at the top of the waves.
Thus, the current density is not uniform in direction z – like it is in the case of a
load with plane surface –, the available active cross-section is reducing, so the AC
effective resistance of the load as well as the effective power generated in the load
increase.
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Fig. 7. Isometric lines of the absolute values of electric field strength, which are at the same
time the field lines of the magnetic field in 2D, when the current of load is maximal.
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