
PERIODICA POL YTECHNICA SER EL. UNO, VOL 46. NO. 3-t. PP. 123-136 (2002)

HIGH-LEVEL SYNTHESIS USING PREDEFINED IP-S
P6ter A R A T 6 , Tibor K A N D A R , ZoltiSn M O H R and Tamls V l S E G R A D Y

Department of Control Engineering and Information Technology
Budapest University of Technology and Economics

H - l 117 Budapest, Magyar tud6sok konilja 2, Hungary
Received: June 6, 2003

Abstract
In this paper, an algorithm is presented for decomposing a system into IP (Intellectual Properly)
functional units. The system to he decomposed is characterized by a complete cover of the set of
its behavioral datapath operations. Such a cover is obtainable at the allocation stage of a high-level
synthesis procedure. Each block of the cover represents a subset of behavioral operations, which
are non-concurrent, i.e., arc executable by the same real resource (processor). Each IP - as a real
resource - is assumed to be specified also by a subset of behavioral operations, the execution of which
is possible and preferred by applying this IP. The quality constraints of the decomposition are handled
as a weighted composition of several criteria, which may characterize a solution (degree of reuse,
weighted sum of several cost parameters, etc.). Since the problem is NP-complcte [7], the quality of
the results is illustrated and evaluated on a widely used benchmark example of practical size.
Keywords: system-level synthesis, high-level synthesis, IP-based design, hardwareAsoftware code-
sign, reuse.

1. Introduction
The latest development in system-level synthesis and hardware/software codesign
involves the need for methodologies using beneficially complex adaptable and re-
configurable functional units called IP-s (Intellectual Property) as building blocks
J16j, [17]. One of the most crucial steps of this design procedure is basically a
special decomposition algorithm constructing an architecture from predefined IP-s
and the communication between them [9], [12], [13]. IP vendors provide a growing
variety of products specified in catalogues also on a behavioral level (16]. Al­
though this specification is an exact definition of IP-behavior, it is not easy to use
it in formulating a decomposition algorithm. Therefore, a proper transformation of
the specification seems to be useful for direct interfacing to the preceding stages
of system-level synthesis. These complex functional units are mostly communica­
tion interfaces (like serial UART, SPI, I2C, etc.), signal processing functions, (like
FIR, IIR filter blocks, FFT/DCT transformers, Viterbi decoders, etc.), system level
functions (like DMA controller, MMU, interrupt controller, etc.). A subclass of IP
units can be considered and handled as complex units being able to perform a set
of RTL level operations (like adding, shifting, XOR, storing, etc.). The algorithms
presented in the paper focus on this subset of IP-s. Since the behavioral system

124

description generally starts with a dataflow graph or a high-level language repre­
sentation [4], 15]. [10], [3], 16], [8], therefore, so-called behavioral operations arc
always assumed as atomic behavioral units [14], [I I] , [7J. High-level synthesis
steps yield proper subsets of non-concurrent behavioral operations by executing
the scheduling and allocation algorithms [15], [I] , [2], [3], [7]. These subsets are
to be mapped in IP-s as real resources. Thus, it seems to be beneficial to specify
each IP also by a subset of behavioral operations, the execution of which is possible
and preferred by applying this IP. The decision on this execulability is made by
the designer upon considering first of all the suitability and adaptability of an IP
[17], [16]. The requirements on speed, communication cost, complexity of control
and reusability, etc. may set strict conditions and might exclude some behavioral
operations from the subset of the preferred ones in spile of the adaptability of an IP
[3]. [7].

In this paper, an algorithm is presented for decomposing a system character­
ized by subsets of behavioral operations. These subsets represent a complete cover
of all behavioral operations [11], [3], |7] of the system and the target architecture
is to be constructed by applying executing IP-s selected from a predefined set of
IP-s specified as outlined above. Since finding the optimal decomposition is an
NP-complele problem [7], the quality of the results are illustrated and evaluated on
a widely used benchmark example of practical size (MARS cipher) by constructing
a weighted composition of several criteria, which may characterize a solution.

In Chapter 2. the algorithm DECIP (DEComposition into predefined IP-s) is
described. In Chapter 3, the results are illustrated for a benchmark problem. The
conclusions and some further research aims are summarized in Chapter 4.

2. The Algorithm DECIP
2. /. The Basic Problem to he Solved

Let a complete cover A7 be assumed on the set £ of behavioral operations. The
blocks (subsets) of such a cover are obtainable, for example, as the maximal com­
patibility classes of non-concurrent operations by scheduling and allocation from
a high-level synthesis method [I I] , [3], [7]. Based on the cover, each behavioral
operation is to be allocated in one of the IP-s from a predefined set / . In other
words, a proper complete partition P on the set E of elementary operations is to be
found starting from the cover M. An executing IP unit should be selected to each
block of this partition P, under the assumptions and conditions as follow:

1. Each IP from a predefined set is specified by those behavioral operations, the
execution of which is possible and preferred by this IP.

2. As few IP-s as possible are to be used from their predefined set.
3. As few as possible types of IP-s arc to be used (the reuse of IP-s is preferred).
4. The criteria for selecting the executing IP-s should easily be combined and

composed by applying weight factors.

HIGH-LEVEL SYNTHESIS 125

2.2. Notations for the Basic Algorithm

E : (e\,..., e,r,..., eN) Set of behavioral operations
M : (Mu Mr,Mk) Complete cover of E (e.g. the maximal com­

patibility classes obtained by the allocation)
c(Mf) Relative cost of Mr
I ; (/, / , , . . . , / j) Set of IP-s predefined for application
c(Is) Relative cost of Is
R : (/?, Rs, Rj) Set of those - not necessarily disjoint - sub­

sets of behavioral operations in E, whose
execution is possible and preferred by ap­
plying IP-s / i , , tj, respectively

S : (. . . , //, lv iq,...) Set of executing IP-s selected for application
n(Is) Number of Is copies selected for application
Rs z Disjoint subsets of Rs containing those el­

ementary operations, for the execution of
which the z'h copy of ls is selected
((1 <s<j),0 <z<n(Is)))

P Executing partition on £ , (the blocks are all
subsets Rs<z)

W I P C O S I Relative weight factor constant for c(ls)
WY Relative weight factor constant for ys, where

r
VV|PSorl Relative weight factor constant for Ns,

u Kr 1, if 7i (/,) > 0
where Q \fn(ls)=Q

ws Weight function value for /$

2.3. Description of the Algorithm DECIP

START
Vn(/ , :=())
5 : = 0
while M / 0
do {

a = max{|/Wr n Rs\ : (Mr, Rs) € M x R)
for V/?(: y> = £ l ^ r n : (M r , eM x R

r
determine ymax (the maximal y5 value)
fQiVRs : W l - - W , p c o s [+ I V , — + W^sortJV,

max{c(A), he I) y n m

126 P. ARAT6 a al.

forVM, : 8r = \Mr\
determine <5min (the minimal Sr value)
selsect one Rs, for which:

3Mr ; \Mr n Rs\ = a and
m = Bm» and
Sr — 5min

S := S U / ,
«</,) :=n(/ ,) + l
neglect W, from M if e,- e ^ n (; j

}

STOP
The convergence of algorithm DECIP is obvious, since the size of M is

reduced in each cycle and an empty set M is obtained at the end. The speed of
convergence is strongly influenced by the heuristic steps of selecting Rs from the
different possibilities according to the criteria (a, tumax, <5mm)- The ws values can
be varied by adjusting the weight factor constants (Wjpcosti Wy, W\pson). In this
way, the selection strategy for Rs can be influenced and tested by trials as shown
later. The number of these choices strongly depends on the magnitude (number
of blocks, \M\) of the initial cover M. The increasing value of \M\ may involve
a higher degree of overlapping between the blocks of the initial cover, which also
rapidly increases the possible variations at selecting Rs. By a proper algorithm for
reducing the initial cover A/, this difficulty in computation can be avoided.

2.4. Algorithm REDIN (for REDucing the INitial cover M)

Notations for REDIN

H the number of occurrence of e, in actual M
mr the weighted sum of z,-s in Mr, (weights are the relative costs of ers)
g the desired grade of reduction of \M\
s(M) the actual set of Mr-s with the smallest m r-s
M(red) the reduced M

The Algorithm

START
if \M\ < g then STOP
M(red) :- 0
/ - 1

HIGH-LEVEL SYNTHESIS 127

calculate zrs for each e, and mr for each MT

do {
determine s(M)
select an Mr from s(M) and remove it from actual M
M(red) := M(red)UMr
if e,- e A/r, then z,- : = 0
recalculate m r -s and s(/V/) for the actual /V/

} while M(rerf) is not a complete cover
while j < g {

select an Mr from s(M) and remove it from M
M{red) : = M(rerf) U Af,
recalculate 2 , - s , m r -s and .r(/vf) for the actual M
j •= J + 1
}

5 • • = ; - 1
STOP

There is still a selection step in each cycle of REDIN, but the number of
elements in s(M) is very limited in practical problems. Therefore, to choose an Mr

does not mean a large number of variations.

3. Benchmark Solutions
In this section, the solution of a practical benchmark problem (cipher algorithm
MARS) is presented for illustrating the basic modes of algorithm DECIP. The
problem description starts with constructing an elementary operation graph (EOG)
[4], [11], [3], [6]. The maximal compatibility classes of non-concurrent operations
(set M) are generated by the high-level synthesis CAD tool PIPE developed at
the Department of Control Engineering and Information Technology, Technical
University of Budapest [3].
Steps of the solution:

1. Determining behavioral operation types for the problem to be solved. The
number of types is assumed to be five for algorithm MARS.

2. Constructing the EOG. Algorithm MARS requires 416 behavioral operations.
3. For generating the set of IP-s predefined for application (set /) , algorithm

DECIP can be used in two different execution modes as follows:
Mode 1: Selecting from a predefined set of IP-s, which can be taken from

catalogues, or assumed to be generated by CAD tools. We have simu­
lated an available set of IP-s by using the XILINX Foundation Series
CAD tool. The IP-s generated in this way are specified by composing
the behavioral operations applied in Step 1.

128 P A RATI) el tl

Mode 2: Approximating the best IP behaviors by composing initial Active
IP-s from the behavioral operations used in the EOG description of the
problem to be solved.

4. Determining the execution limes of behavioral operation types based on the
IP-s found or generated in Step 3. If a behavioral operation is executable by
several IP-s, then the longest execution time will be assumed.

5. Executing PIPE for determining an initial cover M. Since tool PIPE is dedi­
cated for synthesis of pipelined systems, the desired restarting period is also
an input parameter. Non-pipeline mode can be forced if the latency time of
EOG is given as restarting period 13). However, involving also the pipeline
possibility, the restarting period is set to 200 clock cycles, which is approxi­
mately the half of the latency time.

6. Constructing the input parameters for DKCIP.
7. Executing DECIP.

3. I. Input Parameters for DECIP
As it has been shown in Section 1, algorithm DECIP requires the following input
parameters:

Behavioral Operations
The types of behavioral operations (and their parameters) used in MARS algorithm
are summarized in Table I. To obtain proper practical values for the execution
times, each type of behavioral operations has been generated experimentally by
the XILINX Foundation Series software tool. A clock frequency of 32 MHz is
assumed, and the execution times of the behavioral operations are handled as the
number of clock periods required for execution.

Functions sbox, sboxO, sboxl represent algorithmic components of MARS
cipher. These components are assumed to be implemented in memory-type IP-s.
In most cases these components arc simple look-up tables.

Compatibility Classes (Set M)
The graph representation of algorithm MARS, the operation types and their exe­
cution times (Table 1) are input parameters for design tool PIPE. The result of the
allocation step is a complete partition on the set (E) of behavioral operations. Each
block of this partition consists of pair-wise non-concurrent operations. This parti­
tion can be used as initial cover (M) for DECIP. Since the blocks of the partition are
disjoint, there is no need to execute algorithm REDIN before DECIP in this case.

HIGH-LEVEL S YNTHESIS 129

Tabic J. Execution times of behavioral operations
Operation Required Number of Maximal Execution
type name IP function occurrence frequency (MHz) lime, ti

Mull multiplying 16 2.823 12
Add adding 72 7.290 5
Sub subtracting 24 7.290 5
Xor XOR 80 36.621 I
shr8 shifting 24 32.424 1
Shi shifting 32 32.424 1
shl5 shifting 32 32.424 1
shl8 shifting 24 32.424 1
shll3 shifting 32 32.424 1
sbox storing 16 34.904 1
sboxO storing 32 34.904 1
sbox 1 storing 32 34.904 1

Predefined Set I of IPs to Be Applied and their Costs
The composition of this set is made differently in the two execution modes of DECIP
as illustrated later.

Weight Factors (W1PCos[, Wy, WiPSion)

Since these factors stress only the relative weights of the different criteria expressed
by values between 0 and 1, their task can be fulfilled also in the range of value
between 0 and 1. For illustrating the influence of the experimental weight factors,
a range of their values from 0 to 0.4 in steps of 0.1 is examined. In this way,
the relative weights can be set for 1 to 5 and 125 variants of weight factors can
be examined. By calculating with different compositions of weight factor values,
algorithm DECIP can be adjusted for the character of each problem to be solved. In
this way, the selecting procedure of the algorithm is influenced in order to approach
to the optimal strategy for the given problem.

By scanning with discrete values of weight factors, global optimum may be
hidden. Therefore, proper distances and dominance have to be established experi­
mentally.

Obviously, other compositions of weight factors, range and step size may
be checked in the same way. For instance, one of the most serious difficulties
of applying IP-s is establishing of the proper communication between them. The
complexity, cost and execution time of communication are important parameters for
specifying and selecting IP-s. The communication problem is out of the scope of this

130 RARAT&etal

paper, but algorithm DECIP can be adjusted also for considering communication
effects by introducing additional weight factors and special criteria.

3.2. Selecting from an Available IP Set (Mode 1)
In this execution mode, an available set of IP-s is assumed and the optimal selection
from this set is approached. We have simulated experimentally an available IP set
by generating them using the CAD tool XILINX Foundation. The IP-s obtained in
this way, are considered as products taken from a catalogue. Each IP is specified by
the behavioral operations, for which it is generated. In other words, these are the
operations, the execution of which is possible and preferred by the IP. In Table I.
these specifying operations (i.e., the elements of set R) are listed for each IP. The
other parameters of the IP-s are shown in Table 2. For simplicity, the relative cost
of IP-s (c(/j)3 is assumed to be identical to the number of CLB-s.

Table 2. Illustration o f s imulated available IP-s
Possible and Cost (c (/ ,))

IP name IP preferred operation Max. frequency (based on
(set /) specification types (types of (MHz) the number

elements in subsets Rs) of CLBs)
Multiplier multiplying Mult 2.823 840

Adder adding Add 7.290 32
Subtracter subtracting Sub 7.290 32

Logic XOR Xor 36.621 9
Shift shifting shr8,shl, shI5, shl8, shI13 32.424 32
AU adding. add.sub 7.290 72

subtracting
Memory storing sbox,sboxO,sboxl 34.904 528

Thus, all input parameters are given for executing DECIP. Let a cost function
C be defined as follows:

C = ^c(f)n{ls).
i

A special radar diagram is shown in Fig, 1 for evaluating the results. The cost
values and the number of IP-s selected for application (|5|) are illustrated in a
proper normalized way for a better presentation. Let an efficiency factor F be
defined as follows:

r = ,
2

The minimal value of F can be considered as a good compromise between cost and
reuse.

HIGH-LEVEL SYNTHESIS 131

Fig. I. T h e cost , \S\ values and eff ic iency factor in case o f se lec t ing from an avai lable IP
set

Table 3 contains the selected IP set 5, which has the minimal cost (this can
be observed on the radar diagram as the location of smallest value of C) . In this
case, the use of all types of predefined IP-s is necessary.

If reuse is preferred to cost, then at least 5 types of IP-s are needed, as shown
in Table 4. In this case the cost is larger, so this solution requires more CLBs.

3.3. Approximating the Best IP Behaviors (Mode 2)
In this execution mode, the types of IP-s (set /) are assumed not to be taken from
catalogue, but to be determined and constructed from compositions of behavioral
operations applied in the behavioral description (EOG) of the problem to be solved.
Thus, an initial set of such fictive IP-s is considered as set / in the first step.
These fictive IP-s are specified by combinations of their behavioral operations. The
parameters of these fictive IP-s are estimated for experimental use, as if they were

132 (' ARATO et al.

Table 3. Results with minimal cost
Selected TP-s Number of IP-s Cost

set S 1(4) C
Multiplier 10 8400

Adder 5 160
Subtracter 3 96

Logic 16 144
Shift 15 480
AU 8 576

Memory 15 7920
17776

Table 4. Results if reuse is preferred to cost
Selected IP-s

set S
Number of IP-s Cost

C
Multiplier 10 8400

Logic 16 144
Shift 15 480
AU 16 1152

Memory 15 7920
18096

obtained by using the XILINX Foundation Series software tool with the same results
as in the previous section.

Each combination of five behavioral operations (multiplication, addition, sub­
traction, xor and shift) generated previously for basic IP-s is assumed to specify a
fictive IP. The number of CLB-s of multifunctional IP-s is estimated as the sum of the
number of CLB-s obtained for the individual components in the previous section.
(Table 2). These parameters of the initial fictive IP set are shown in Table 5.

The results of DECTP are illustrated in a radar diagram (Fig. 2) introduced in
the previous section.

The minimal cost and the best reuse are represented by extreme values on the
diagram. The corresponding IP sets selected from the initial fictive IP-s of Table 5
are illustrated in Table 6 and Table 7, respectively.

It can be seen by comparing Tables 3 and 6, that the cost is lower in the case
of multifunctional IP-s.

Table 7 shows that the selecting procedure provides the trivial solution, if
reuse is preferred in this case.

HIGH-LEVEL SYNTHESIS

Tabic 5. Illustration of generated (fictive) IP-s
Possible and Cost {c(Is))

IP name IP preferred operation (based on
(set /) specification types (types of the number

elements in subsets /ij) ofCLBs)
Memory storing sbox. sboxO, sbox 1 528

ipO multiplying Mult 840
ipj adding Add 32
ip2 subtracting Sub 32
ip3 XOR Xor 9
ip4 shifting shr8, shl.sh.15, sh!8,shll3 32
iP5 multiplying, adding mul. add 872
ip6 multiplying, subtracting mul, sub 872
ip7 multiplying, XOR mul, xor 849
ip8 multiplying, shifting mul.shrS, shl. sh!5. shl8, shll3 872
ip9 adding, subtracting add, sub 64

ipIO adding. XOR add, xor 41
ipll adding, shifting add. shr8. shl, shl5. shl8. shl 13 64
ipl2 subtracting. XOR sub, xor 41
ipi3 subtracting, shifting sub. shr8. shl. sh!5, shl8, shl 13 64
ipl4 XOR, shifting xor.shr8, shl. shl5. sht8. shl!3 41
ipi5 multiplying, adding, mul, add. sub 904

subtracting
ip!6 multiplying, adding. mul. add, xor 881

XOR
ipl7 multiplying, adding. mul. add. shr8. shl, 904

shifling shl5, shl8. shl13
ip!8 multiplying, subtracting, mul. sub. xor 881

XOR
ipl9 multiplying, subtracting, mul, sub, shr8, shl. 904

shifting shl5.shl8.shU3
ip20 multiplying. XOR. mul, xor. shr8. shl. 881

shifting shl5. shl8, sht!3
ip21 adding, subtracting. add, sub, xor 73

XOR iP22 adding, subtracting. add. sub, shr8, shl, 96
shifting shl5.shl8.shH3

ip23 adding, XOR. shifting add, xor. shr8, shl. 73
shl5. shl8. shl 13

ip24 subtracting. XOR, sub. xor, shr8, shl. 73
shifting shl5. shIS, shll3

ip25 multiplying. XOR. mul, add, sub. 913
adding, subtracting xor

ip26 multiplying, adding. mul. add, sub. shr8, shl, 936
subtracting, shifting shl5, shl8, shl13

ip27 multiplying, adding, mul, add, xor, shr8, shl, 913
XOR, shifting $hI5, shIS. shl 13

ip28 multiplying, shifting. mul, sub, xor. shr8, shl, 913
subtracting. XOR shl5.shl8.sM13

iP29 adding, shifting. add, sub, xor. 105
subtracting, XOR shr8, shl. shI5,

sh!8, shll3
ip30 multiplying, XOR, mul, add, sub. 945

adding, shifting. xor. shr8, shl.
subtracting sh!5,shI8, shl 13

http://shl5.shl8.shU3
http://shl5.shl8.shH3
http://shl5.shl8.sM13

134 P. ARATO ei 0,

Fig. 2. T h e cost , |,S| va lues and eff iciency factor for approximating the best IP behaviors

Table 6. Results with minimal cost for approximating the best IP behaviors
Se lec ted N u m b e r Cost Total

IP-s o f IP IP specif ication o f IP cost
Set S n(Is) mi C
i p l 2 1 subtracting, X O R 41 41
ip23 1 adding, X O R , shifting 73 7 3
i P 2 4 2 subtracting, X O R , shifting 73 146
ip27 4 mult ip ly ing, adding, X O R , shifting 9 1 3 3 6 5 2
ip29 2 adding, shift ing, subtracting, X O R 105 2 1 0
ip30 6 mult ip ly ing, X O R adding, shift ing, subtracting, 9 4 5 5 6 7 0

M e m o r y 15 storing 5 2 8 7 9 2 0
1 7 7 1 2

The experimental version of algorithm DECIP has been written in Visual
Basic Script and its running time on a Pentium PC (300 MHz, 64M RAM) was 7
hours for MARS benchmark in both modes.

HIGH-LEVEL SYNTHESIS 135

Table 7. Results if reuse is preferred for approximating the best IP behaviors
Selected Number Cost Total

IP-s of IP IP specification of IP cost
SctS «(/,) e(/ ,) C
ip30 16 multiplying, XOR adding, shifting, subtracting. 945 15120

Memory 15 storing 528 7920
23040

4. Conclusions and Further Research

The algorithm DECIP presented in this paper decomposes a system characterized by
subsets of behavioral operations specifying the problem to be solved by the system.
The target architecture consists of executing IP-s selected from a predefined set of
IP-s. Each IP is assumed to be specified by behavioral operations, the execution of
which is possible and preferred by this IP. Algorithm DECIP selects the executing
IP-s by varying weight factor values of several criteria in order to adjust the selection
procedure to the character of the problem to be solved. In Mode 2 of DECIP. an
initial set of fictive IP-s specified by combinations of behavioral operations can also
be handled, in order to approximate to the best executing IP-behaviors.

Algorithm MARS is used as benchmark of practical size for illustrating the
performance of DECIP.

The communication between IP-s is crucial in system-level synthesis. Algo­
rithm DECIP can be adjusted to consider communication parameters by introducing
additional weight factors and special criteria for selection. However, this extension
is not elaborated yet, and it is a subject of further research.

Further extension of criteria and their weight factors would be necessary for
taking into consideration the different execution times of the same operations in
different IP-s. Slower execution of some operations may be allowed if, for example
reuse is the most important aim of optimization.

Many practical IP-s are specified not only by a set of behavioral operations,
but also by the execution order of the operations (e.g. filters, ALU, DCT, etc.).
Such IP-s might be strongly preferred if the problem to be solved contains similar
parts in operation order. Handling such IP specifications also requires modification
of DECIP in further research.

Another further research aim is to build in some adaptivily for changing the
weight factors automatically by a learning procedure. In this case, the character
of problem to be solved has to control somehow the adaptive learning algorithm
during the execution of DECIP.

I u. P ARATO el al

Acknowledgements
The research work o f the authors has been supported by the grants O T K A TOM) 178 and
FKFP 0 4 1 6 / 9 7 al the Department o f Control Engineering and Information Techno logy ,
Technical University o f Budapest .

References
[I] A R A T 6 , P. - BERES, I, A Compatibility-Based Allocation Method in High-Levcl Synthesis,

Periodica Polyteclmica. El. Eng.. i 996.
|2] A R A T O . P. - B E R E S , I . - R U C I N S K I , A . - D A V I S , R . - T O R B F R T . R . . A High-Level Datapath

Synthesis Method fur Pipelined Structures, Microelectronic* Journal, Elsevier Science Ltd., 25
(1994), pp. 237-247.

[3 | A R A T O . P. - Vtsr .GRADY, T . - J A N K O V I T S , L , High-Level Synthesis of Pipelined Datapaths,
John Wiley & Sons, Chichester, United Kingdom, (irst edition 2001.

[41 C A M P O S A N O , R . . From Behaviour to Structure: High-Level Synthesis. IEEE Design and Test
of Computers, 10 (1990), pp. 8-19.

[5] C A M P O S A N O , R . - R O S E N ST! EL, W., Synthesizing Circuits from Behavioural Descriptions.
IEEE Transactions on Computer Aided Design, 2 (1989), pp. 171-180.

[6] C A M P O S A N O , R . - W O L F , W . , High-Level VLSI Synthesis, Kluwcr Academic Publisher, 1991.
17J D E MlCHELI, G . , Synthesis and Optimization oj' Digital Circuits, McGraw-Hill, 1994.
(81 G A J S K I . D . , High-Level Synthesis, Kluwer Academic Publisher, 1992.
J9] G A J S K I . D . D . - D O E M E R , R . - ZHU, I., IP-centric Methodology and Design with the SpecC

Language, NATO A SI System-Level Synthesis, August, 1998.
[10] H W A N G . C . -T . - L E E , J . - H . - H S U , Y . - C , A Formal Approach to the Scheduling Prohlem in

High-Level Synthesis, IEEE Transactions on Computer Aided Design, 10(1991), pp. 464-475 .
1111 IEEE, Special Issue on High-Level Synthesis, IEEE Transactions on Very Large Scale Integra­

tion Systems, 1 No. 3 (1993). *
]12] J E R R A Y A , A. . Multilanguage Specification for System Design, In: System-Level Synthesis.

NATO Science Series, Kluwer Academic Publisher. 1999.
[I3 | J E K R A Y A , A. A.. Behavioral Synthesis and Component Reuse with VHDL. Kluwer Academic

Publisher, 1997.
114] P A R K , N. - P A R K E R , A. , SHEWA: A Program for Synthesis of Pipelines, Proceedings of the

23rd Design Automation Conference, 1986. pp. 454-460.
115] P A U L I N . P . G . - K N I G H T . J . P.. Force-Directed Scheduling for the Behavioural Synthesis of

ASICs, IEEE Transactions on Computer Aided Design, 6 {1989). pp. 661-679.
116] R O L F . E.. Embedded System Architectures, System-Level Synthesis, NATO Science Series.

Kluwer Academic Publisher. 1999.
[I7J S T A U N S T R U P , J. - W O L F , W . , Hardware/Software Co-Design: Principles and Practice,

Kluwer Academic Publisher. 1997.

