
PERIODICA POLITECHHICA SER EL ENG. VOL 46, NO J-J. PP. 151-16112002)

SOFTWARE PROBLEMS OF AN EXPERIMENTAL ROBOT
CONTROLLER BASED ON QNX REAL-TIME OPERATING

SYSTEMS
Istvan O L A H and Gdbor TEVESZ

Department of Auiomation and Applied Informatics
Budapest University of Technology and Economics

H- l 111 Budapest, Goldmann Gyorgy tc"r 3. Hungary
Phone: (+36-1)463-2870, Fax: (436-1)463-2871

e-mail: olah@aut.bme.hu; tcvcsz@aut.bmc.hu
Received: July 1,2003

Abstract
At the Department of Automation and Applied Informatics an experimental robot control system has
been developed. The purpose of this research is to study modern robot control algorithms and their
realization in a real environment. The project focuses on the problems of multiprocessor systems
including the task distribution and communication. Another field of this research is to integrate a
six-component forcc-torquc sensor into the robot control system and making use of this information
in new robot control algorithms. Another purpose of this study is to examine the software problems of
an IBM PC-based multiprocessor system controlling a NOKIA-PUMA 560 humanoid robot arm. The
features and system services of the new QNX Neutrino operating system is presented in comparison
with the previously used QNX v4. The main areas of the version upgrade will be shown focusing
on the interprocess communication questions. The processing components of this multiprocessor
robot control system with its external interfaces will be discussed later and some further system level
development possibilities will be outlined. This final part of the study gives the summary of the
architectural and communication requirements of a hybrid position and force control system in the
above environment.

Keywords: robot control, hybrid position and force control, multiprocessor systems, IBM PC, QNX,
Neutrino, Momcntics, DSP,

1. Introduction
In the middle of 90's at the Department of Automation and Applied Informatics a PC
based multiprocessor robot control syslem was built. The host computer includes
two ARC (Advanced Robot Controller) boards 11], an interface card with analogue
and digital inputs and outputs as well as an Ethernet controller card. The architec­
ture of this multiprocessor system was discussed in several studies (see References).
During the years this syslem was extended with a communication card receiving the
information from a six-component force-torque sensor through parallel connection
[3], [4]. The continuous improvement both on the hardware side and, in connec­
tion with this, on the software side brought considerable changes in the resources
of the robot control system. The first system had an Intel 80486 DX2 50MHz

mailto:olah@aut.bme.hu
mailto:tcvcsz@aut.bmc.hu

152 i. OLAH and G.TEVESZ

main processor. The ARC boards had an Intel 80386EX and a Texas Instruments
TMS320C31 digital signal processor on them. The system went through continu­
ous development: the host processor is now an Intel Celeron processor working at
633MHz and the force-torque signals can be received through a PCI based inter­
face card. Table 1 shows the operational frequencies of the processing units and
the approximate available bandwidth of the communication channels. In the early
versions a highly distributed model was used to perform robot control tasks. As the
host became more and more powerful, more tasks have been moved to this module
and additionally, the host is now capable to run a newer version of the operating
system. Most of the extended resources are available for more sophisticated robot
control algorithms, however, some of them are used by the new operating system
and its services [2].

Table I. Computational and communicational resources
Processing unit
Host CPU (Intel Celeron)
Intel 80386EX
TMS 320C31

Operational frequency
633 MHz

25 MHz
33 MHz

Communication channel
PCI bus on Host
Host CPU ^ i80368EX
i80368EX^TMS320C3:

Approximate Available Bandwidth
264/132 Mbyte/sec (33MHz)

5 Mbyte/sec
10 Mbyte/sec

The initial operating software ran on the QNX v4 real-time operating system.
The overall computing power available now allowed upgrading it to the new version
called QNX Neutriono / Momentics System (QNX v6).

The next section discusses the considerations and consequences of this up­
grade process. The third section presents some problems and their solutions arose
during QNX upgrade. The fourth section deals with hardware architecture related
issues that brought up some other software problems more related to the low level
functions and to be solved in the forthcoming software versions.

2. QNX 4 versus QNX Neutrino
In the early days there was a demand on an operating system for the host system con­
sisting of the main board with the central microprocessor that integrates controller
cards and other extension cards for various functions. This system must have been
a true real-time system running the robot control software with the proper services
both for developers and end users.

SOFTWARE PROBLEMS 153

The QNX real-time operating system was selected because of its real-time
performance, rich IPC services and capability to support complex control tasks. The
project started with QNX v4 but in year 2002 the host system was ported to the QNX
Neutrino (QNX v6) operating system. The new version has many changes based
on the experience of the previous version; it supports several platforms and sym­
metric multiprocessing (SMP) and embedded solutions. Both versions are based
on a microkernel architecture. In this architecture the principal operating system
components run as regular processes in their own separate address space. The
microkernel provides the basic services such as process manager sen'ices, thread
services, scheduling sen'ices, synchronisation services, signal services, message
passing services and timer services [5], [6].

Fig. I. The QNX architecture
Operating systems with true microkernel architecture provide the possibility

of building small, efficient and many times embeddable solution especially for real­
time challenges. One of the key features of these systems is that they are flexibly
configurable for various tasks; the system modules can be started (loaded) or stopped
depending on many factors such as hardware configuration and required services.
This kind of modularity provides memory protection since all modules except the
microkernel itself run in user mode, at a separate address space. This means that
user written processes can act as a system service extending the functionality of the
operating syslem in the same way as built-in services do. On the other hand, the

154 f. OLAH uniiG. TF.VESZ

microkernel architecture of some operating systems brings more overhead and is
not suitable for some places like office desktops.

As the previous versions of QNX, the Neutrino is a microkernel operating
system developed on the experience from previous versions. Fig. J shows the
structure of QNX Neutrino. The big difference between QNX v4 and the present
version is more POSIX compliant. QNX Neutrino is a POSIX API representation
regarding the special needs for a flexible, modular, real-time operating system.
Another new feature is the multi platform support, such as ARM, MIPS. etc. Since
the robot control syslem developed at the Department of Automation and Applied
Informatics includes an x86 based host system, interface extension cards, two or
three Advanced Robot Controller boards that contain another one x86 processor and
one Texas Digital Signal Processor on each (see Fig. 2), there is no new possibility
to utilize this new feature. Both QNX system versions provide POSIX compliant
elements, but Neutrino follows more the draft and standards. The most important
ones were the following: standard 1003.1 - defines the base functionality of an
operating system therefore an application programming interface (API), real-time
extensions - definitions for real-lime services, threads - multiple threads in a single
address space, additional real-time extensions - inlerrupt handling and application
environment profiles - embedded system support properties. These changes were
driven by a demand to provide a general environment for embedded applications
and for developers who work on cross platform projects.

The QNX Neutrino kernel acts as a software bus letting software modules
dynamically plugged in and oul. These modules can be system modules developed
by QNX, user-developed entities for system-like services or with application spe­
cific functionality. In real-time, multitasking environments the functionality relies
heavily on interprocess communication (IPC). This is very important especially
for modular application such as the robot control system. The largest part of the
operating system version change or upgrade was the conversion of inlerprocess
communication.

The primary form of process communication in QNX Neutrino is message
passing. Since Neutrino offers POSIX API, there are some other forms of IPC.
but some of them implemented using the functionality of the messages. Here are
the forms of IPC (in parentheses the place where they are implemented): message
passing (Kernel), signals (Kernel), POSIX message queues (process), shared mem­
ory (Process Manager), pipes and FIFOs (both in an external process). The most
heavily used QNX version 4 IPC functions are message passing, proxies, signals
and shared memory. The software porting project 'served' a good opportunity to
review the software system from this aspect. The details of the modifications can
be found in Part 3. Message passing, the basic communication form, performs data
transfer between the address spaces of the processes and additional synchronisa­
tion. The process state diagram and the system functions used at both sides are
shown in Fig. 3. The data copied has no special meaning for the operating system
(binary transfer - except some special messaging services), so there is complete
freedom for application developers and the speed of this transfer is only limited by
the underlying hardware.

SOFTWARE PROBLEMS 155

Host system - PC Mainboard
{full featured user interface - GUI

TMS320C32
{no direct Ul}

A R C # 1 A R C #2 ARC #3
i80386EX

{serial if.}
i80386EX

{serial if.}
i80386EX

{serial if.}

TMS320C31
{no direct Ul}

TMS320C31
{no direct Ul}

TMS320C31
{no direct Ul}

Miniforce

6 component
force-torque

sensor

Fig. 2. Robot control s y s t e m - process ing units and user interfaces

Fig. 3. M e s s a g e pass ing in Q N X Neutr ino

One of the new services of QNX Neutrino that played the main role in versions
change is the System Analysis Toolkit (SAT). This tool provides the monitoring of
the dynamic execution of a complex software environment. The researchers and
developers have the opportunity to treat many threads as a whole system examin­
ing kernel calls, message passing, handled hardware interrupts and state change of

156 f. Ol.AH and G. TEVF.SZ

various threads. Using SAT there is a possibility for real-time or offline system
analysis. Because of the system-level view SAT can be utilized for performance
analysis, optimization, real-time debugging, pinpointing deadlock and race condi­
tions and event tracing.

There is one more point that actuated the upgrade. This is the better user
environment that involves an easy to learn, easy to operate graphical user interface
with integrated development environment, software debugging tolls, etc. The first
appearance of the Photon graphical user interface was in QNX v4 and the new
version of this desktop environment can be found in QNX Neutrino. The host
system can serve both users and researchers, developers with a lot of valuable
features. On one hand graphical user interface (GUI) is a common requirement for
modern systems, but on the other hand it requires additional resources. The robot
control system should run with high priority and that can sometimes cause poor
performance in GUI handling.

3. Problems and Their Solutions during OS Upgrade
First of all the host system is an ordinary desktop system with some special features
needed. The host must provide the ability to execute two QNX versions: version
4 and Neutrino (v6) together with a version of a Microsoft OS. Because of general
file porting capability, the choice was Windows98. All the system use or can handle
the FAT/FAT32 file system. An additional reason for installing Windows was that
other development tools for x86 platforms and Texas digital signal processors can
run on it.

The properties of the host subsystem in the general robot control system are
the following. The general process map and the communication channels are shown
in Fig. 4 using the QNX Neutrino IPC methods. The general 'ARPS' process is
the ancestor of all processes. Each process is a single thread process in the present
system. After the processes started (using 'spawn()' functions) 'ARPS' executes
the Advanced Robot Programming System interpreter and handles the end effector
(open/close) and the digital input/output lines.

The functionality of processes (see Fig. 4):

• CONSOLE: Terminal window handler for user input (terminal/editor mode)
and system output.

• MESSENGER: Message handler for avoiding undesired blocking.
• PENDANT: RS-232 serial line handler - teach pendant I/O functions.
• PATHGEN: Fourth order, continuous acceleration path generation.
• DYNJAC: Joint data pre-processor. Writes data into the shared memory.
• ARCPROC: General purpose Advanced Robot Controller Board handler.
• ARCRUN: ARC starter and status monitor.
• ARPS: Coordinator process.

SOFTWARE PROBLEMS 157

Fig, 4. The host software system - Processes and Communication

The scheduling services in QNX Neutrino have changed a lot in terms of
the scheduled entities because they are realized by thread instead of processes. As
a matter of fact this has very little impact on the robot control system since the
processes were single-threaded. For the further development there is an interesting
effect by the possibility to pre-empt a process by itself, i.e. two different threads of
it. Additionally, the priority range has been extended and now it can go from 0 to
63 instead of 31.

In the previous version of the robot control software the message passing and
the signal were the two ways mostly used for interprocess communication.

Message passing has been changed quite a lot in QNX Neutrino. QNX v4 used
the Send(), RccciveO and RcplyO base functions (and there were some other forms
of them, as well) while QNX v6 uses MsgSend(), MsgRcceivef) and MsgReply().
Not only the names have been changed but the parameters and communication
channel handling are different, too. The previous version worked with processes
rather than threads and the handling was simpler. During the migration, all process
references must have been converted to channel reference (Process ID Channel

158 I. Ol AH and G.TEVESZ

ID). This method required careful overview and modification despile most of the
processes were single-threaded. The further versions of the software system will
more intensively utilize the new concept of the thread approach. In general QNX
v4 focused more on processes and in QNX Neutrino the thread object is used for
scheduling, interprocess communication, etc.

The following two examples are the drafts of the communication in QNX v4
and in QNX Neutrino respectively:

QNX v4:
Sending Process

Pid .2 - qnx_name_locate (...) ;

Send (P i d 2 , . . .) ;

QNX Neutrino:

Answering Process

qnx_name_attach (...)

P i d l - Receive (0,

Reply (P i d l , . . .) ;

Sending Thread

ConID = ConnectAttach (.

MsgSend (ConID, ,..,') ;

Answering Thread

ChID = ChannelCreate (...);

RecID = MsgReceive (ChID,

MsgRepiy (RecID, ...) ;

Signals have main role in Ihe robot control system. The changes on this field
in QNX Neutrino are as follows: there are some new signals, signals can carry
data (POSIX), signals can be queued (POSIX). The implications of the new thread
based approach are that ihreads maintain their own signal mask and it has some
consequences. If more than one thread has the signal unmasked, the kernel chooses
one randomly. Any consecutive signal of the same type will go to the same thread.
In spite of signal mask the signal actions were maintained at the process level, so
ignore or catch decisions should have been made at process level. From technical
point of view, the form of ihe functions has not changed significantly.

The first migrated version of the robot control system to QNX Neutrino was
made in 2002 and it is finished. The forthcoming development and the new versions
will benefit more from the new features of QNX Neutrino operating system. These
projects will be supported by the new integrated development environment and
other services built into the product.

4. Processing Modules and Their Communication
The simplified architecture of the robol control system was shown in Fig. 2. The
communication beiwecn the microprocessors is implemented through dual-port

SOFTWARE PROBLEMS 159

RAMs. The approximate bandwidth between the host and the i80386EX processors
is approx. 5 Mbyte/sec based on the bus architecture of the main board. The available
bandwidth of the dual-port RAMs between i80386 processors and TMS320C31
digital signal processors is approx. 10 Mbytc/scc. There exists a direct memory
mapped access from both sides. Some years ago there was a plan to split up the
processing task between the 5 or 7 processors (2 or 3 ARCs) but the marketed
PC main boards and general purpose processors advance so fast that most of the
functions are accomplished by the main processor. Anolher important point is the
multi platform development. In the following paragraphs each processing module
is discussed in detail.

1 . The signal processor has no operating environment; all the functionality must
be programmed using the Texas development tools that run under MS DOS
or MS Windows development station. (There is a version running under
SUN Solaris, but not under any versions of QNX. In QNX v4 there was an
emulated DOS environment, but it has not been supported for years.) As
a result the TMS320C31 processors carry out the low level inpul handling
(cross-checking, scaling, etc.) then transmitting the measured values. On
the other direction the low level, multi-loop controllers for the joint drives
are implemented here. Another development station is needed (with net­
work connection) to develop software modules for this platform. There is a
necessity to integrate all the low level control system functions into single
Texas DSP software that can easily be configurable including architecture
and parameter configuration.

2. The Intel 80386EX microprocessors have no floating point coprocessor built
in, so they have significantly less computing power than the host or the Texas
processors. This unit is potentially capable of doing pre-processing and it
has a CAN interface, that can be used for direct communications between
ARC boards or other modules. These functions arc not utilized in the present
version, so the modules serve as information forwarders. Taking speed into
consideration, a very special software runs there and serves with four types
of communication. There is a ring buffer towards the host and the TMS
DSP, which is not optimized and provides character-based terminal functions
where the user interface handled on the host and communicates with the built-
in BIOS-like functions of the processors built on the advanced robot controller
boards. There is another ring buffer for sending binary messages to the TMS
(not the same as QNX message passing). This binary data can be variable in
length and the delivery must not be time critical. There are two other dual-port
RAM areas for mirroring. The copying of data is interrupt driven in the case
of both areas and therefore the block size cannot be configured. One area is
preserved for timer driven transfer; the copy takes place in every millisecond
in the current system. The other is for on demand communication using the
dual-port RAM interrupt capability. These two blocks are four, because the
processor provides this way of communication in both directions between
the host and the joint processors (TMS320C31). Since there are a very few

160 /. OLAHandG. TT.VESZ

system services implemented, it is very hard to change the operating software.
It has been developed in assembly and C, but the compiler libraries can be
used with limitations (BIOS and basic OS functions implemented through
software interrupts are missing).
In the future it would be beneficial to embed and run QNX Neutrino on this
platform. It requires the implementation either of a full BIOS functionality or
at least the necessary services for starting the embedded system. Some years
ago QNX released the first version of its Embedded Kit based on QNX v4,
but Neutrino contains a lot more support functions and better documentation.
After the host system was ported to the new version this new field would
bring more flexibility in system development and research. It seems to be
better and faster to implement the fully functioning BIOS than to (re)write
each required service, because there are some easily applicable solutions both
from the hardware manufacturer and software developers (there arc some free
versions as well).

3. Last but not least, the x86 platform based host system with the most compu­
tational power performs the most of the tasks of the robot control system. It
has a full featured graphical user interface - Photon v2 - and runs the inte­
grated development environment and operating system related utilities. This
is the only part of the system that can be debugged in all details. Another
benefit of placing the most demanding part of the robot control system is that
this block receives information from the peripherals: the analogue input sig­
nals of the reference potentiometers of each joint and the digital input/output
signals use the same I/O card of the host. The built-in Ethernet interface is
used for communicating with the development station of the other blocks.
The six component force-torque sensor interface will be another extension
card displacing the present connection channel that is too slow for this kind
of real-lime system. One software system for graphical simulation of the
PUMA-560 manipulator has already been implemented, but it is operational
only on Microsoft platform. Another direction of the development can be
one QNX Neutrino based simulation environment. Seeing the growth of the
resources it can be capable of real-time operations sometimes.
There is a lot of work done at the Department of Automation and Applied

Informatics, Budapest University of Technology and Economics in 2002. The most
important result is the porting of the robot control system. There is a lot of possibility
to be utilized and there is a lot more to do on the field of research and development
of modern robot control systems.

Acknowledgement
The project of studying modern robot control algorithms and their realization in a real
environment is supported by Hungarian Research Fund (OTKA, grant No. T029072, grant
No. T042634).

SOFTWARE PROBLEMS 161

References
[1] BEZI , I . -TEVESZ,G. KomplcttausStandard-Komponentcn. ElcknvnikPMknchcn, 1(1996),

pp. 44 -48 .
(21 T E V E S Z , G. - B E Z I , I . - O L A H . I . , A Low-cost Robot Controller and its Software Problems,

Periodica Potytechnica Sen El. Eng.. 41 (3) (1997), pp. 239-249.
13] TEVESZ, G., Architectural Problems of the Hybrid Position and Force Control System of Robots,

Periodica Potytechnica $er. EL Eng.. 42 (2) (1998), pp. 251-262 .
| 4 | PODOR, G. - TEVESZ, G., Hybrid Position and Force Control Algorithm Expansion of a Robot

Control System, Periodica Potytechnica Ser, El. Eng., 43 (4) (1999), pp. 251-261 .
[5] QNX® 4.1 Operating System - System Architecture. ©Quantum Software Systems Ltd. 1992.
| 6 | QNX® Neutrino® Realtime Operating System - System Architecture, ©QNX Software Systems

Ltd. 2002.

