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Abstract

In this paper the electromagnetic field of a metal half-space with corrugated surface is investigated
in the case where the exciter magnetic field is perpendicular to the plane of the corrugated profile.
The partial differential equation of the two-dimensional field computation was solved using linear
base functions, exactly fulfilling the differential equations, while the coefficients were determined to
fulfil the boundary conditions approximately. A computer program was made to analyse the effect of
different parameters.
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1. Introduction

The efficiency of induction heating is higher if the resistance of the heated load
with invariance of the resistance of the inductor coil is higher.Enlarging the length
of the eddy current course raises the resistance of the charge and, thus, the effi-
ciency. Therefore it is suitable to investigate the quantity relations in metal load
with corrugated surface. The simplest model is ahalf-space metal with asinu-
soidal wave-form surface, and increase of the length of the eddy current course
can be developed if the exciting magnetic field is perpendicular to the plane of the
corrugated profile.

2. The Mathematical Model

Fig. 1 shows the arrangement of the model in a Descartes co-ordinate system. The
domain with notation ‘air gap’ can be another non-metal material as well. From the
model and from the arrangement of the excitation follows that field quantities are
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independent of the co-ordinatez, the magnetic field strength has onlyz-component,
and the electric field strength has noz-component:

∂

∂z
= 0, H = Hz, Ez = 0. (1)

Here and in the following the bold type letters note (complex) phasors according
to the sinusoidal time-dependent excitation with frequencyω. Because at usual
frequencies and with usual air-gap depth the displacement current can be neglected,
therefore the Maxwell equations in the load are:

∂H
∂x

= −σEy, (2)

∂H
∂y

= σEx, (3)

whereσ is the conductivity of the load. In the air gap the field equations have the
form:

∂H
∂x

= 0 and
∂H
∂y

= 0. (4)

According to (1) also
∂H
∂z

= 0 is valid, therefore in the air gap

H = const.= H0, (5)

and this is the magnetic field intensity excited by inductor currentI .
In the load the second Maxwell equation takes the following form:

∂Ey

∂x
− ∂Ex

∂y
= − jωµ0H. (6)

Substituting (2) and (3) into (6) we obtain the following partial differential equation:

∂2H
∂x2

+ ∂2H
∂y2

= jωµ0σH ≡ 2 j

δ2
H, (7)

where

δ =
√

2

σωµ0
(8)

is the skin depth.
The boundary conditions are:

a., On the basis of (5), along the boundary surface between the air gap and metal,

at x = xp(y) ≡ a + h

2

[
1 + cos

(
2πy

l

)]
, H = H0. (9)



INVESTIGATION OF INDUCTION HEATING I. 17

H 

Ey 

Ex 

y 

x 

a 

h load 

air-gap 

l 

z 

Ie j  t 

conductivity 

H0 

E 

x = xp( y ) 

 

Ey 

Ex 

Fig. 1.

This condition also guarantees that currents do not enter from the metal load
into the air gap along the rippled surface. Namely, according to the Amper
law written for this surface, the relation

∮
H0�ez d�s = H0�ez

∮
d�s = 0 is valid.

(�ez is unit vector, directed in z-axis.)
b., Because of the half-space, the magnetic field intensity has to fulfil the regu-

larity condition
at x → ∞ H → 0. (10)

c., As a consequence of the periodicity in direction y it is sufficient to calculate
the field in the interval 0 ≤ y ≤ l , but the following symmetry condition
must be satisfied:

H (x, l − y) = H (x, y) . (11)

On the basis of (3), relation Ex(x, l − y) = −Ex(x, y) is valid, and so relation
Ex(x, l) = −Ex(x, 0) is valid as well.

d., As a consequence of the periodicity, all of the field quantities must be taken
with the same value into consideration, therefore the last relation leads to the
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condition
Ex(x, 0) = 0. (12)

3. The Solution

The solution is investigated only in the metal load, because the magnetic field
strength in the air gap according to (5) is known, H0. It seems suitable to seek the
solution in the metal in form of Fourier series, where, on the basis of (11), it is
prescribed only by cosine terms:

H =
N−1∑
n=0

wn(x) cos

(
n

2π

l
y

)
. (13)

With this condition (12) is satisfied as well, as it can be seen from formula (3).
Substituting expression (13) into the differential equation (7) we get for the functions
wn(x):

w′′
n(x) =

[
2 j

δ2
+

(
2π

l
n

)2
]

wn (x) . (14)

Introducing the notation

qn =
√

2 j +
(

2πn
δ

l

)2

, Re (qn) > 0, (15)

the solution of differential equation (14) is under condition (10):

wn (x) = Cne−qn
x−a

δ , (n = 0, 1, 2, 3, ...N − 1) .

So (13) has the following form:

H =
N−1∑
n=0

Cne−qn
x−a

δ cos

(
n

2π

l
y

)
. (16)

Coefficients Cn are selected so that they satisfy condition (9).
However, at x = constant < a + h the metal load is not continuous (see

Fig. 1), so the y-functions in (16) do not compose a complete set of function series.
Therefore a complement series satisfying differential equation (7) and boundary
condition (10) is introduced and making complete set in variable x . If the factor
depending on x in the terms of the complement series has the form etn

x−a
δ , with

tn = −τ1 + nτ2 j, where τ1 > 0, τ2 > 0, (17)
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then condition (10) is satisfied. Substituting etn
x−a

δ vn(y) into (7) the following
ordinary differential equation is obtained:

v′′
n (y) =

(
2 j

δ2
− t2

n

δ2

)
vn(y) ≡ p2

n

δ2
vn(y),

where

pn =
√

2 j − t2
n =

√
n2τ 2

2 − τ 2
1 + 2 j (1 + nτ1τ2), Re (pn) > 0. (18)

So the complement series is an x-directional damping Fourier series. Afterwards
it can be seen that it will lead to a good result since the algorithm and the program
calculate the relative average error of the fulfilling of boundary conditions and that
value is appropriately small in the given cases. (See later results.)

The solution of previous differential equation accomplishing also symmetry
condition (11) has the form:

vn (y) = e
pn
δ (y− l

2) + e− pn
δ (y− l

2).

Thus, the formula for the magnetic field intensity (16) has to be completed in the
following way:

H =
N−1∑
n=0

Cne−qn
x−a

δ cos

(
n

2π

l
y

)

+
N+M−1∑

n=N

Cn

[
e

pn
δ (y− l

2) + e− pn
δ (y− l

2)
]

etn
x−a

δ ≡
N+M−1∑

n=0

CnHn. (19)

The expressions for the electric field strength components can be got by substituting
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(19) into (2) and (3):

Ex = −2π

lσ

N−1∑
n=1

nCne−qn
x−a

δ sin

(
n

2π

l
y

)

+ 1

δσ

N+M−1∑
n=N

Cnpn

[
e

pn
δ (y− l

2) − e− pn
δ (y− l

2)
]

etn
x−a

δ

≡
N+M−1∑

n=0

CnExn,

(20)

Ey = 1

δσ

N−1∑
n=0

qnCne−qn
x−a

δ cos

(
n

2π

l
y

)

− 1

δσ

N+M−1∑
n=N

Cntn

[
e

pn
δ (y− l

2) + e− pn
δ (y− l

2)
]

etn
x−a

δ

≡
N+M−1∑

n=0

CnEyn.

Complex coefficients Cn must be selected so that the error in satisfying boundary
conditions (9) and (12) be as small as possible. For this an integral of the square of
the error along the wave surface at condition (9) and along the surface y = 0 at the
condition (12) is developed and minimised. Thus, the minimum of the expression

W =
∫ l

2

y=0

∣∣∣∣∣
N+M−1∑

n=0

Cn (Hn)x=x p(y) − H0

∣∣∣∣∣
2

dy + λ

∫ ∞

x=a+h

∣∣∣∣∣
N+M−1∑

n=N

Cn (Exn)y=0

∣∣∣∣∣
2

dx

(21)
results the required coefficients Cn. Here λ is a suitable positive constant. (In
the first term of the expression the symmetry, in the second term the fact has been
utilised that for n < N Exn = 0.) Searching the minimum of formula W in (21)
leads to the solution of the complex linear system of equations for Cn:∫ l

2

y=0

[
N+M−1∑

n=0

Cn (Hn)x=x p(y) − H0

][
(Hk)x=x p(y)

]∗
dy

+λ

∫ ∞

x=a+h

[
N+M−1∑

n=N

Cn (Exn)y=0

] [
(Exk)y=0

]∗
dx = 0, (22)

k = 1, 2, . . . , N + M − 1,

where ∗ indicates the conjugate complex value. On the basis of formulae (19) and
(20) the evaluation of the integrals can be (partly only numerically) executed and
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the resulted linear system of equation can be solved. In knowledge of coefficients
Cn the field quantity can be calculated by (19) and (20).

4. Average Errors, Powers

To control the accuracy of the calculation the mean value of the following relative

error functions can be created:
|H − H0|

H0
along the corrugated surface,

|Ex |
|Ey| along

surface y = 0, and
|Et |
|En| along the corrugated surface, where Et is the tangential

component of the electric field intensity along the same surface and En is the normal
one. To the calculation of the last quantity let us consider Fig.2.
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Fig. 2.

Et = Ey cos (π − ϑ) − Ex cos
(
ϑ − π

2

)
≡ −Ey cos ϑ − Ex sin ϑ,

En = Ey cos
(
ϑ − π

2

)
+ Ex cos (π − ϑ) ≡ Ey sin ϑ − Ex cos ϑ,

where
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tg ϑ = x ′
p (y) ≡ −hπ

l
sin

(
2π

l
y

)
, sin ϑ = |tg ϑ |√

1 + tg2ϑ
, cos ϑ = sin ϑ

tg ϑ
.

With the flux of the metal load, induced voltage can be obtained from the line
integral of the electric field intensity along the rippled line of metal surface. For
the corrugated wavelength it has the form:

Ui =
∫ l

0

[
(Ex)x=x p(y) dx + (

Ey

)
x=x p(y)

dy
]

=
∫ l

0

[
(Ex)x=x p(y) x ′

p (y) + (
Ey

)
x=x p(y)

]
dy.

However, from formula (9) x ′
p (y) = −hπ

l
sin

(
2π

l
y

)
, consequently

Ui =
∫ l

0

[(
Ey

)
x=x p(y)

− hπ

l
sin

(
2π

l
y

)
(Ex)x=x p(y)

]
dy. (23)

The voltage U at the inductor lines (see Fig. 1) for a wavelength is:

U = Ui + jωµ0 H0

(
a + h

2

)
l, (24)

where the second term is the voltage induced by the air-gap flux. (The integrals of
Ex vanish.)

The complex power per unit surface at the inductor is:

S ≡ P + j Q = H0U
�

. (25)

To calculate only the complex specific power intruding through the surface into the
conductive half-space which has a plane boundary fitted to the top of the waves
(and contains air, see Fig. 3)

Sw = Pw + j Qw, (26)

the effective power component remains as it was in (25) (Pw = P), but to determine
Qw, it is necessary to subtract the reactive power of the smallest air gap Qa from
Q, so:

Qw = Q − Qa, (27)

where Qa = E0 H0 − E1 H0 = (E0 − E1)H0, and according to the induction law:

Qa = H 2
0 ωµ0a = H 2

0
1

σδ
· 2a

δ
. (28)
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The influence of waviness

w = h

�
(29)

on the effective and reactive power can be determined by computing the complex
power per unit surface (SP ) in the case of a plane (zero ripples, w = 0) metal
surface. According to the known relations:

Sp = H 2
0

1

σδ
(1 + j) = Pp + j Q p. (30)

Introducing factors

κP = Pw

Pp
(31)

and

κQ = Qw

Q p
, (32)

they represent the ratio between the effective and reactive power per unit surface
of the infinite metal half-space having a corrugated surface closed by a plane and
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the power values of the infinite half-space with a plane surface. Otherwise, these
numbers also give the ratio between the components of the complex inner impedance
values (AC effective resistances and inner reactance values).
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Fig. 6.

Based on the calculation results, it can be seen that κP and κQ are higher
than 1. From the point of induction heating, the first result is advantageous, be-
cause it means increasing electrical efficiency of the inductor-load system. The
last result seems to be disadvantageous, because it predicts decreasing power factor
(cos ϕ) of the inductor-load system. But it must be taken into consideration that
the effective power is also greater, furthermore, the generated larger reactive power
has a smaller weight in the resultant reactive power because of the reactive power
of the additional air gap. To calculate the power factor, it would be necessary to
know the complex power generated in the inductor coil, or to know the value of
the inner impedance. However, it would be not practical to involve an inductor
coil with a difficult geometry into the investigation, because of the simplicity of the
computational model. Thus the quantitative comparison of the power factors must
be discarded. Therefore our examinations will be done by taking only the air gap
into consideration, in the following way. On the basis of formulae (27), (28) and
(30) the following resultant reactive power can be obtained for corrugated metal
surface in the case of an air gap with a thickness of a:

Q = Qw + 2Q p · a

δ
(33)

and
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Q ′ = Q p

(
1 + 2 · a

δ

)
(34)

for plane surface. Ratio Q/P directly describes the power factor, because if it is
smaller, the power factor is greater and vice-versa. Its value for a corrugated surface
is

Q

Pw

= Qw

Pw

+ 2
Q p

Pw

a

δ
,

while in the case of a plane metal surface
Q ′

Pp
= Q p

Pp

(
1 + 2a

δ

)
.

Using equation Qp = Pp and formulae (31), (32)
Q

Pw

= κQ

κP
+ 2

κP
· a

δ

and
Q ′

Pp
= 1 + 2a

δ
.

Both quantities are linear functions of a/δ. In the following it can be seen that

Fig. 7. Isometric lines of magnetic field strength, which are at the same time the field lines
of the electric field and the current, when the current of inductor is maximal
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κQ > κP and κP > 1. Therefore there must be a critical a/δ ratio, where the values
of the two quantities are the same:

(a

δ

)
cr

= κQ − κP

2 · (κP − 1)
. (35)

This critical ratio is important because in the case of
a

δ
>

(a

δ

)
cr

relation
Q

PW
<

Q ′

PP
is valid, so a load with a corrugated surface produces a better power factor.

5. Computational Results, Evaluation

The change of comparative factors (κP , κQ and
(a

δ

)
cr
) computed by the presented

computational method are plotted in diagrams. The results are plotted as a function
of the waviness of the metal surface (w = h/ l) in domain 0.1 ≤ w ≤ 0.75 at
different relative wave depths (h/δ = 2.0, 3.0, 4.0, 5.0 and ∞).

In Fig 4 the change of κP and κQ can be seen. From the figure it can be
learned that in the investigated case both of the factors are increasing with increasing
waviness (w) and relative wave depth (h/δ). In the case of parameter h/δ = ∞
the current will flow completely on the corrugated surface and the effective power
related to the smooth metal surface can be expressed by the proportion of the length
of the sinusoidal curve (s) related to the length of wave (l), so (κP)h/δ=∞ = s/ l .

The primary goal of the application of a load with corrugated surface instead of
a plane surface is to increase the efficiency of the inductor load system by increasing
the effective power streaming into the load, namely to obtain as high κP value as
possible. Even a large degree of power increment can be achieved. Its largest value
would be 86.6% in the case of parameters w = 0.75 and h/δ = ∞ ((κP)h/δ=∞ =
1.866). The increment of the effective power is not too much smaller (77.1%;
κP = 1.771), which can be obtained at w = 0.75 and h/δ = 5.0. It is very difficult
in the practical life to produce much higher values. Taking a glance at Fig. 3,
practically it is suitable to choose the parameters in domains 0.4 ≤ w ≤ 1.0 and
2.0 ≤ h/δ ≤ 4.0.

Fig. 5 represents the change of the critical relative values of the air gap (
( a

δ

)
cr
).

These values are decreasing with increasing w and decreasing h/δ. It can be noticed
that choosing the parameters in domains 0.4 ≤ w ≤ 1.0 and 2.0 ≤ h/δ ≤ 4.0 is
useful not only from the point of view of the efficiency of the inductor load system,
but from the aspect of the increment of the power factor as well.

In Fig. 6 the isometric lines of the current density are plotted in the case of
a/δ = 10.0; w = 0.5 and h/δ = 6.0. The number of terms are N = 25 and
M = 18, the average error of H , E , Ey=0 are 1%, 3.29% and 2.08%, respectively.
It can be noticed that the isometric lines of the current density practically follow the
profile of the waves. Thus, the eddy current must flow through a longer way related
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Fig. 8. Isometric lines of magnetic field strength, which are at the same time the field lines
of the electric field and the current, when the current of load is maximal

to a plane surface, so the AC effective resistance of the load increases, as well as
the effective power generated in the load. Fig.7 and 8 represent the magnetic field
in two different moments.
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