
PERIODICA rOLITECHSICA Sfc'K l [L ENG. V O L 46. SO. 3-4, PP. I37-I49CV02I

P E R F O R M A N C E M O D E L L I N G O F C O O P E R A T I N G T A S K S IN
P C C L U S T E R S

Sandor JUHASZ and Hassan C H A R A F

Departmcni o f Automation ami Applied Informatics
Budapest University o f Technology and Economics

H - l 111 Budapest. Goldmann Gybrgy idr 3. Hungary
juhasz.sandor@aut.bme.hu

Received: July 11,2003

Abstract

Although parallel processing is a promising way of increasing (he performance cost efficiently, it
is important to find the balance between the potential speed-up benefits and overheads due to the
organization and the increased communication. Finding the optimal distribution of co-operating tasks,
minimizing overheads and maximizing execution speed are often completed based on performance
prediction.

Complexity o f prediction gradually increases with the number o f links between the cooperating
tasks. In this paper the efforts arc focused on building up a performance model for a category o f tasks
running on clusters o f workstations, where the result is expected at the same node the input was fed
in, and a strong dependence between the partial solutions must be resolved lo obtain the final result.
In this domain we investigate the possibilities o f prediction and minimization o f execution time in
the function o f the cluster size.

To show the uti l i ty of our model, the results are demonstrated on the common, widely used
area o f integer sorting. Modell ing the execution time of different sorting algorithms has a strong
mathematical background, which enables to easily build up formulas for the expected execution
limes helping 10 determine the optimal cluster size. As a conclusion, we show the execution times o f
the sorting algorithm measured on a test cluster, and compare the predicted limes and the measured
results.

Keywords: modelling execution on cluster of workstations, execution lime prediction, parallel integer
sorting, and cluster performance.

1. Introduction

In the last ten years, clusters of workstations began lo become possible candidates
for a cheaper environment to accomplish certain computationally intensive tasks.
With the advanced network technologies, connecling a number of workstations to
each other is not a problem anymore. The significance of the bandwidlh is also
decreasing, though there is still much lo do in the software domain. There is no
ultimate solution for the cluster middleware, which should provide the image of a
single coherent system even for a continuously changing hardware configuration
[3, 9]. The design of parallel algorithms that can be executed efficiently on any
general-purpose distributed systems is also a domain subject to major research
efforts.

mailto:juhasz.sandor@aut.bme.hu

138 S. JUilASZ and 11. CHARAP

The algorithms should be efficient and scalable in a wide range of problem
areas. It is often important to predict execution times and load values depending on
the available configuration, or to propose a resource configuration that is optimal
for the task to complete [4]. To do this, the calculation algorithm must be aware
of the properties of the available resources (processing power, network speed and
latency, current load, etc.). Although it seems to be impossible to provide a general
prediction algorithm, good mathematical models can be proposed for certain types
of applications, which provide solid foundations for optimization and predictive
calculations.

This paper seeks to present a methodology, which allows predicting the ex
ecution time of a given algorithm with a known cluster configuration, and this
prediction wil l be used for choosing a configuration that minimizes the running
time. Our approach is aimed for clusters of physically separated workstations, and
models a demand-driven ease, where data are fed in and the result is expected at
the same node. This usual condition certainly limits scalability, which implies that
increasing cluster size after a limit wi l l not increase the performance anymore, or
indeed, may even result in a slower execution.

The main idea behind running time prediction is to measure some character
istics of the execution environment taking into consideration the important features
of the algorithm to run. These features include effective bandwidth with the current
communication pattern, constants characterizing execution speed of the algorithm
on a certain kind of processing unit, or I/O and background storage speed on the
cluster nodes. To simplify the model only homogeneous clusters are considered.
Section 2 presents the computation, network and I/O model, which the further
equations are based on.

The measures are supposed to be completed only once for an algorithm. After
analyzing the algorithm with the help of the measured values and the parameters (e.g.
problem size, input distribution, error bounds) some formulas can be created for
the processing speed of different algorithm steps, allowing to find the performance
bottleneck that determines the final running time. Section 3 presents a generic
model for data processing applications and gives the formulas for execution time
prediction in a cluster.

In Section 4 the previous equations are applied lo an important practical
application: a parallel integer sorting algorithm. Many sources handling the theory
of sequential and parallel sorting algorithms are available. The different algorithms
designed to be used on high-performing computers (SMPs or clusters of SMPs, for
references see [1] and [7]) are difficult to adapt to clusters because this latter has a
much slower communication infrastructure. As the aim was to present a running
time prediction methodology, a quite simple parallel sorting algorithm had been
chosen as an example, which is based on simple merging of data already sorted
sequentially by the worker nodes.

In Section 5 some execution limes are measured in a test cluster with different
problem and cluster sizes and are compared to the predicted values. Finally, a prac
tical example is given of how to calculate the optimal cluster size for the presented
case.

PERFORMANCE MODELLING OF COOPERATING TASKS IN PC CLUSTERS 139

2. Modelling Computation, I/O and Network Transactions

To create a simple, but well fitting model for applications running on clusters of
workstations, the attention must be focused to a restricted domain of interest. Paral
lel sorting is a kind of data processing application where limited number of process
ing steps arc done on a high amount of data. This wi l l require continuous usage of
local background storage devices and continuous data transfer through the network
between the nodes.

In the execution environment of PC clusters a parallel algorithm can be de
fined as a sequence of local computations interleaved with storage device I/O and
network communication steps, where all the three different kinds of operations are
allowed to overlap. This approach claims for a model, where computation, network
communication, and local I/O limes are calculated in an orthogonal way.

Two different families of methods are known to set up computational models:
the relation between the problem size and computational lime can be determined
based cither on the number of operations to complete or on the memory access
pattern. The former is applied in the domain of processing-intensive problems
(heavy use of floating point arithmetic), the latter is applied in ease of applications
that deal with lots of data, on which they usually do limited amount of simple
processing steps. Sorting is indeed the member of (he second group, where the
overall performance is dominated by memory access time rather than computational
power. The formulas given for sorting execulion times in Section 4 arc based on
Counting the average number of memory accesses in function of the problem size
in the algorithms.

In ihe communication model we assume homogeneous fully switched inter
connection network with no congestions, where the transfer of a block containing
$ contiguous data units takes (/„ + s/b„) time. In the formula, /„ is the network
latency, including latencies due to the physical transmission protocol to the switch
ing elements and to the communicating operating systems, and bn is the network
bandwidth. This model is valid for the dala distribution phase, where only a single
source is in operalion. In this ease the data distribution bandwidth ^ is i ' s :

frdis, = — — = j J - • (I)
'nctiran-lcr hi ~ r S/P„

For the data collection phase, where many sources arc continuously sending data
to a single node, we use an average data gathering bandwidth bSillhl.r. In this case
the communication bottleneck is ihe transfer capacity of the line between the sink
node and its switch port, which means that ^gaihcr can be considered independent
of the number of the source nodes. Although b ^ a is a function of the block size
s used for the dala transfer, lor large enough values of .v. fogachcr can be considered
constant, because the implementation of the transmission protocol breaks down the
large blocks into smaller pieces.

The I/O access model is very simple, because in the domain of our investiga
tion the background storage system is only used for reading and writing sequential

140 S. JUHASZ and H CHARAF

files. Our experiments showed that by this usage pattern it is sufficient to model the
storage system by its average bandwidth b, (amount of transferred data in a unit of
time). The value b, characterizes the average bandwidth between the background
storage device and a given task, which means that bt docs not only depend on the
hardware characteristics, but also on the disk access pattern of the task, on the oper
ational system cache strategy and even on other applications running concurrently
on the same workstation.

As the measurements are carried out in a system built up of workstations with
multitasking, it must be noted, that the constants in the presented models arc more
averages of dynamically changing values assigned to an application than a fixed
attribute of the system.

3. Predicting and Optimizing Execution Time

When considering a problem of size /V, there is a twofold goal to be achieved: firstly
a running time prediction should be given in case of solving the problem with a
cluster of p nodes, and secondly a cluster size popl should be calculated, which
is optimal in the sense of minimizing execution time. During the calculations we
assume that the following constraints are valid:

• The initial problem is fed in at any node (P\) into the system, and the result
is expected at the same place (outer constraint).

• The data of the problem of size N can be fitted in the total capacity of local
memories present on the nodes. This avoids undesired use of background
storage system by the virtual memory paging mechanisms.

• The solving algorithm is partitioned in a way that the communication between
tasks is restricted to a global dala distribution and a global result-gathering
step, controlled by the input node P\, The resolution of global dependencies
is also done here.

• One task per node is working on the solution of the partitions mapped to that
node. The dependencies between the partitions processed at the same node
are resolved locally.

• At every node the same set 5 of resources is available for the task working
on the initial problem, where $ is composed of a network communication
channel (latency /„ and bandwidth b„), of a computational resource and of a
dedicated average local storage I/O bandwidth b,.

• The nodes of the cluster arc connected to each other by a L A N network,
which is fully switched.

• The storage I/O. network communication, and computation steps may overlap
at each node.

The scalability of an algorithm requires the absence of any central, non-
distributed clement, which forms a potential bottleneck as the system grows. One

PERFORMANCE MODELLING Of'COOPERATING TASKS I N PC CLUSTERS 141

way to achieve this is using symmetrical and balanced communication and compu
tation [2], [9]. In our case this principle is immediately violated by requirement I
assigning a distinguished role to the user input/output node P\, which certainly wil l
limit the scalability and achievable performance at the same time. We must note that
this asymmetry not only limits the speed of our algorithm, but also introduces un
balanced resource consumption in the cluster (effects other tasks in a non-dedicated
system). According to the assumption the algorithm solving the problem wi l l work
in a system of p nodes as follows:

Step 1 The input data is placed on an arbitrarily chosen node P\. Other nodes arc
numbered from 2 to p.

Step 2 On node P\ the input is continuously read through the storage I/O channel,
split into n blocks of size s, where n is an integer multiple of p. The t l h

(1 < y < n) block is sent to node (i mod p) + I . (P\ also processes its part
like the other nodes, because computation is allowed to overlap with network
and storage I/O.)

Step 3 Each node Pj(\ < j < p) w i l l receive n/p blocks, and process these in the
order of their arrival. Only one block can be processed at a time, the others
are waiting in a queue, until the processing unit becomes available.

Step 4 After having received and processed all n/p blocks Pj resolves the local
inter-block dependencies, and so completes a partial result of size Nfp. The
partial result is divided into n/p parts of size s for the global partial result
gathering and global dependency resolution steps. The first part of the result
is sent immediately to Pj-, while the rest wi l l be polled by P\ as it is needed.

Step 5 As P\ has received the first part of all the /; partial results, it begins to resolve
global dependencies, and polls the following parts from the other nodes as
they arc needed. The calculated results are written to the result file.

The aim is to determine the execution time of the above algorithm in function
of the number of nodes p. Step 1 is considered as a preparation step, which is not
taken into consideration when calculating the execution time. The execution time
'read of step 2 depends only on problem size N and the effective bandwidth /> r c ad-
As the I/O reading and the network sending, and the local processing steps overlap,
r r c a d is bounded by the slower operation:

'read = AV^rcad = Nf m i n f e d i s t , &proc), (2)

where bl0 is a constant indicating physical data reading speed, and &djsi i s l n e network
data distribution bandwidth calculated according to formula (1).

1 f we suppose that the nodes are able to process the received blocks before the
next one arrives, all the p nodes having an equal number of blocks to process, the
completion time of step 3 and step 4 w i l l be determined by the completion time of
the node, which receives the last block. The last block wil l be processed in / p r o c(^)
time, and the local dependency resolution wi l l be run during / l o c a | time for the N/p
elements that one node holds.

142 S. JUHASZ and H CHARAF

Step 5 deals with storage of the results, where the storage bandwidth is
bounded by the slowest of the three operations running overlapped: collecting
data through the network, global dependency resolution, and storage I/O all done
by Pi .

/write = N/bwhc = N/ m'm(bio, bgath„, ^resolution)- (3)

The total execution time of the algorithm is the sum of the time functions detailed
above:

'total = 'react + 'proc(-0 + /local (N/p) + W e - (4)

To be able to predict execution times, we have to measure the parameters of our
system (/„, b„, bio)< choose a block size s, and write the times r r e a d , tp[0C) t^ai and
/ w r j l e as functions of p, and then the optimal cluster size can be derived from:

^ = 0. (5)
dp

4. Application for Parallel Sorting

This section presents a way of using the previous result in a parallel sorting ap
plication. Several sorting and parallel sorting algorithms have been proposed for
hierarchical memory models in the literature [1] , [7]. The different versions of dis
tribution sorting cannot be used in our case, because this approach supposes that all
the data are present from the first moment (these algorithms partition the elements
into buckets first, and then sort the content of the individual buckets). Here the use
of bottom-up algorithms is more beneficial, as the remote nodes can begin working
as soon as the first block arrives. The dependencies of sorted blocks are solved by
merge sorting. Although merging is very fast, the complexity of merging z already
sorted sequences is 0(zN), it is inherently sequential, but here it is done in parallel
with the likewise sequential I/O writing step.

To demonstrate the running time prediction algorithm, the following meth
ods were chosen to sort the input sequence: while the first node reads the data
sequentially and distributes them block by block, the other nodes sort the blocks
as received using the quick sort algorithm of average complexity 0(N In N). The
sorting time of one block of size s is:

W C O = < v l n . s \ (6)

where cq is a constant independent of the problem size, depending only on the
attributes of the local processing unit and on the implementation of the algorithm.
This results in a processing bandwidth of:

PERFORMANCE MODELLING OF COOPERATING TASKS IN PC CLUSTERS 143

After having received and sorted all the n/p blocks, each node Pj (1 < j < p)
executes an n/p way merge sort. To be able to forward the first packet of the result,
only a sorting of size s must be done:

n N/s N

'local C?) = C
M
S— = c„s = cms — , (8)

p p sp
while the next blocks of results wi l l be produced overlapped with global dependency
resolution, which actually is a p-way merge son done by P\ overlapped with the
storage I/O. A block of size s of the global dependency resolution is produced
according to the function /^baiC*) = cmsp. P\ does its own local dependency
resolution and the global dependency resolution in a parallel way, and both steps
require the use of the same resources, thus they cannot overlap, so the bandwidth
of the dependency resolution wi l l be:

size s I
"resolut ion = ! : = ~i ~ 7T, \~ • \ ?)

sp \sp J

5. Experimental Results

Let us consider a problem of sorting N piece of 32 bit integers with this method.
Our test cluster was buill up from uniform PCs with 225 MHz processor, 64 M B
R A M and a 700 MB hard disk. The nodes of the cluster were connected with a fully
switched 100 Mbit Ethernet-based network. When measuring the sort constants,
the values lo sort were 32 bit integers between 0 and 100000 of uniform distribution.
Under these conditions we measured the following values:

cq = 0.066 • 10" 6 , cm = 0.04 • 10" 6 . bio = 0.54 M/s,

/„ = 30 ms, b„ = 1.2 M/s. b m h c i = 0.387 M/s.

The unit M/s stands for million {32 bit) integer values in a second. During the mea
surements the same multitasking operating system was running on each computer,
and the measured transfer speeds and latencies also include the operating system
overhead. We found that by such conditions, ĝather is independent of the used block
size (s) i f this latter is greater than 2 1 5 . I f we choose the block size s to be 65536
(2 1 6 integers = 2 1 8 bytes in every transferred block) from (1) and (7) we get:

size 2 1 6

W = - 7 = / + m b = 0-775 M/s. (10)
'nettratisfcr hi T * I u n

size s 2 1 6

144 S. JUHASZ an j H. CHARAF

The above results indicate that the b-lo = 0.54 M/s wi l l be the bottleneck limiting
the reading time:

N _ N N _6

/ r e a d ~ m i n (^ 0 , 6 d i s l , 6 p r 0 c) ~ min(0.54 0.775 1.3) • 10fi ~ 054 ' 1 0 S ' (1 2)

The global dependency resolution and the writing phase can only begin when read
ing is completely finished. After the last block is processed and the local dependency
resolution is ready to provide the first partial result packet of size s:

tproc(s = 65536) == CQSIns = cq • 2 1 6 • I n 2 1 6 = 0.04749 s, (13)

n N/s N , N
' i o c a i (p) = cms- = c m s — = c m - = 0.038 • 10" 6 • - . (14)

P P P P

To get the time of writing r w r i t e the value of /^solution must also be calculated:

size 1 sp
'resolution (P) =

'local + 'global
 C M

 + Cm(N + sp2)

= 1.72 • 10' 2 r , (15)
N + 65535 p2

N N

min[0.54 • 10"60.775 • 1 0 - ^ r e s o l u l i o n (/ 7)] '

Using these values in (4), we have a total execution time of:

'total ~ 'read + ' p r o c (j) + 'local (p) + lwnte(p)

N (1 7)

• 10" 6 + 0.04749 + 0.038 • 1 0 " 6 - + twrite(p).
0.54 p

The execution times can now be calculated for every N and p. We represent three
series of measured and calculated execution times respectively for N\ — 5 • 106

(Fig. /), N2 = 107 (Fig. 2), and /V3 = 2 • 107 (Fig. 3).
As the figures show, the estimated and the measured execution times are quite

close, with a relative error below 6 percent in most of the domain of our interest.
The only significant difference is for low /; values in Fig. 2 and Fig. 3, where the
calculation strongly underestimates the running time. This error is due to the fact
that the solution of the problem requires more memory than the amount available on
the nodes, and the virtual memory paging highly degrades the overall performance.

The easy determination of the optimal cluster size by simple differentiation is
hindered by the minimum formula present in ' w r j I e , so another minimization method
should be applied. It is easy to see, that f a t h e r remains practically a constant, while
^resolution !§ monotonously increasing in our domain of small cluster sizes. The

HERTOKMANCE Mourjjjsa OFCoae&uaiNG TASKS IN PC CLUSTERS 145

time
N=5.000.000

20

15

10

5

0

••k—ur • * HI

3 4 5 6 7 8 9 10

—X—Calculated- H—Measured

Measured lime Calculated lime Relative error [%]

1 34.08 28.1 21.3
2 27.50 23.3 17.8
3 22.88 22.3 2.6
4 22.54 22.3 u
5 22.67 22.3 1.8
6 22.32 22.3 0.2
7 21.85 22.3 1.9
8 23.12 22.3 3.8
9 22.63 22.3 1.6

10 22.66 22.3 1.7
11 22.37 22.3 0.4

Fig, I . Execution limes for a problem size N = 5 000 000 wilh different cluster sizes

minimum value of r w r j l e (and so that of r [0 i a i likewise) is expected when Resolution

equals to /? g a l h c r :

'^rcsoluiion^) — -,v — ^cathen

cm (N + sp-)

(^gathcrOn-v) p2 ~ Sp + b g a l h c l C m N = 0. (18)

146 S.JUHASZUKIH. CHARAF

t i m e N=10.000 .000

- -— —

1 2 3 4 5 6 7 8 9 3

C a l c u l a t e d - --f— M e a s u r e d

p Measured time Calculated time Relative error [%]

1 183.79 92.7 98.2
2 60.01 56.4 6.5
3 48.11 44.6 8.0
4 47.27 44.5 6.2
5 45.61 44.5 2.5
6 44.81 44.5 0.7
7 47.40 44.5 6.6
8 45.38 44.5 2.0
9 45.48 44.5 2.3

10 47.25 44.5 6.3
11 44.98 44.5 1.2

10

Fig. 2. Execution times for a problem size N = 10 000 000 with different cluster sizes.

Solving the quadratic equation for the smaller p:

P =
2£ ,gaihcr*-wf?

1 - t 1 - 4

• (19)

Considering the third problem, and replacing Nj = 2 • 107 in (19) we get for optimal

PERFORMANCE MODELLING OF CXXIPERAT1NG TASKS IN PC CLUSTERS 147

t i m e N = 2 0 . 0 0 0 . 0 0 0
3 5 0

3 0 0

2 5 0

1 0 0

5 0

' - .

i
1 2 3 4 5 6 7 8 9 1

C a l c u l a t e d - - M e a s u r e d

p Measured time Calculated time Relative error [%]

1 700.6 288.9 143
2 161.4 164.2 1.7
3 106.5 123.2 13.6
4 92.1 103.1 10.6
5 88.5 91.4 3.1
6 87.2 88.9 1.9
7 87.3 88.8 1.8
8 85.9 88.8 3.3
9 85.3 88.8 4.0

10 82.9 88.8 6.7
11 86.2 88.8 3.0

Fig. 3. Execution times for a problem size N = 20 000 000 with different cluster sizes

cluster size:

P =

1 1 - 4
(0 .387-0 .04) 2 -2-10 7

65536

2 0.387:0.04

1 -0.8411

2 0.01548
= 5.13. (20)

Naturally, p is an integer, so we may choose the closest value p = 5 as cluster size,
which is close to optimal, or p = 6, which has a processing power actually beyond
the limit of network capacity and introduces only slight speed increase. The choice
of bigger cluster sizes will not cause any further performance gain, or may even
result in performance degradation, as it can also be seen in the graph of Fig. 3.

S. JUHASZ and H. CHARAF

It is worth to mention that the result is quite close to the maximum achievable
result with the given bio, because the reading and writing time of this problem
without calculations would be:

2N
freadO^) + ' w r i l e (^) = N/bio + N/bio = — s - 73.98 S. (21)

0.54 • 1 0 - 6

6. Conclusion

This paper presented a methodology for obtaining good execution time approxi
mations in case of problems where the computation effort of processing and that
of dependency solving can be well described with mathematical formulas. An
algorithm for parallel sorting was given as a good example of the problem class
where relatively little processing effort is done on a large amount of data with global
dependencies.

The execution time approximation was based on finding the bandwidth of the
bottleneck in the system. After describing the different aspects of the problem with
the formulas derived from the performance model, some test measurements were
done, and statistical methods are used to compute the few parameters required.
As the estimation itself requires only few operations, even runtime usage becomes
possible. The obtained results can be used in decision support for resource allocation
(how many nodes to assign to a task) or for scheduling problems (how long the
resources wil l be held).

From the point of view of execution speed the mathematical model automati
cally gives the possibility to obtain an optimal cluster size. As moving a big amount
of data generates heavy overhead, the decreasing performance gain with every new
node is clearly visible for this class of problem. As it is shown in the example, in
the present PC clusters only the first few nodes have significant effect on the per
formance, because of the slow interconnection network compared to the processing
speed. It is clearly visible from the formulas that the efficiency of cluster computing
increases with the increase of the processing to communication ratio.

Uniting the resources of the cluster has another beneficial effect. Although
not explicitly included in the presented model, it is very important that the data
amount not fitting in the memory of a single node could easily fit in the total
memory of an extended cluster. In assumption 2 we supposed that the problem
data wi l l completely fit in the memory of the cluster during the processing. Should
this not be the case, the use of virtual memory paging to disk may cause so serious
performance degradation, that even super-linear- execution speed increase can be
achieved in this domain (e.g. in problem 3 introducing the second node speeds up
the computation by a factor of 4).

The sorting example showed that good approximation can be obtained for
problems where a well fitting mathematical model exists for the execution time,
which is a crucial point of this kind of prediction. Network and background storage

PERFORMANCE MODEI.UNG OF COOPERATING TASKS IN PC CLUSTERS 144

operation can be handled more easily; even a single bandwidth value can char
acterize these operations well. The presented model is not strictly restricted to
mathematically well described problems, as for cases, where the processing oper
ations are difficult to treat with simple formulas, a statistical approach may also be
applicable.

References

[11 H E I . M A N , D . R. - B A D E R , D . A . - J A J A , J . . A Randomized Parallel Sorting Algor i thm with
an Experimental Study. Journal of Pa ml! el and Distributed Computing. 5 2 (I) (July. 1998) ,
pp. 1-23.
http://eilcsccr.nj.nec.coni/21672.html

(2] B A L , H . . Programming Distributed Systems. Prenticc-HaM. London. U K , 1990.
[3] B U Y Y A , R. (editor). High Performance Cluster Computing. Vol. 1; Architectures and Systems.

Vol. 2: Programming and Applications, Prentice Hall , New Jersey, USA
http://www.dgs.monash.edu.au/--rajkumar/cluslcr

[4] S M I T H , W. - FOSTER. I . - TAYLOR. V. . Predicting Application Run Times Using Histor
ical Information. Proc. IPPS/SPDP Workshop on Job Scheduling Strategies for Parallel
Processing. 1998.

[5J SlMON, E. . Distributed Information Systems. McGraw-Hi l l . London. U K . 1997.
|dj A K L. S. G. . The Design and Analysis of Parallel Algorithms. Prentice Hal l . New Jersey. USA,

1989. Chapter 4: Sorting, pp 85-112.
[7j HELMAN, D . R. - J A J A , J . , Sorting on Clusters of SMPs, 1998,

lutp://acs. umd.edu/research/HXPAR/papcrs/smpsort.ps
(8] FOSTER, I . , Designing and Building Parallel Pivgrams, Vol . 1,3, Addison-Weslcy Inc., Ar-

gonnc National Laboratory. Chapter 2. Designing Parallel Algorithms,
http://w ww-umx .mc5.anl.gov/dbpp/

[9] Parallel Computing Projects,
http://www.hlrs.de/strueturc/orgaiiisalion/par/projects

[10) B U Y Y A , R . , Cluster Computing Info Centre.
http://www.dgs. monash. cdu.au/^-rajkumar/cluslcr

http://eilcsccr.nj
http://www.dgs.monash.edu.au/--rajkumar/cluslcr
http://umd.edu/research/HXPAR/papcrs/smpsort.ps
http://w
http://ww-umx.mc5.anl.gov/dbpp/
http://www.hlrs.de/strueturc/orgaiiisalion/par/projects
http://www.dgs
http://cdu.au/

