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Abstract 

The paper deals with robust adaptive control o f a class of single-input single-output nonlinear system, 
in which robustness is guaranteed by switching control algorithm and adaptation law using smooth 
gradient projection. It is discussed the behavior of the control system, when the nonlinear part in 
the model o f the controlled system is not known exactly. A modified control law is proposed that 
assures the boundedness of all the signals of the control system even i f the nonlinear model contains 
unmodelled disturbance. 
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1. Introduction 

The design of a stable control algorithm for nonlinear systems with unknown pa­
rameters is a challenging problem. Many of these plants have slowly varying or 
uncertain parameters and unknown disturbances. The adaptive control is a popular 
approach to the control of such systems. 

I f the mathematical model of the plant is known but the parameters in the 
nonlinearities are unknown, in order to assure precise tracking, adaptive control 
schemes can be used that estimate the value of the parameters based on input-
output measurements. In the case of linearly parameterized nonlinear systems, 
which are discussed in this paper, gradient method or its modified versions can 
be used to estimate the unknown parameters of the controlled system. The linear 
parametrization of the nonlinearities is not a strong assumption, because i f this 
nonlinearities are smooth well known universal approximation theorems guarantee 
that the nonlinearities can be approximated with neural or neuro-fuzzy systems with 
desired precision [4]. Many of these models have linearly parameterized forms. 

Control laws depending on the estimated parameters can guarantee good tran­
sient performances and the stability of the closed loop system. But these algorithms 
show very poor robustness proprieties even in the case of small disturbances or small 
model uncertainties. One way to avoid the lack of robustness is the modification 
of the control law with discontinuous switching functions that depend on the max­
imum values of the unmeasurable disturbances [3], Using Lyapunov method it can 
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be shown that these modified discontinuous control laws guarantee the stability of 
the control system in the presence of bounded disturbances. 

However, the robustified adaptive control leaves many open questions to be 
answered, some of them are enumerated as follows: 

1. I f we have a priori information on the parameters of the controlled plant, 
how can it be introduced in the adaptive law to obtain better performances? 

2. How can the stability of the control system be guaranteed when the universal 
approximator describing the behavior of the nonlinear part of the model has 
a considerable approximation error? 

3. I f the adaptation law doesn't work properly in every time instant - for example 
at the beginning of the entire control process or at an abrupt change of the 
parameters of the plant, causing oscillatory behavior of the adaptation law -
how can the boundedness of the control signal and the stability simultaneously 
be guaranteed? 

The present study deals with these questions of the robust adaptive control 
schemes. To approximate the nonlinearities, Radial Basis Function (RBF) Networks 
were used. The robustness of the adaptation law is assured by smoothed gradient 
projection and saturation type switching functions. 

The remaining part of the paper is organized as follows: Section 2 presents the 
standard problem of the robust adaptive control sol ved using soft gradient projection 
algorithms. Section 3 introduces the problem of the uncertain control algorithms 
in which the dynamic model of the plant is not known precisely and proposes 
a modified algorithm that guarantees bounded tracking error and the stability of 
the closed loop system. Simulation results are presented in Section 4, Section 5 
summarizing the conclusions of this paper. 

2. Robust Adaptive Control 

Let us consider the following class of single-input single-output (SISO) nonlinear 
system written in phase variable form: 

xi = x2 

x2 = x3 

(1) 
x„ = f(x) + g(x)u+(l 

y - x u 

where y denotes the output, u the input, x = (.vi x2 • • -x,,)1 the states of the system 
and d is unmeasurable disturbance. 

To apply earlier results in robust adaptive control some assumptions should 
be introduced: 
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(Al ) The nonlinear function multiplying the input g(x) is nonzero, moreover 0 < 
8m S g(x)' which guarantees that the plant is controllable for any t > 0. 

(A2) The disturbance d is bounded, i.e. \d\ < DM. 
(A3) The nonlinear functions fix) and g(x) can be written in a linearly parame­

terized form according to it: 

f(x) = lflf(x), g(x) = eT

gig(x). (2) 

In this paper linear parameterization is assured by approximating the functions 
/ and g by RBF neural networks [4]. This popular neural model is widely used 
in adaptive control strategies because of its relatively simple structure and good 
approximation proprieties. It has two layers. The output of a neuron from the first, 
hidden layer can be written as: 

Zi = Riix) = HMx - £ i l l t o ) , i = 1 . . . H, (3) 

where the vector x contains the input of the model, H is the number of neurons in 
the hidden layer and /?, is a radial basis function, typically of Gaussian type. 

I f we consider that the model has single output, then: 

// 

/-(*) = £ > * , ( * ) + &. (4) 
M 

Approximating nonlinear functions by RBF neural model, it yields: 

r(x) = eTl(x) where £ = (0, . . . 0„b)T\ = (K, (x) ... RH(x) \ ) T 

(5) 
I f we have a priori measurements on f(x) and g(x) separately, the design param­
eters of the functions can be determined using clustering methods [4] or i f not, 
they can be distributed uniformly in the input field. 

The presented assumptions (controllability, bounded disturbance and linear 
parametrization) are generally enough for the development of stable adaptive control 
algorithms. The control problem can be formulated as follows: let us design a 
control law w in a way that the output y(t) defined in (1) tracks a desired trajectory 
>'d(0< which is a smooth, n times differentiable function of time. 

To solve this problem, let us define the tracking error e(t) = y(t) — yd(t) and 
the tracking error metric S(t) = + A ) ( n _ l , e ( / ) with k > 0. Differentiating 5 ( 0 
with respect to time and taking into account the assumption (A3), we obtain: 

5 ( 0 = e{n) + kTe = f(x) + b(x)u + d - y(

d

n) + kTe (6) 

= £/£,(*) + ^ ( £ ) n + d - y{

d

n) + kre, 

where k = ( / : n _ i . . . k\) is a vector that contains the coefficients in the expansion 
of S(t) and e = (ei"-i) ...e)T. 
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I f the disturbance d was not present and the nonlinearities were known func­
tions, then the control signal assuring the convergence of the tracking error to zero 
could easily be developed, see for example [9]. With / and g unknown, the control 
law can be developed by using estimated parameters that are generated on-line. Let 
us denote the estimated parameters with 0 and the estimation error by 9 = 0_ — 9. 
The control law can be written as function of the estimated parameters: 

« = + yT ~ ft " hMt) ~ DM sat(S/<D)), (7) 

where k$ and 0 are positive design constants and sat(-) denotes the well known 
saturation function, and = S — sa t (5 /0) . It can easily be verified that 5 A has 
the following useful property: 

S& = I f o r \ S A \ > <t> and SA = 0 otherwise. (8) 

With this control law the behavior of the closed loop system becomes: 

S = ¥flf<2) + - M a M + d-DM sat(S/*) . (9) 

The most prevalent on-line estimation law used in adaptive control systems is the 
gradient algorithm because it can be relatively simply implemented and, together 
with control algorithm (7), can guarantee the stability of the control system. In 
robust adaptive control schemes a modified version of this algorithm can be used 
such as the gradient projection algorithm. Let us assume that the bounds of the 
parameters appearing in (2) are known. This can be formulated as an additional 
assumption: 

(A4) Al l the parameters are in known interval, i.e. for any element of the parameter 
vectors 9fl and 9gi we have 9fmi < 0,- < Qfm and 9gmi < 9gi < 9gMi 

respectively with Bfmi, 9/Mt 9gmi, 9gMl known. 

This assumption can be explored i f we use as adaptation algorithm the gra­
dient projection method instead of classical gradient method. In this paper we 
use the smooth gradient projection algorithm proposed in [5, 8] that overcomes 
the discontinuous behavior of the adaptation which is the main disadvantage of 
these algorithms. Generally, let us assume the following parameter sets Q = 
{9 | m < Oi < bi V i} and Qs = {$ \ at - S < 9-s < b{ + <5 V i ) , where 8 > 0. I f 
the adaptation step size for each parameter % is denoted with > 0, the strictly 
positive diagonal matrix V = diag(y j 5 y2,..., yp) can be introduced. The smooth 
gradient projection algorithm can be written as: 
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£ = P r o j ( S , £ , £ ) where 

Proj(S, £,§),• = 

i f 
or i f 
or i f 
i f 
i f 

Bi > bj and £ 
6i < at and £ 
6j > and £ 
&i < ai and £ 

< 0 
> 0 
> 0 
< 0 

(10) 

(11) 

It is known [8], [5] that this rule guarantees the following propriety: £(0) e £2 
£ e Q$ for any / > 0. Moreover, the smooth gradient projection has the following 
useful propriety: 

(FSATI < ¥ Proj(S, £, | ) . (12) 

By (2) the adaptation rule can be written as follows: 

i } = Proj(5, e f t lf) 0g = Proj(5, £ s , £ e ) . (13) 

This algorithm and the assumption (A4) guarantees that the estimated parameters 
also remain bounded with known bounds introduced in (A4). 

It can be shown that control law (7) with the adaptation law (13) guarantees 
the boundeness of all signals in the closed loop system. The proof wi l l be omitted 
because this affirmation is a special case of the more general theorem that wi l l be 
presented in the next section. 

3. Robust Adaptive Control with Uncertain Control Law 

In the implementation of a model based control law, modelling errors should be 
taken into account. These errors could appear when some terms in the mathematical 
model of the plant are neglected, or when the nonlinear part is approximated by 
using neural or fuzzy models. We can disregard the uncertainty of the model when 
it does not affect the stability of the control system, or the requirements for the 
performances of the control are not too high. Otherwise, it should be taken into 
consideration at the development of the control algorithms. 

Robust modifications of adaptive control schemes were treated by many au­
thors. A first approach could be the design of the linear part of the controller using 
HCQ control theory. These types of control algorithms were introduced in [ 1 ] and [2] 
for robotic systems. In these papers it was shown that i f the disturbance d is quadrat-
ically integrable, then performance can be guaranteed. Another approach could 
be the introduction of an additive supervisory control signal in the control law that 
guarantees the boundeness of all the signals in the closed loop system. This part 
of the control law is switched on only when a known performance measure of the 
control system (for example the tracking error metric) leaves a prescribed domain. 
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These types of control laws arc described in |7] [6]. Note that all these algorithms 
use some types of gradient projection algorithms as adaptation law. 

In the adaptive control schemes the model uncertainty is generally represented 
by an additive bounded disturbance, i.e. 

/ ( - I W - f(x)+df(x) = t]lf(x)+df{x), where \df{x)\ < D/M. (14) 

Let us consider the case when the nonlinearity is approximated by using RBF 
networks presented in Section 2. Since separate measurements for f(x) and g(x) 
are not available, we use a finite number of fixed shape, fixed center basis functions. 
The modelling errors are also influenced by rcgressor vectors £ t v ) . For example, 
in the case of f(x) the modelling error can be written as: 

/(^apphai = ejflf ippViJx) = 0'f(l_f(x) + d.jix)). where \d,f(x)\ < DfM. 
(15) 

Thus, the problem cannot be treated just as an additive modelling error because it 
also affects the adaptation rule that can influence the stability of the closed loop 
system. In this section a new algorithm is introduced that assures the stability in the 
presence of uncertainly modelled regressors. 

To solve this problem additional assumptions wil l be introduced. 

(A5) The applied values of the regressor vectors £ f{x) in the control law can be 

written in function of the real regressor vectors as £y h c J = £^.(l) + ,-

with \(^f)i\ < Df V i . 

(A6) The applied values of the regressor vectors £ (x) in the control law can be 

written in function of the real regressor vectors as £ ,. . = £ (x) + </,.„ 
c - £ applied — ~fs 

with | ( ^ ) ; | <DgVi. 
(A7) In the assumption (A4) sign(f^,„,) = sign 0 g M i ) V/ and \9gmi\ > & Here 

applied and %g applied represent the gaussian membership functions thai we 
use in (he control law. while £ , and £ represent the best regression vectors 
that describe the unknown nonlinearities of the plant for prescribed precision. 

The tracking error behavior for the closed loop system with the proposed 
control law and estimation dynamics is described in the following theorem: 

THEOREM 1 Consider the system (1). If the assumptions (AI ) - (A7) hold, then 
for a given <t> the control law 

u = uc + {\S(t)\ > SLM}usw, (16) 

with the adaptation law defined in (10): 

l s = P r o j ( . S 4 , 9 s , ( i s a p p | | c ( | + c)„ r) 
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guarantees asymptotically the boundeness of all signals in the control system, 
where: 

- £ > s a t ( 5 / < t > ) ) , (18) 

u5W = ~ { D f ^ l 9 f M i H ° g | - ^ |Uc') S 3 t ( 5 / < 1 ) ) ' * U 9 ) 

gm is known as minimal value of g(x) defined in (he assumption (Al), C_(&_g, x) is 
a correction vector whose elements are: 

c d s , *), = ^ i ^ - M ^ i M ( 2 0) 
with: 

1 i f @gi%gapplied i — 8m f2H 
0, otherwise. 

The notation {|S(r)| > SUM] means that the switching term usw acts only when 
the absolute value of tracking error metric S(t) is higher than a prescribed limit 
SLIM > *• 

Because of the assumptions (A4) and (A7) the denominator in the expression 
of C(f? s, x)i w i l l never be zero. It can easily be seen that with this modification the 
denominator of uc w i l l always be greater than or equal to gm, which is a necessary 
condition for the feasibility of the control law. 

Proof. Let us consider the following Lyapunov like function: 

v(t) = isjw + igrj'I, + $ r ; % , <22> 

where Tf and rg arc diagonal matrices with positive adaptation step sizes in the 
diagonal. 

The time derivative of V(t) is given by: 

V(t) m W | # ^ ' f e | + | i ; | . (23) 

According to the definition of adaptation law (17) and the propriety (8) of 5 A 

we have V(t) = 0 for \S\ < <J>. 
Therefore, the remaining part of the pfTjof treats only the case when \S\ > dj>. 

By (8) 5A = 5. Applying (12) for the estimation law (17) and substituting it into 
the derivative of the Lyapunov function: 

V(t) < 5 A ( / ) 5 ( f ) - f f S ^ l f + dif) - I [ 5 A ( ( ^ + C K + dLguc). (24) 
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The tracking error dynamics can be written as follows: 

* = £ / ! + + d - + ^ r £ - (25) 

Let us consider that |5(?)l < SUM. In this case u can be replaced by uc. Let us 
introduce the value of uc into (25): 

S = -kss* + 3 J | / ( £ ) + 5 J ( | ^ ( S ) + C ) m « ~ £ / ^ / 

- ? ^ 4 « c + < / - MAsat(S/<D). (26) 

With (26) the relation (24) can be written as: 

TO 5 ~ M l - S^dy - SA6jgg^suc + SAd - SAD sat(5/4>). (27) 

Taking into consideration that |5 | > <i>, we can replace sat(5/<I>) with sign (5) or 
even with sign (5A ) in the expression of usw. It can easily be shown that i f d < D, 
where D > 0 than for any 5, we have dS < D \S\. From these inequalities it 
results: 

V(t) < -ksS2

A - S A £ ^ , - SAeT

gd^guc. (28) 

Note that the sign of V(t) cannot be determined because of model uncertainties d$j 
and d$g. 

I f the value of S(t) reaches the value SUM- the value of usw switches on. In 
this case the relation (23) can be written as: 

V(t) S -ksSl - SA9T

fd^f - SAlr

gd^guc + %l_g(x)S*usw (29) 

According to the assumption (Al ) we also have 0 < gm < Bj£ (x), hence: 

V(t) < -ksSl - SAeT

fd^f - SA9T

gd^guc-r-

With the same considerations as in the step from (27) to (28) it yields: 

V(t) < -ksS2

A. (31) 

I f 5(0) is bounded then i f S(t) leaves the limit S U M , then the boundedness of V(t) 
is assured by (31), and so S(t) is also bounded according to (22). 

The boundedness of the estimated parameters is guaranteed by the estimation 
laws (17). • 

The boundedness of 5(r) and x{f(t) results the boundedness of x 0 ) ( 0 V i. 
From the boundedness of the control signal u, the external disturbance and the 

modelling errors (assumptions (A2) (A5) and (A6)) results that 5A is also bounded 
(see (26)). 
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R E M A R K 1 The switching term represents a high gain term in the control scheme 
that acts only when the behavior of the control system is critical. Its introduction is 
necessary to guarantee the theoretical and practical stability of the control system. 
An important result that we can conclude from this approach of adaptive control 
law is related to the minimum value of the saturation limit of the applied actuator. 
The actuator should be able to reproduce control signals with amplitude at least 
SLIM * I«ju?I- tti this case the boundedness of all the signals in the closed loop 
system can be guaranteed according to the theorem. 

4. Simulation R e s u l t s 

To examine the performances of the previously presented control law, a nonlinear 
mass-spring damper system was considered [9]. The equation of motion for this 
mechanical system can be expressed as: 

mix + bx \x\ + kox + k\x3 = ku (32) 

with bx \x | modelling the nonlinear dissipation and + f c i J t 3 modelling the nonlin­
ear spring term, m is the mass of the load and k is the gain of the drive, respectively. 
x denotes the position. 

The functions / and g can be written as follows: 

fix) = x \x\ x xi gix) = — . (33) 
m m m m 

For simplicity it was considered that k = 1. 
The nonlinear function / was approximated with an RBF Neural Network. 

Firstly, it was considered that the parameters of the nonlinear function are unknown 
so the neural model was trained with wrong initial parameters, namely: 

b = 0.1 Jfco = 0.01 * i = 1 m = 1 (34) 

The resulted RBF network has 8 RBF type neurons in its hidden layer. Due 
to the low number of neurons and the absolute value function in the damping term 
there is a fitting error as it can be seen in Fig. I and Fig. 2. 

During the simulations the parameters of the controlled plant were: 

b = 0.5 k0 = 0.05 kx = 5 m = 0.1 (35) 

The controller parameters were chosen as Ks = 20, A = 10, <t> = 0.01, gm = 
0.05, D = 0.01, Df = 0.01, Dg = 1 0 - 4 . The bound of the parameters were 
determined by using the results from the initial training of the RBF neural network. 
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Position |m] Velocity [m/s] 

Fig. 1. Training Data for RBF 

Position [m] 
Velocity [m/s] 

Fig. 2. Learned Data for RBF 
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Fig. 4. Control signal components (top) and parameter convergence (middle, bottom) 
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Simulations were performed with the initial RBF network, with the trained 
RBF network and with the modified control law. The simulation results are pre­
sented in Fig. 3 and Fig. 4. 

The error metric (combined position and speed tracking error) shows poor 
convergence when the adaptation is not applied and the control law is used with the 
initially trained RBF network. When the adaptation is applied, the adaptation law 
re-tunes the parameters of the neural model and the estimated mass of the load hence 
the error metric convergence shows much better properties. Observe that when the 
error metric reaches the limit S U M — 0.1, the high gain term in the control law usw 

turns on and does not allow the error metric to be increased above S U M -

5. Conclusions 

Robust modifications in the adaptive control schemes were introduced to solve the 
well known problems of the adaptive control schemes, such as high sensitivity 
on external disturbances or lack of robustness and stability when the model of 
the controlled system is not known exactly. When the system nonlinearities are 
modelled with neural or fuzzy systems, the modelling uncertainties should always 
be taken into consideration at the design of the control law. The present paper deals 
with the adaptive control schemes in the perspective of the implemented control law. 
The standard adaptive control algorithm was modified with a supervisory additive 
term that acts only when the tracking error metric leaves a predetermined limit. It 
was shown that this adaptive law can guarantee the boundedness of all the signals 
in the closed loop control system when the regressor vectors in the adaptation laws 
are not known exactly, and the control signal is perturbed by additive disturbances. 
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