
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 46, NO. 1–2, PP. 47–73 (2002)

IMPLEMENTING ELLIPTIC CURVE CRYPTOGRAPHY ON PC
AND SMART CARD

István Zsolt BERTA∗ and Zoltán Ádám MANN∗∗
∗ Department of Telecommunications

Budapest University of Technology and Economics
H–1521 Budapest, Hungary

Tel: (+36 1) 463 2063
e-mail: istvan.berta@ebizlab.hit.bme.hu

∗∗ Department of Control Engineering and Information Technology
Budapest University of Technology and Economics

H–1521 Budapest, Hungary
Tel: (+36 1) 463 2487

e-mail: zoltan.mann@cs.bme.hu

Received: Sept. 22, 2002

Abstract

Elliptic Curve Cryptography (ECC) is a relatively new branch of public key cryptography. Its main
advantage is that it can provide the same level of security as RSA with significantly shorter keys,
which is beneficial for a smart card based implementation. It is also important as a possible alterna-
tive of RSA. This paper presents the authors’ research concerning ECC and smart cards.

The authors introduce their ECC prototype implementation that relies on Java Card technol-
ogy and is capable of running on smart cards. Test results with various cards are attached. It is
also analyzed in what extent algorithms with the complexity of ECC can be executed in smart card
environment with limited resources.

Keywords: Elliptic Curve Cryptography, smart card, Java Card, public key cryptography.

1. Introduction

Mathematic research on elliptic curves has a long tradition. However, this field
attracted the attention of cryptographers only in the 1980s, when it was discov-
ered that elliptic curves can be used to define finite groups in which the discrete
logarithm problem is hard [19, 17]. One and a half decades have passed and ex-
perience confirmed this assumption. But since no theoretic proof is known, it is
an open question whether elliptic curve cryptography (ECC) is mature enough for
industrial use. Therefore it is vital to gain as much practical experience as possible
about the security of ECC. The authors, too, hope to contribute to this research.

One has to be quick about it though. Basically, there are two factors to worry
about. The first problem is that actually only one public-key algorithm is widely
used, namely RSA. No theoretic guarantee is known as to the security of RSA
either, however, the whole PKI (Public Key Infrastructure) is based on RSA. If
one found an effective crack for RSA – which is not impossible –, the impact on

48 I. ZS. BERTA and Z. Á. MANN

today’s cryptographic systems would be dramatic. This explains why other public-
key methods would be welcome. ECC is a probable candidate.

The other factor is the enormous growth in computation capacity that is avail-
able for cracking. This is due to the wide spread of inexpensive and powerful
workstations. Also these computers have almost always network connectivity. As
a consequence, the most spectacular cracks of the last years were not done by su-
percomputers but by thousands of cooperating workstations [6].

Another aspect in cryptography that has ever growing importance is the need
for algorithms with low resource requirements so that they can run on smart cards.
A typical smart card has a processor with clock frequency of about 3-5 MHz and
about 4-32 KByte read-writable memory. This heavily constrains the use of public-
key algorithms in smart cards.

Elliptic Curve Cryptography might solve this problem, since – according to
our current understanding – it provides the same level of security with significantly
smaller keys than RSA. This is caused by the fact that no sub-exponential time al-
gorithm is known to solve the basis of ECC, the Elliptic Curve Discrete Logarithm
Problem (ECDLP), while there are some sub-exponential, although not polyno-
mial algorithms to crack RSA. This also implies that the difference in key size
between the two algorithms will constantly increase as the augmenting computa-
tional power will require higher levels of security. The relatively small keys of
ECC open new opportunities for ECC in areas like smart card and mobile com-
merce applications. However, the complicated mathematical background of ECC
results in more sophisticated algorithms so it is by no means obvious that the re-
quired computational power would be smaller.

Despite this, there are hardly any practical implementations of ECC for low-
resource devices. The authors know one ECC software implementation for smart
cards [10]. However, this implementation can only deal with very limited key sizes
(50 bit), which have no cryptographic significance.

This paper presents the authors’ ECC prototype implementation on a smart
card platform, which can also handle ECC problems of cryptographically mean-
ingful sizes. First, an overview is given on the underlying mathematics and the
theory of ECC. Next, the smart card environment is presented that was used by
the authors to implement ECC. Test results are demonstrated for three different
smart cards and for PC as well. At the end of the paper, some possibilities for
improvement are discussed.

2. Theoretical Background

In this section a short overview is given about the basic results that build the fun-
dament for elliptic curve cryptography. For the proofs of the referred theorems as
well as for further information on elliptic curves see e.g. [13].

ECC ON PC AND SMART CARD 49

2.1. Elliptic Curves

An elliptic curve is defined in the general case by an equation of the form:

y2 + axy + by = x3 + cx2 + dx + e. (1)

The coefficients a, b, c, d and e as well as the values of the variables x and y are
elements of a given field K . The solutions of (1) are the points of the elliptic curve
E over the field K ; their set is denoted by E(K). First the case K = R (real elliptic
curves) will be discussed. Although the complex and rational cases (K = C and
K = Q , respectively) also have theoretical significance, they will not be covered
here, emphasis will be laid on the cryptographically more interesting case when K
is a finite field.

2.1.1. Elliptic Curves over R

In this case the terms axy and by on the left side of Eq. (1) can be eliminated using
linear substitution:

y2 = f (x), (2)

where f (x) is a real polynomial of order 3. It can even be assumed that

f (x) = x3 + ax + b.

It is usually also required that f have no multiple roots. This actually means that
the function F(x, y) defining the elliptic curve with F(x, y) = 0 be smooth. Such
a curve can be seen in Fig. 1.

The cryptographic applicability of elliptic curves is a consequence of the
group structure that can be defined on them. For this, one has to define an operation
between the points of the curve. The operation will be called addition since this is
the usual notation for Abelian groups. Now suppose two points P and Q are given
on the elliptic curve. In order to compute P + Q, one has to do the following. First,
draw a straight line through P and Q. This line intersects the curve in exactly one
more point which will be denoted by −R. Then mirror −R on the x axis; the
resulting point is again on the curve, denote it by R. Let P + Q = R. Fig.2 shows
an example.

Unfortunately, there are some problems with this definition. What happens if
the line that connects P and Q is vertical and thus it has no third intersection with
the curve? (This is only possible if the coordinates of the two points are (x; y) and
(x;−y).) In order to correct the definition, the set E(K) has to be extended with
a new point, denoted by O, which can be visualized as the point at infinity in the
direction of the y axis. As it turns out, this point will be the neutral element of the
group.

50 I. ZS. BERTA and Z. Á. MANN

−8 −6 −4 −2 0 2 4 6 8 10
−15

−10

−5

0

5

10

15

Fig. 1. An elliptic curve

−8 −6 −4 −2 0 2 4 6 8 10
−15

−10

−5

0

5

10

15

Q

R=P+Q

−R=−(P+Q)

P

Fig. 2. Adding two points of a curve

In order to define the point O precisely, projective coordinates have to be
introduced. The points of the projective plane are the equivalence classes of real
(x, y, z) tuples, where (x, y, z) �= (0, 0, 0), the equivalence relation being (x, y, z)
∼ (λx, λy, λz), ∀λ �= 0. If z �= 0, then the projective point (x

z ,
y
z , 1) representing

the class (x, y, z) corresponds to the ‘normal’ (affine) point (x
z ,

y
z), so the affine

plane can be embedded into the projective plane. But there are other points in the
projective plane, namely with z = 0. These points can be regarded as the points at

ECC ON PC AND SMART CARD 51

infinity of the affine plane; the projective point (x, y, 0) is the point at infinity in
the direction of the vector (x, y), or equivalently (−x,−y) [9].

To obtain the equation of the elliptic curve on the projective plane, one has
to substitute x

z in place of x and y
z in place of y. After multiplication with z3, the

following equation is obtained:

y2z = x3 + axz2 + bz3.

Substituting z = 0, the equation yields indeed the point at infinity in the direction
of the y axis: (0, 1, 0). So the inclusion of the point O is natural, since the curve
really contains such a point in the projective plane.

Getting back to the definition of addition, the question of what to do if the
line connecting the two points P and Q is vertical, now can be answered. Namely,
in this case O is the third intersection of the line and the curve. And, if O is
mirrored on the x axis, we get again O. So in this case P + Q = O. As already
mentioned, O is the neutral element of the group, so in this case P and Q are
inverse to each other. That is why we used previously the notion −R and R when
describing the addition rule: those two points are indeed inverse to each other.

It has to be noted as well that a tangent counts as if it had a double intersection
with the curve. So, for example, if P = Q, then ‘the line connecting them’ is the
tangent to the curve. Similarly, if the line connecting P and Q is tangent to the
curve in, say, P , then P is also the third intersection of the line and the curve.

P + Q can also be defined in an algebraic way, with a formula. Let the two
points be P(x1, y1) and Q(x2, y2). Then the coordinates of P + Q are:

x3 = s2 − x1 − x2,

y3 = s(x1 − x3) − y1, (3)

where

s =

y2 − y1

x2 − x1
if P �= Q

3x2
1 + a

2y1
if P = Q

is the slant of the line connecting the two points. It can be seen from this formula
that in the case where the x coordinates of P and Q are the same, one has to divide
by zero. This corresponds to the fact that the result is the point at infinity O.

The existence of this formula is very important. First of all, we will not have
to base our cryptographic system on geometric insight only, but rather on precise
algebraic definitions. This is going to be vital in the case of finite fields where such
a geometric view is not known. Second, since it is possible to derive a formula for
the sum of the two points, this proves that addition is well-defined. Third, since
only addition and multiplication were used between field elements, this means that
if the coordinates of P and Q and the parameter a of the curve are elements of the
field K , then so are the coordinates of P + Q.

52 I. ZS. BERTA and Z. Á. MANN

We have not proven that the resulting structure is an Abelian group. What we
have seen is the closure, the neutral element and the inverse. The Abelian property
is trivial. The only thing that should be proven is associativity. However, this is
rather complicated, so we just refer to the literature [13].

2.1.2. Elliptic Curves over Finite Fields

For cryptographic applications, infinite fields are of little interest because of round-
ing and inaccuracy problems. That is why it is a good idea to use finite fields. In
the following, the finite field is denoted by GF(q), where the number of elements
is q = pr . Thus the characteristics of the field is p. Of special interest are the
cases r = 1, i.e. GF(p) and p = 2, i.e. GF(2r).

The method that was used to simplify Eq. (1) can only be employed if the
characteristics of the field are neither 2 nor 3. The case p = 2 is the most compli-
cated: here two sub-cases exist, called supersingular and non-supersingular cases.
The simplest form of (1) is as follows:

p = 2, supersingular case:

y2 + ay = x3 + bx + c,

p = 2, non-supersingular case:

y2 + xy = x3 + ax2 + b,

p = 3:

y2 = x3 + ax2 + bx + c,

p > 3:

y2 = x3 + ax + b.

Since the formulas defining the addition were also derived from Eq. (2), these are
also invalid for the cases p = 2 and p = 3. So similar formulas have to be derived
from the more general Eq. (1). These are more complicated so we just note one
difference: since the curve is now rotated and translated, the inverse of the point
(x, y) is not (x,−y) but – using the notations of Eq. (1) – (x,−ax − b − y).

In the case of finite fields the number of the points of the curve is also finite;
it is usually denoted by N . The curve again has one (or more) point(s) at infinity.
The number of non-infinite (that is, affine) points is, of course, at most q2, but it
is actually less. Since the equation of the curve is an equation of degree 2 in the
variable y for every possible value of x , and x can have q different values, N ≤ 2q.
Actually N is only about q. Namely, by a theorem of Hasse (1934), the difference
of N and q + 1 is less than 2

√
q.

This allows to find random points on an elliptic curve. Choose x randomly;
there is a chance of about 0.5 that the equation is solvable for that x , yielding a

ECC ON PC AND SMART CARD 53

point of the curve. However, no deterministic polynomial-time algorithm is known
for finding points on a given elliptic curve. Actually, there are algorithms that
are deterministic polynomial-time bound if the generalized Riemann hypothesis is
true.

There is indeed a deep connection between these results and the Riemann
hypothesis. The curve E(GF(q)) may also be considered over GF(qs). In this
case, the number of points is denoted by Ns (so N1 = N). From these numbers a
formal power series can be constructed (zeta-function):

Z(E(GF(q)), T) = e
∑

Ns T s/s .

Due to another theorem of Hasse, this is a rational function:

Z(E(GF(q)), T) = 1 − AT + qT 2

(1 − T)(1 − qT)
,

where only A depends on the actual curve. Moreover, N = q + 1 − A, so A can
be calculated from N . As a consequence, every Ns is determined by N .

2.2. Cryptographic Application of Elliptic Curves

2.2.1. ECDLP

The cryptographic application of the so-called Elliptic Curve Discrete Logarithm
Problem (ECDLP) was suggested independently by V. MILLER and N. KOBLITZ
in 1985 [19, 17].

An elliptic curve E is given over the finite field GF(q), as well as points
P and Q on E . Let n be the order of P , i.e. the smallest positive integer so that
n P = O. (n P means the point P added to itself n times.) The task is to find an
integer 0 < k < n so that Q = k P , provided that such a k exists.

This is really the discrete logarithm problem (DLP), only the notation is dif-
ferent. Namely, if the operation between the points of the curve were called multi-
plication instead of addition, then we would write Q = Pk instead of Q = k P , so
the task would be to find k = logP Q. The reason why additive notation is used is
that this is a convention for Abelian groups.

Of course it is more convenient to use the modulo classes for calculations
than points of an elliptic curve. So why to bother with elliptic curves if we get
the same discrete logarithm problem? The answer is that although the DLP may
be defined, of course, for arbitrary groups, its hardness varies significantly. El-
liptic curves seem to provide a group structure where the DLP is really hard: no
algorithm is known that could solve the general ECDLP in sub-exponential time.

Nevertheless, there are some sub-exponential algorithms for specific special
cases of the ECDLP. Therefore the elliptic curve E and the base point P have to
be chosen carefully. For instance, Menezes, Okamoto and Vanstone gave in 1993

54 I. ZS. BERTA and Z. Á. MANN

a relatively efficient algorithm for the ECDLP on supersingular curves. But most
elliptic curves are not supersingular so it is still an open question whether there
is a sub-exponential algorithm for the general case. Currently, no such algorithm
is known so cryptographic systems based on ECC provide a high level of security
with relatively small key sizes. However, as we will see, the complicated calcula-
tions make ECC somewhat less effective.

Note that elliptic curves are not the only mean to create groups where the
DLP is hard. In fact, the elliptic curve is just the first member of a bigger family of
groups, defined as a group structure on the Jacobi surface of specific curves. The
next one is called hyperelliptic. But it seems that these constructions do not add as
much in security as in complexity.

2.2.2. The Underlying Finite Field

For the implementation, the choice of the underlying finite field is crucial. Al-
most always GF(p) or GF(2r) is chosen (for some prime p or some integer r ,
respectively). The former case is more straightforward to handle: it is the usual
arithmetic that can be used, the only difference is that numbers bigger than p − 1
must be cut back in the interval [0, . . . , p − 1]. The latter case requires more so-
phisticated algorithms, however, it fits better to the binary arithmetic supported by
most computer systems, therefore it can provide better performance.

There are a few different ways to represent the elements of GF(2r). The
most widely used is the polynomial-based representation. For this, an irreducible
polynomial of degree r is chosen over GF(2) first; let this be denoted by f . Now
the elements of GF(2r) can be regarded as polynomials of degree at most r − 1
over GF(2). Addition is done as usual; the only difference is that because of being
in characteristics 2, any number (or polynomial) added to itself is zero. This also
implies that subtraction is the same as addition. In order to multiply two elements
of the field, one has to multiply them with polynomial multiplication modulo f .
That is, the product of the two polynomials is divided through f , and the remainder
– which is again a polynomial of degree at most r − 1 – is the product of the two
field elements. It can be proven that this construction gives indeed a field and of
course it has 2r elements. (Note that a polynomial is often represented as a 0-1
vector of length r of its coefficients.)

Another approach is to regard GF(2r) as an extension field of GF(2) and
thus as a vector space over it. Again, the elements of the field are 0-1 vectors of
length r but this time the vectors have different semantics. Incidentally, addition
is done in the same way as with polynomials, i.e. component-wise. However,
multiplication is different: it must be defined on the r base elements of the vector
space. This requires r × r × r coefficients, where coefficient (i, j, k) specifies the
k. coordinate of the product of the i. and j. base vector.

Multiplication can be speeded up significantly if this ‘cube’ is sparse, i.e. it
contains few 1-s. In the case of a so-called optimal normal base there are only

ECC ON PC AND SMART CARD 55

about 2r2 1-s (out of the possible r3). There are some constructions for optimal or
nearly optimal normal bases [21]; unfortunately they work for special values of r
only and those special values would degrade security.

2.2.3. Some Protocols Based on ECDLP

Most traditional public-key protocols have an equivalent based on elliptic curves.
As a last station of our theoretic excursion, let us study some of them.

As a first example, the Diffie–Hellman key exchange protocol will be exam-
ined. As usual, E is an elliptic curve over GF(q) and P is a point on E . E and P
are publicly known. Each user chooses a secret key k which is a positive integer,
and compute their public key k P . Suppose that Alice and Bob would like to ex-
change secret messages using some symmetric cryptographic scheme and need a
key that is known to both of them but to nobody else. If their secret keys are kA and
kB , respectively, then they can use the point kAkB P . Alice can compute this point
by multiplying her secret key and Bob’s public key. Similarly, Bob multiplies his
secret key and Alice’s public key and gets the same result. But nobody else can
compute this point unless he either knows the secret key of Alice or Bob or he can
solve the ECDLP to calculate them.

Also the ElGamal protocol has an elliptic version. The same setup is assumed
but now Bob wants to send a message to Alice. It is assumed that the message is
encoded as a point M of the curve; the encoding and also the decoding of messages
as points of the curves is publicly known. Now Bob chooses an arbitrary positive
integer l and sends the points l P and M + l(kA P) to Alice. Without the knowledge
of l and kA nobody can learn the message M . On the other hand, if Alice mul-
tiplies the first point with kA and subtracts it from the second point, she receives
exactly M .

As a last example, the digital signature algorithm using elliptic curves,
ECDSA, the elliptic curve equivalent of DSA, is presented. Again, E is an el-
liptic curve, P is a point on E , its order is n which is now assumed to be a prime.
Alice’s private key is the integer kA, her public key is the point kA P . Suppose now
that Alice would like to sign a message M or actually its hash value h. In order to
do this, she will have to do the following. First, she chooses an arbitrary integer l
such that 1 ≤ l ≤ n − 1 and computes l P = (x, y). Let r = x (mod n). She also
computes s = l−1(h + kAr) (mod n). Then her signature is the pair of integers
(r, s).

If Bob wants to check Alice’s signature (r, s) on the message M , then he
will have to do the following. First, he also computes the hash value h of the
message. Then he computes the point hs−1 P + rs−1(kA P) = (x ′, y′). Let r ′ = x ′
(mod n). If everything is alright, then s−1 = l(h + kAr)−1 (mod n), so (x ′, y′) =
hs−1 P + rs−1(kA P) = l(h + kAr)−1(h + kAr)P = l P = (x, y). That is, Bob will
accept the signature if and only if r = r′.

Remark: if either r or s is 0, then the above algorithm does not work properly.

56 I. ZS. BERTA and Z. Á. MANN

Namely, if r = 0, then Alice’s private key does not contribute to the signature; if
s = 0, then Bob will not be able to compute s−1. So if either of this happens, Alice
should generate a new integer l and retry.

Of course, it is vital for all of the above (and similar) schemes to be secure
that the underlying field, the number of points on the curve and the order of the
point P be large enough.

2.3. Cracks

The main motivator of ECC cracks is ‘ECC challenge’, sponsored by Certicom.
This company has ECC-based products, and posed the ECC challenge to improve
confidence in ECC technology. Certicom offered altogether $500,000 as prizes for
the challenge. Challenges are offered in different categories (problem lengths), and
at least one GF(p) and one GF(2m) problem represents each category.

‘Excersises’ were easy challenges with the length of 79-97 bits. All of these
have been solved. The second category was the category of ‘Level I Challenges’
which contained ECC challenges of 108-131 bits. The highest category was ‘Level
II Challenges’ with problems of 163-358 bits. Solving these with a single computer
would last, according to the estimations of Certicom, 1012 – 1041 years.

Certicom offered these challenges in 1997. Since then, all of the exercises
and one 108-bit-long ‘Level I Challenge’ were solved. The effort required for this
latter was 50 times higher than the one taken to break the 512-bit RSA. The above
facts show that the approximations of Certicom were basicly correct, which means
that a 150-bit ECDLP is practically impossible to solve.

3. Technical Background

In the previous section the basics of ECC were presented. In this section a brief
introduction to smart card and Java Card technology will be given, to introduce a
new platform for ECC.

3.1. What is a Smart Card?

Smart cards are tiny devices with the shape and size of a credit card. However,
these objects yield much more. They are called ‘smart’ because of the microchip,
that is integrated onto them. Inside this chip these cards have a CPU, non-volatile
memory, and I/O peripherals. In fact, they are standardized secure portable micro-
computers.

ECC ON PC AND SMART CARD 57

3.2. Security

Fig. 3 shows the block diagram of the inside architecture of smart cards. As can be
seen, smart cards are very similar to computers of von Neumann architecture. The
main difference is that in case of smart cards the internal buses cannot be driven
by I/O ports directly. This is an important principle of security that ensures that
outside activities cannot affect the state of the card directly [22].

ROM
(operating
system)

I/O
(contacts
of the
card)

CPU

RAM

EEPROM
(~8Kbyte)

(~512byte)

Fig. 3. Physical architecture of a smart card

Smart cards are secure microcomputers designed with tamper-resistance as
top priority. Information is stored in the special secure EEPROM and can only be
accessed using the well-defined interface of the card with permission of the card
OS and software.

Although they are inferior to personal computers in terms of speed, memory
and I/O devices, they are made superior by their sophisticated security features.
The interface to the outside is narrow and well defined (ISO-7816), and is a key
issue of smart card security [14]. The responsibility of the on-card software is to
monitor this narrow interface and grant or deny access to various data fields or pre-
or post-process the output (e.g. using certain cryptographic keys) [22, 31]. Since
the access control logic is situated behind the gateway of the card in the ROM or
EEPROM, this logic is also able to protect itself.

Although powerful security mechanisms can be implemented on PCs as well,
the sensitive data and the access control logic can be separated from each other in
the case of a PC, resulting in a security hole. For instance, the hard drive can be
removed and inserted into a different machine with different access control rules.

58 I. ZS. BERTA and Z. Á. MANN

Outside
World

Access
Control
Logic Sensitive

Data

Business
Logic

Smart Card
EEPROM

Fig. 4. Logical architecture of a smart card application

In contrast, in the case of smart cards the secure data storage and the access control
logic are implemented on the same microchip. The encapsulation of data storage,
access control and business logic provides a secure, tamper-resistant architecture
(see Fig. 4).

The other main power of smart cards lies in their size. They can be easily
carried in a wallet or put into the users’ pocket. Since their interface is standard-
ized, they can be connected to any ISO-7816-compatible terminal, and more and
more smart cards start to appear in the life of everyday people.

The security and portability of smart cards open new possibilities for security-
sensitive applications, especially in the area of key management. Cards with cryp-
tographic potential can – besides storing users’ keys – perform encryption/decryp-
tion, while the secret key does not leave the card. This can be easily ensured since
the key could only be accessed through the narrow and configurable hardware fire-
wall of the card. Some cards contain good quality random number generators, and
the most advanced cards are even capable of generating 1024 bit RSA keys. Using
on-board key generation it can be ensured that the key spends its entire lifecycle
on the card. This means that it is generated, used and destroyed behind the secure
hardware firewall, without any chance to read it out.

Smart cards enable users to carry their secret key in their pocket and using
it without exposing it to the insecure environment of the terminal. Many people
consider the smart card the ultimate digital signature tool. The areas of access
control and authentication also yield great perspective for smart cards.

However, the exact area where smart cards can be used is still subject to
intensive research. While the narrow interface of the card to the outside world is a
powerful security feature, in certain situations it may cause an enormous security
hole. Although smart cards could be especially useful in the case of untrusted
terminals, their inability to communicate with the user on a secure channel may
make them a ‘handicapped security device’. (See e.g. [25, 1, 27]).

3.3. The Three Generations of Smart Cards

Smart cards vary in size of memory and capabilities. However, three generations
can be differentiated.

ECC ON PC AND SMART CARD 59

1. The generation of memory cards is the earliest one. In this case a simple
memory chip was placed on the card, where cells could be read or written
directly. Functionally it was not a breakthrough compared to magnetic cards.
Memory cards gave logical security equivalent to a floppy disk. Later on,
these cards were equipped with more and more security features designed
for certain applications.

2. The appearance of so-called generic cards opened new dimensions for smart
cards. They were called ‘generic’, because they possessed a set of security
tools that could be adjusted to the need of each application by personalizing
the card.
These cards possessed a complex file system similar to that of a modern
operating system of a PC. Data on these cards were stored in structures like
files and folders. Users could be defined on these cards with various rights to
different files. Users had to authenticate themselves by PIN code. The pro-
cessors of more sophisticated generic cards supported cryptographic func-
tions which enabled the utilization of challenge and response mechanisms
in user authentication. A good example for this category is the Bull TB-100
card.
At the beginning, generic cards were thought to be too expensive to be used
widely. However, as their number increased, mass production made it possi-
ble to produce them cheaper. At present, generic cards are often used even if
their services are not needed. They have become cheap enough for general
use.

3. Many programmable cards exist on the market today, but they are still too
expensive. However, they are considered to be the cards of the future. Beside
possessing a complex operating system in their ROM like their ancestors,
they are capable of executing programs from their EEPROM. New programs
can be loaded onto them, even after the issuance of the card. However, in
this case special security methods should be used (see e.g. [29]).
If their specification is open, the card manufacturer and the software manu-
facturer [25] do not need to have any connection. If multiple cards conform
to the same specification, the same applications can run on them (see sec-
tion 4.3). These cards have a functionality similar to a PC. All cards that
the authors used for testing their ECC implementation (see Table 1 in sec-
tion 4.3) belong to this category.
Today’s programmable smart cards are relatively expensive. However, being
even more generic than the so-called generic cards, mass production may
lower their prices in a similar way it has happened in the case of generic
cards. It is likely that in the future programmable cards will be used for
purposes where their services are not needed. [4] Good examples for this
process are certain Oberthur AuthentIC cards (generic cards) that are imple-
mented by an applet on an Oberthur GalactIC card (programmable card).
In the forthcoming sections programmable smart cards and their possible
applications shall be discussed.

60 I. ZS. BERTA and Z. Á. MANN

It must be mentioned that the boundaries between the above three categories are not
sharp. For example, a memory card that is protected by a single PIN code could be
situated between generation 1 and 2. The third generation appeared gradually too,
as the access control logic of generic cards became more and more customizable.
In generation 3, a business logic can be implemented with pure software.

Many cards are much more intelligent than generic cards but still do not
reach the level of programmable cards. E.g. the Gemplus MPCOS-EMV card
(which is commonly used in Hungary as student ID card) has strong cryptographic
capabilities and can be programmed too. However, its specification is not open,
and its language is not standardized, so parties independent from the manufacturers
cannot write applications for it.

Some other cards are fully programmable (like Bull Odyssey I which con-
forms to the Java Card specification), but they are still inferior to certain generic
cards because they lack crypto-support.

3.4. Java Card

Today three platforms exist for programmable smart cards on the market: Java
Card, MULTOS and Windows for Smart Cards. The authors used Java Card [28]
in their development since it is a widespread and fully open specification with
platform-independence as top priority.

Java Card utilizes a subset of the Java programming language for card-side
application development. It relies on the portability of the Java byte code, thus
making applications transferable between Java Card compliant cards of different
architecture.

Smart cards are security oriented platforms, and Java Card supports them
with powerful security features [8, 10, 28]. As a base it relies on the security
features offered by Java, with several additions. Apart from the powerful access
control mechanisms, extensive type-checking is performed. Java Card supports
transaction handling (to guarantee the atomicity of smart card transactions), that
can be used to prevent card-removal attacks. When multiple applications share
the same card, the specification provides applet firewalling to isolate applets and
to organize secure cooperation. Modern Java Cards make use of the Visa Open
Platform [29] to ensure secure applet loading and deletion on the card.

Being a fully open and widespread specification, several reference imple-
mentations exist (see e.g. the cards in Table 1 in section 4.3). Java Card managed
to create a class-file level compatibility between different card hardware devices.
However, there are still certain compatibility problems (see section4.3), especially
where cryptographic support is involved.

The literature provides numerous examples for research or even formal ana-
lysis concerning the security of Java Cards. The Java Card specification was sub-
ject to both formal and semi-formal analysis. A large part of this analysis focused
on proving the soundness of the Java Card Virtual Machine, especially its cor-

ECC ON PC AND SMART CARD 61

rectness concerning namespaces and type safety. However, certain works address
problems like the possibilities of applet certification, or monitoring various com-
munication channels between applets. (See e.g. [5, 20, 23].)

4. The Implementation

Since ECC operates with keys significantly shorter than RSA, while providing the
same security, it could be a considerable alternative for RSA on low-resource plat-
forms, such as a smart card. This section is based on the authors’ work in [3],
describing a smart card based ECC implementation.

4.1. General Remarks, Aims of Development

The authors’ ECC implementation had a dual aim. On one hand, they wanted to
study ECC and perform certain measurements and calculations, on the other hand,
they wanted to create a smart-card-based prototype ECC implementation.

Naturally, a software-based solution cannot have the performance required
for commercial use. One of the authors’ aims was to prove that a complex al-
gorithm like ECC can be implemented on today’s weak smart cards. The other
aim was to create a solution that later could be used as a base for designing hard-
ware acceleration. It was definitely not the goal of the authors to manifest an
ECC implementation fast enough for commercial use, since pure software imple-
mentations cannot compete with hardware acceleration. The top priority of the
development was to implement efficient algorithms (with polynomial complexity)
on low-resource smart cards.

The program is capable to run on PC and on Java Card. That means that the
same source code and the same Java classes are running on both platforms. That
means that the authors’ aim was not to optimize the program for any platform (not
even on a Java VM), but to implement a portable solution capable of running on
both platforms. Due to the limited amount of memory of the card, speed often had
to be traded for memory.

4.2. Architecture of the Program

4.2.1. Structure

The program was designed in a modular form taking advantage of object orienta-
tion in Java. This enabled the authors to experiment with various finite fields and
various representations in the card’s memory. It is easy to switch to another Galois
field because of the structure of the ECC engine (Fig.5).

62 I. ZS. BERTA and Z. Á. MANN

1

2

ECCPoint2m ECCPointp

ECCFE

ECCPoint

ECCCurve

ECCBitVector

ECCLong

1 4

1

*

Fig. 5. Simplified UML diagram of the ECC engine

The arithmetic of field elements is independent from the curve and can easily
be replaced by another arithmetic. The point-arithmetic layer situated on the top
of the field-arithmetic layer implements operations between points of the curve
(Fig. 6). The ECC engine is the top-level layer which implements ECDLP-based
protocols (see section 2.2.3), totally independent of the chosen field.

smart card
hardware

Java
virtual machine

Field
arithmetic

Curve
arithmetic

ECC
engine

Fig. 6. Layer structure

Applications using the engine can only access this upper layer that grants
access only to public data (the curve, the public point, the user’s public key) and
denies access to private data (e.g. the user’s private key). Naturally, this layer
offers services like initialization, encryption, decryption and signing described in
section 2.2.3. The responsibility of this layer is to ensure that the engine works
securely and consistently and with correct parameters only.

ECC ON PC AND SMART CARD 63

In addition, application specific layer could be placed by developers wish-
ing to use the engine. The responsibility of this layer would be to implement
application-specific functionality relying on the operations of the ECC engine:

• Define various principals who may access the ECC engine (e.g. user and
administrator)

• Perform authentication of the above principals (e.g. the user is authenticated
using a PIN code, while the administrator should be authenticated using a
challenge and response method)

• Assign operations of the ECC engine to the above principals (e.g. only the
administrator may modify system-wide parameters, while only the user may
access his or her own public key)

• Manage application-specific data (e.g. personal information of the user)

4.2.2. Memory Management

Memory appeared to be the main bottleneck in two ways. Physically, the amount
of memory in the card was a strict limitation. Logically, the memory management
of the Java Card platform is much less flexible than the memory management in
Java.

The development was done using the Bull Odyssey I card with 7048 bytes
of memory. This small amount of memory had to contain the data required for
the calculations and the code of the ECC engine too. Consequently, in order to
enable cryptographically meaningful problems, only simple algorithms could be
implemented.

The memory management of the Java Card platform is rather weak in the
software engineering sense, since the memory cannot be reused. Memory allocated
for objects cannot be freed, only if the entire applet is removed from the card.
According to the specification, all memory reservations should be made in the
constructor of the Java Card applet, to guarantee that the applet will not run out of
memory. This is an important security principle. A critical attack would be against
the card to bring it into an inconsistent state by filling its memory, and making it
stop at an unpredictable point [28, 7].

Naturally, the amount of memory required by the applet is a function of the
key size used. It could be given as:

OS+JCVM+Package+Engine+(K+Keysize)∗n
where:

• OS is the amount of memory required by the card operating system. This
may vary from card to card. While the OS of the Odyssey I card is less than
a kilobyte, in a case of cards with crypto-support this is larger. The Oberthur
Simphonic card is also a SIM card, with additional services, so in this case
OS is over 20k.

• JCVM is the memory required by the Java Card Virtual Machine.

64 I. ZS. BERTA and Z. Á. MANN

• Package is the amount of memory required by the code of the program in the
chosen card’s byte code language. Although the specification ([28]) strictly
specifies the format of the Java Card byte code file, card manufacturers often
modify it, so this is card-dependent too. It is approximately 5k.

• Engine is the amount of memory required by the non-static variables of the
applet. This is relatively small (< 200 bytes). Due to the above reasons this
is card-dependent too.

• Keysize is the size of a GF(2m) field element. The authors’ applet is able to
deal with 109-bit-long keys (Keysize=14 Bytes) on Odyssey I.

• K is the amount of memory used by a field element object apart from the
key itself. This means the memory required for object construction. This is
relatively small, but may vary from card to card (< 10 bytes).

• n means the number of field element (FE) objects required by the applet. In
this implementation, the GF(2m) arithmetic requires 5 FE objects. 9 more
are needed for the Euclidean algorithm and inversion. For curve arithmetics
13 more were required. Altogether 27 FE objects are needed for the ECC
calculations.

Unfortunately, several values are card-dependent and kept secret by card manu-
facturers. In many cases they can only be approximated. Performing the above
calculations and approximating the unknown values gives the result that after up-
loading the applet with a 109-bit-long key, the Odyssey I card still has a significant
amount of free memory (approximately 2 kilobytes). However, the authors were
unable to upload the applet with larger keys to Odyssey I. Perhaps, some tempo-
rary memory while installing the applet. Unfortunately, the documentation does
not mention this.

Naturally, in the case of cards with more memory, larger keys could be used.
However, similar undocumented features were experienced with other cards too.
It seems that the Java Card technology is not prepared for programs of this com-
plexity yet. Therefore, the authors tried to compare the performance of these smart
cards using the same key size (109 bit).

4.2.3. Algorithmic Solutions

In practice, ECC is used both above GF(p) and GF(2m). The decision of the authors
was to implement ECC on the card above GF(2m). The main reason for this was
that computers can deal with bit-vectors much easier than numbers in GF(p). Apart
from making calculations faster and more simple, this decreased the size of the
program too.

The following operations were implemented between GF(2m) elements (m
denotes the length of the field elements):

• addition: In GF(2m) this means bitwise xoring of the two field elements.
This is the trivial and optimal solution, which can be done in O(m) steps.

ECC ON PC AND SMART CARD 65

• obtaining the remainder (in modular calculations): Our aim is to obtain the
value of P modulo M. This can be done in GF(2m) using one single addition
if deg(P) = deg(M). If deg(P) < deg(M), there is no need to calculate
the remainder, but if deg(P) > deg(M), calculating the remainder is a com-
plex operation. The authors’ decision was to exclude this latter case by not
allowing the case deg(P) > deg(M). If the size of P would grow above the
size of M by one bit, the remainder is calculated immediately. The size of
polynomials stored in the system is m + 1 bit. If the MSB is zero, the poly-
nomial P is a valid element of the field. However, if the MSB becomes 1,
M has to be subtracted from P . In the case of M the MSB has to be 1. This
is not the most efficient method, since the aforementioned calculation has to
be made every time, the length of P would increase. However, this method
consumes only a little amount of memory. So, obtaining the remainder is an
addition with the cost of O(m).

• multiplication was implemented like the script multiplication. In worst case
m additions (O(m)) are performed. The total cost of the algorithm is O(m2).
Naturally, this could be made faster with more memory available (see sec-
tion 5.2 and [24]).

• division (with residue): The script division was implemented here with shift-
ings and additions at the total cost of O(m2).

• division (multiplication with the inverse): This involves two operations; ob-
taining the inverse using the Euclidean algorithm [12], then a multiplication
(O(m2)). The Euclidean algorithm contains O(m) divisions (with residue)
(cost: O(m2)). Thus, the total cost is O(m3).

• negation: In GF(p), negation would be a much more difficult operation than
in GF(2m), where the negate of a binary polynomial is itself.

The above operations are carried out between the elements of the field. The
following operations are defined in the group of the points of the curve:

• Addition of P and Q points (where P �= Q). The operation with the highest
cost is division (multiplication by the inverse), so the total cost is O(m3).

• Duplication of point P (i.e. calculating P + P). O(m3) is the cost for similar
reasons.

• Multiplication of point P by a number k (this is the cryptographically impor-
tant operation): The naive algorithm (k additions) would be too slow. With a
method similar to ‘the method of repeated squaring’ used e.g. in RSA [12],
O(log(k)) additions are enough.

4.3. Smart Cards Used for Testing

The authors developed their ECC engine using the Bull Odyssey I smart card.
The applet was written and optimized in order to be able to run using the limited
resources of that card. Later on the engine was tested on two other smart cards too

66 I. ZS. BERTA and Z. Á. MANN

(see Table 1). The applet was not rewritten to make use of the additional memory
available.

Naturally, choosing a card with more memory would have given more free-
dom to implement faster but more complex algorithms. However, at the time of
the development only the Odyssey I card was available. Moreover, Odyssey I has
the best performance in those cases when the built-in crypto coprocessor cannot be
used (see Table 2).

Card Odyssey Cyberflex Simphonic
Manufacturer Bull Schlumberger Oberthur

Version I V3C V3
Memory 8k 16k 64k

Crypto Support No Yes Yes
Java Card 2.1 2.0 2.11

Table 1. Smart cards used for testing

4.4. Results

4.4.1. Java cards

As described in section 4.2.2, memory management was the key issue. The engine
was optimized so that it could run on the Odyssey I card with the largest possible
keys. Certicom’s ECC2-109 challenge was chosen to be implemented on the card,
since:

• It is practically strong enough since no one has broken an ECC problem with
this difficulty by today.

• It is theoretically strong enough since its strength is similar to that of 1024
bit RSA.

• The challenge uses GF(2m) arithmetic.
• The key size is small enough to fit on the Odyssey card.

Certicom’s ECC2-109 challenge was installed on the Bull Odyssey I card. Accord-
ing to the authors’ measurements, an elementary operation (addition of two points)
required approximately 10 minutes.

As described in section 4.2.3, approximately log k additions are needed to
multiply a point with k. According to the theorem of Hasse that the number of
points of a curve above GF(q) can be approximated by q (see section2.1.2), it can
be supposed that k ≤ q, since a higher k would have no cryptographic significance.
That means that log k can be approximated by m. So in this case, approximately
109 additions are needed for a cryptographic operation (a multiplication of a point
by a scalar). This would require many hours, which would be unacceptable in case
of a commercial product.

ECC ON PC AND SMART CARD 67

However, with proper hardware acceleration it could be increased dramati-
cally. The RSA algorithm with 1024-bit keys can be executed on a smart card with
crypto-coprocessor (e.g. Schlumberger’s Cyberflex) in less than 1 second. Accord-
ing to the literature, an RSA and an ECC encryption (with similar strength) takes
similar amount of time [11]. Since ECC above GF(2m) can be parallelized easier
than RSA (especially because of the low complexity of field element addition and
obtaining the remainder [30]), a hardware acceleration would decrease the time-
cost even below that of RSA. For more improvement possibities, see section5.2.

The authors welcome the smart card manufacturers’ uprising interest in ECC
technology, such as the Atmel AT90SC6464C microcontroller or Oberthur’s recent
announcement of the ECC support for Authentic cards. Unfortunately they do not
know of any existing card on the market with hardware ECC support.

Card Odyssey Cyberflex Simphonic
A + B 0:01.1 0:02.8 0:02.8
A ∗ B 0:48.2 3.05.2 3:37.5

A ÷ B 0:02.0 0:06.5 0:06.6
A−1 8:11.2 29:15.0 27:19.2

P + P 9:32.1 33:53.2 N.A.
P + Q 9:57.3 36:45.1 N.A.

Table 2. Test results with three different cards. (A, B ∈ G F(2m), P, Q ∈ E , where E is
the ECC2-109 elliptic curve. The meaning of x : y is x minutes and y seconds.)

Table 2 shows the test results with three different Java Cards. Although the
program was not optimized for Odyssey, its results were significantly better than
those of other cards. However, unlike its own PC-side emulator, Simphonic was
not able to execute certain parts of the program. This latter card also showed certain
features incompatible with the Java Card standard.

Field element operations with one operand were performed on the a param-
eter of the challenge, those with two operands were performed between the a and
b parameters of the challenge. Point operations were performed between the P
and Q points of the appropriate challenge. Table3 shows the results for the group
operations on Oberthur I for three different curves.

ECC2-79 ECC2-89 ECC2-109
P + P 3:08.8 4:23.2 9:32.1
P + Q 3:23.6 4:58.1 9:57.3

Table 3. Test results with three different curves on Odyssey I.

Table 2 shows the test results with three different Java Cards. Although the
program was not optimized for Odyssey, its results were significantly better than
those of other cards. However, unlike its own PC-side emulator, Simphonic was

68 I. ZS. BERTA and Z. Á. MANN

not able to execute certain parts of the program. This latter card also showed certain
features incompatible with the Java Card standard.

Field element operations with one operand were performed on the a param-
eter of the challenge, those with two operands were performed between the a and
b parameters of the challenge. Point operations were performed between the P
and Q points of the appropriate challenge. Table3 shows the results for the group
operations on Oberthur I for three different curves.

The ECC system described in this paper is able to perform ECC encoding
on a Java Card, but its speed is so low that it can only be applied in laboratory
experiments. The authors hereby emphasize that this applet is not a commercial
product, but rather a prototype of a future hardware accelerated ECC. For some
improvement opportunities, see section 5.2.

4.4.2. PC

Although the program was developed for Java cards, the same source code and byte
code is able to run on a PC too. It can be compiled using JDK, and encapsulated in
any Java program. On a PC, the speed and memory limitations of smart cards are
not to be considered, so that a field of practically any size can be applied.

The system was tested with the ECC2-109 problem on PC too, to have a
valid comparison. The system performed the most complex cryptographic opera-
tion (multiplication of a point by a scalar) in 28 seconds (on a Pentium II 233MHz
running Linux and JDK1.1.7). Since this is by far the most complex operation in
all ECC-based protocols (see section 2.2.3) and is performed only once (or twice
in the case of ElGamal encryption and ECDSA verification algorithms – however,
in both cases the two calculations can be made fully parallel), this is approximately
the amount of time required by encryption, decryption, signing and signature veri-
fication as well.

In a PC environment, the program is ready for practical use too. However,
it was not specifically prepared for PC, so it is by far not optimal. Replacing
the finite field with the java.math.BigInteger class (that is implemented in native
code) would give the program tremendous performance boost in a PC environment.
Unfortunately, the java.math.BigInteger class does not exist for smart cards.

5. Evaluation

5.1. Security

Although the test results of the above section clearly show the PC’s superiority in
speed, the smart card’s main advantage does not lie in the numbers. In the case
of the PC the secret key is stored on the hard drive, loaded into the memory and
used by the processor. An attacker has thousands of opportunities to get access

ECC ON PC AND SMART CARD 69

to it. They do not even need direct access to the machine itself to tap the internal
buses or steal the hard drive: if the computer is connected to a network, a virus or
a Trojan horse may also get access to the key in the machine.

However, if the encryption engine is running on a smart card, the above meth-
ods do not work:

• The internal buses cannot be tapped, because there are not any buses. The
whole smart card is one single microchip [22].

• The data storage device cannot be separated from the access control logic
(see section 3.2).

• If the card is stolen, it is protected by a PIN code, which cannot be accessed
due to the above reasons.

• After a certain amount of tries (typically 3) the PIN is blocked, and the card
renders itself totally useless.

• Certain securely guarded keys are needed to load applications onto the card.
This excludes malicious programs (e.g. viruses or Trojan horses) [29].

• If malicious applications are uploaded, the Java Card applet firewall still
prevents them to access the secret key or the ECC application [8].

• The secret key never leaves the secure area behind the smart card’s hardware
firewall (see section 4.2.1).

Although the secret key can be used much faster on a PC, using it on the smart
card has significant security advantages. If a message is signed with a secret key
residing securely on a smart card, the receiver of the message can be absolutely
sure that the card was present when the message was signed. If a message is
encrypted with a public key, the sender can be sure that the message can only be
opened when the smart card (with the secret key) is present. This way, smart cards
transfer the meaning of security from the physical world to the electronic one, thus
making electronic security more understandable to non-professionals. Naturally,
the above is true for a smart card with any kind of public key cryptography.

In the case of ECC, key generation also needs careful investigation, since the
keys are not just random numbers, but special numbers (which is also quite true
for RSA). Key generation may also include the generation of system parameters,
such as the curve E , and the base point P along with its order n. E has to be
chosen in such a way that curves for which an efficient attack is known – e.g.
anomalous curves – should be avoided. For the generation of the base point P we
have already described a randomized algorithm in section 2.1.2. However, there
are more sophisticated algorithms for this, which guarantee that P will have a high
order. The generation of k is simple, because it is just an integer in [0, ..., n − 1]
(however, it should be statistically unique and unpredictable). The user’s private
key is then k, and the corresponding public key is either k P if the other parameters
(E , P and n) are system-wide, or (E, P, n, k P).

In the first case, key generation is simple and can be realized on-board. This
provides maximum security and also avoids key injection requirements at manu-
facturing time. In the other case, off-board key generation seems to be the right
choice because of the complexity of the process [15].

70 I. ZS. BERTA and Z. Á. MANN

5.2. Improvement Opportunities

5.2.1. Algorithmic Improvements

Two points were found to have extremely critical influence on the performance of
the algorithm. One of them was division in the underlying field (multiplication
with the inverse), the other was the multiplication of a point with a scalar (see
section 4.2.3). Unfortunately, these two operations are encapsulated into each other
in ECC.

Division of field elements has two components: obtaining the inverse and
multiplication. The former was performed using the Euclidean algorithm, which
is a highly efficient algorithm. However, it also contains multiplications, divi-
sions (with remainder), and additions. If these operations could be accelerated, the
whole process of obtaining the inverse would be faster. Addition is unlikely to be
accelerated since 	(m) steps are necessary. However, the speed of multiplication
and division with remainder could be improved significantly. For example, while
shifting, large areas of 0-s could be shifted in one step, and not one by one. It
would also be possible not to perform multiplication modularly, only converting
the result to a valid field element. Multiplication would also be faster with the op-
timal normal base representation, however, it would decrease the speed of addition
and it would also reduce security (see section 2.2.2). Another way of acceleration
would be possible if the generator element of the multiplicative group of the base
field would be known. Multiplication would boil down to simple addition.

Accelerating the multiplication of a point by an integer would be an even
more difficult problem. Since no algorithm is known to calculate k ∗ P directly,
multiplication can only be implemented as a sequence of additions. Taking this
into consideration, the algorithm used by the authors is quite effective. A con-
stant acceleration would be possible with some preprocessing, if the points of the
form 2i · P were stored in a table. The complexity of the operation would be still
O(log k), but the number of steps would decrease to the half. This table could be
precalculated when the system is installed, since P is a public system-wide param-
eter. However, this would consume an amount of memory which can only be taken
into consideration on cards with more memory than Odyssey or on the PC.

The literature describes several other tricks to optimize ECC for performance
[24]. Unfortunately, the authors could not apply them due to the lack of memory
on the card.

5.2.2. Technical Improvements

The authors focused on functionality: making the ECC algorithm work on a smart
card platform. Thus, the implementation is not protected against various side chan-
nel attacks ([16]) such as the analysis of key-size dependent execution times or
analysis of power consumption ([18]) or electromagnetic field ([2]). Naturally,
these would require optimization for a specific smart card.

ECC ON PC AND SMART CARD 71

5.2.3. Further Opportunities

As already noted, the implementation described in this paper is handicapped (con-
cerning speed) in many ways:

• it is pure software;
• it is implemented in Java Card, which does not enable direct access to the

smart card hardware;
• several known improvement methods had to be omitted because of the very

little amount of memory available.

Therefore it is not fair to assess the applicability of ECC in a smart card setting
based on the above numbers. Commercial availability would definitely require
hardware acceleration, for instance in the form of an ECC coprocessor.

Experience with Java programs has shown that their direct machine code im-
plementation yields generally at least one order of magnitude acceleration. More-
over, the experience with the hardware acceleration of RSA has shown that a crypto
coprocessor can give an additional factor of 20-100 performance boost [26]. In
the case of ECC, this ratio can be even better since ECC requires less multipli-
cation units and memory than RSA, which enables even stronger parallelization
and pipelining. Hardware acceleration ratios for ECC are estimated to be about 212

(see [30] for more detail). This would place the time required for ECC calculations
below the 1 second line, even considering the restricted capabilities of smart cards.

5.3. Comparison with Another Java Card ECC Implementation

A similar development took place on the Helsinki University of Technology (HUT)
in parallel with the authors’ development, unknown by the authors at that time. The
aim of that project was to create an ECDSA-based authentication system, using the
Java smart card as a device for encryption and key generation [10].

There are a lot of similar and different features between the two engines.
Both are pure software implementations of ECC using Java Card technology. The
engineers of HUT also faced the dilemma of GF(p) vs. GF(2m) (see secti-
on 4.2.3), but unlike the authors of this paper, they chose GF(p), since they already
possessed a well-tested Java ECC GF(p) implementation that they wanted to port
to the Java Card platform. They, too, claimed memory management and the lack
of garbage collection to be the most severe problems.

The engineers of HUT developed their implementation for a Java Card with
16KB of storage. The maximum key size they could use to perform an inversion
of a field element (that takes approximately as much time as addition between
points of the curve) was 50 bit. Of course, such key sizes are cryptographically
insignificant. In contrast, the authors of this paper created their implementation
for a Java Card with only 8KB of storage and the maximum key size they could
handle was 109 bit. An ECC with this key size has never been cracked, so it is
indeed cryptographically significant.

72 I. ZS. BERTA and Z. Á. MANN

6. Conclusion

Elliptic curve cryptography is a young part of public key cryptography. Although
it is based on a more than fifteen-year-old theory, it is less widespread than RSA.
However, ECC has several advantages, and it is also very important to have an
alternative to RSA. Accordingly, the role of ECC has increased in the past signifi-
cantly. Several standards include now ECC together with RSA.

Because ECC is able to provide the same level of security as RSA with signif-
icantly smaller keys, it has a great potential in a smart card or mobile environment.
The authors created the first ECC implementation that is able to deal with crypto-
graphically significant problems on a Java Card. They hope that their research will
contribute to a better understanding of ECC. With their smart card implementation
they would like to demonstrate the significance of ECC, and the power of Java
Card technology, which is now capable of executing more complex operations.

However, the aim of the research was not to create a commercial product.
The authors’ work could rather be regarded as a prototype, to be a base of a future
hardware-supported smart card implementation of ECC.

References

[1] ABADI, M. – BURROWS, M. – KAUFMAN, C. – LAMPSON, B., Authentication and Delega-
tion with Smart-Cards, Theoretical Aspects of Computer Software: Proc. of the International
Conference TACS’91, Springer, Berlin, Heidelberg, 1992.

[2] AGRAWAL, D. – ARCHAMBEAULT, B. – RAO, J. R. – ROHATGI, P., The EM Side-
Channel(s), Workshop on Cryptographic Hardware and Embedded Systems 2002 (CHES
2002), San Francisco Bay (Redwood City), USA, August 13–15, 2002.

[3] BERTA, I. ZS. – MANN, Z. Á., Elliptikus görbéken alapuló nyilvános kulcsú kriptográfia
elemzése chipkártyás és PC-s környezetben, Scientific Student Circle Conference, Budapest
University of Technology and Economics, 2000.

[4] BERTA, I. ZS. – MANN, Z. Á., Smart Cards – Present and Future, Híradástechnika, Journal
on C5, 12 (2000).

[5] BIEBER, P. – CAZIN, J. – WIELS, V. – ZANON, G. – GIRARD, P. – LANET, J.-L., Elec-
tronic Purse Applet Certification: Extended Abstract, Proceedings of the Workshop on Secure
Architectures and Information Flow, Royal Holloway, 1999.

[6] Certicom, Robert Harley and Team Win 10,000 USD Prize in Certicom’s ECC Challenge,
http://www.certicom.com, April, 2000.

[7] CHEN, Z., How to Write a Java Card Applet: A Developer’s Guide, JavaWorld, July, 1999,
http://www.javaworld.com/javaworld/jw-07-1999/jw-07-javacard_p.html.

[8] CHEN, Z., Java Card Technology for Smart Card: Architecture and Programmer’s Guide,
Addison-Wesley Pub Co; ISBN: 0201703297, September, 2000.

[9] CRUTCHLEY, D. A., Cryptography and Elliptic Curves, Master’s Thesis, University of
Southampton, Faculty of Mathematical Studies, 1999.

[10] ELO, T. – NIKANDER, P., Decentralized Authorization with ECDSA on a Java Smart Card –
A Software Implementation, Cardis2000, 2000, http://www.hut.fi/ telo/publications/.

[11] ENDRŐDI, CS. É., Master’s Thesis on Comparison of the ECC and the RSA Algorithms, Bu-
dapest University of Technology and Economics, Department of Measurement and Information
Systems, 2001.

ECC ON PC AND SMART CARD 73

[12] GYÖRFI, L. – GYŐRI, S. – VAJDA, I., Információ és kódelmélet, Typotex, ISBN: 9639132845,
2000.

[13] HUSEMÖLLER, D., Elliptic Curves (Graduate Text in Mathematics), Springer, ISBN:
0387954902, 1987.

[14] ISO, ISO/IEC 7816.
[15] JOHNSON, D. B. – MENEZES, A. J., Elliptic curve DSA (ECDSA): an enhanced DSA.,

http://citeseer.nj.nec.com/276964.html, 1998.
[16] KELSEY, J. – SCHNEIER, B. – WAGNER, D. – HALL, C., Side Channel Cryptanalysis of

Product Ciphers, Journal of Computer Security, 8 No. 2–3 (2000), pp. 141–158.
[17] KOBLITZ, N., Elliptic Curve Cryptosystems, Mathematics of Computation, 48 No. 177 (1987),

pp. 203–209.
[18] KOCHER, P. – JAFFE, J. – JUN, B., Differential Power Analysis, Crypto ’99,

http://www.cryptography.com, 1999.
[19] MILLER, V. S., Use of Elliptic Curves in Cryptography, CRYPTO ’85, 12, 1985.
[20] MOTRÉ, S., Formal Model and Implementation of the Java Card Dynamic Security Policy,

Gemplus Research Laboratory, Avenue du Pic de Bretagne, 13881 Gémenos CEDEX, 2000.
[21] MULLIN – ONYSZCHUK – VANSTONE – WILSON, Optimal Normal Bases in G F(pm), Dis-

crete Applied Math., 12 (1988).
[22] RANKL, W. – EFFING, W., Smart Card Handbook, John Wiley & Sons, 2nd edition, ISBN:

0471988758, 1997.
[23] REQUET, A., A B Model for Ensuring Soundness of a Large Subset of the Java Card Virtual

Machine, Gemplus Research Laboratory, Av du Pic de Bretagne, 13881 Gémenos cedex BP
100.

[24] ROSING, M., Implementing Elliptic Curve Cryptography, Softbound, ISBN 1884777694,
1998.

[25] SCHNEIER, B. – SHOSTACK, A., Breaking Up is Hard to Do: Modelling Security Threats
for Smart Cards, USENIX Workshop on Smart Card Technology, Chicago, Illinois, USA,
http://www.counterpane.com/smart-card-threats.html, 1999.

[26] SCHNEIER, B., Applied Cryptography, John Wiley & Sons, ISBN: 0471117099, 2nd, 1996.
[27] STABELL-KULO, T, ARILD, R. – MYRVANG, P. H., Providing Authentication to Messages

Signed with a Smart Card in Hostile Environments, Usenix Workshop on Smart Card Technol-
ogy, Chicago, Illinois, USA, May 10-11, 1999.

[28] Sun Microsystems Inc., Java Card (TM) 2.1.1 Application Programming Interface, Sun
Microsystems, Inc. 901 San Antonio, Road Palo Alto, CA 94303 USA, 650 960-1300,
http://java.sun.com/javacard, May, 2000.

[29] Visa, Open Platform Protection Profile (OP3), http://www.visa.com, Version 0.7, 2001.
[30] WIENER, M. J., Performance Comparison of Public-Key Cryptosystems, CryptoBytes, 4 No. 1

(1998).
[31] ZOREDA, J. L. – OTON, J. M., Smart Cards, Artech House, ISBN: 0890066876, 1994.

	Introduction
	Theoretical Background
	Elliptic Curves
	Elliptic Curves over Finite Fields

	Cryptographic Application of Elliptic Curves
	ECDLP
	The Underlying Finite Field
	Some Protocols Based on ECDLP

	Cracks

	Technical Background
	What is a Smart Card?
	Security
	The Three Generations of Smart Cards
	Java Card

	The Implementation
	General Remarks, Aims of Development
	Architecture of the Program
	Structure
	Memory Management
	Algorithmic Solutions

	Smart Cards Used for Testing
	Results
	Java cards
	PC

	Evaluation
	Security
	Improvement Opportunities
	Algorithmic Improvements
	Technical Improvements
	Further Opportunities

	Comparison with Another Java Card ECC Implementation

	Conclusion

