PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 45, NO. 1, PP. 43+2001)

EFFICIENT MULTI-PARTY CHALLENGE-RESPONSE
PROTOCOLSFOR ENTITY AUTHENTICATION

Levente BUTTYAN™, Attila NAGY** and Istvan MJDA***

*Swiss Federal Institute of Technology — Lausanne
Institute for Computer Communications and Applications
EPFL-DSC-ICA, CH-1015 Lausanne, Switzerland
**Budapest University of Technology and Economics

Faculty of Natural Sciences
H-1521 Budapest, Hungary
***Budapest University of Technology and Economics
Department of Telecommunications
H-1111 Budapest, Sztoczek u. 2, Hungary

Received: April, 2001

Abstract

In this paper, we address the problem of multi-party entity authentication. We prove that the lower
bound on the number of messages of multi-party challenge-response protoaols is, 2vheren

is the number of the participants of the protocol, and proposes two protocols that achieve this lower
bound. Our protocols are, thus, efficient in the sense that they use the minimum number of messages
required to solve the multi-party entity authentication problem based on challenge-response principles.

Keywords: challenge-response protocols, entity authentication, protocol graph, reflection attack.

1. Introduction

Entity authentication is the process whereby a party gains assurance of the identity
of another party involved in a protocal][Entity authentication is a fundamental
security service, which is used for preventing impersonation and unauthorized ac-
cess to services in distributed systems. Common examples for entity authentication
include user authentication in computer systems (login procedure) and subscriber
authentication in GSM networks.

Strong entity authentication is based on cryptographic challenge-response
protocols, in which a party (the prover) proves its identity to another party (the
verifier) by demonstrating knowledge of a secret that is known to be associated
with the prover. This is done by providing a response to a time-variant challenge,
where the response depends on both the secret and the challenge in such away thatan
attacker cannot obtain the secret from the response. Furthermore, since subsequent
challenges differ, the attacker cannot use the response from one execution of the
protocol in a subsequent execution. Depending on the mechanisms used, the verifier
may or may not know the secret that is used in the computation of the response. If
the verifier does not know the secret, nevertheless, it can still verify the response,

44 L. BUTTYAN etal.

then the protocol is called zero-knowledge prototd].[In this paper, we are not
concerned with this type of protocols, but exclusively focus on classical challenge-
response protocols, where the verifier knows the secret associated with the prover,
and uses it to verify the response.

A considerable amount of work has been carried out on the design and analysis
of two-party challenge-response protocols for entity authenticalidij.[In this
paper, we consider the multi-party case, which, to the best of our knowledge, has
been neglected so far. In multi-party entity authentication, each af {tme> 2)
participating parties proves its identity to each of the other parties. Although, in
principle, multi-party entity authentication can be obtained by running two-party
mutual entity authentication protocols between each pair of parties, in practice, this
approach is not desirable, because it leads to highly inefficient protocols that use
0O(n? messages. We propose much more efficient protocols that useOgnly
messages. Furthermore, we show that our protocols are optimal in the sense that
no protocol can solve the problem with less numbers of messages than ours do.

In spite of their apparent simplicity, the design of entity authentication pro-
tocols is surprisingly error prone, especially, if they are combined with session key
establishment. Many protocols have been proposed that were found to be flawed
and vulnerable to some forms of replay attack IgiprThe reason for this is that
flaws are usually subtle and hard to find. In order to solve this problem, many papers
propose methods that can be used for formal verification of entity authentication
and key establishment protocols p, 11], and principles that can help to avoid
common mistakes in their desigh P]. In this paper, we do not aim at contributing
to these efforts, but we rather build on them: we adhere to the design principles of
[1] and use a formal logicl[]] to explain some of the subtle details of our protocols.

The outline of the paper is the following. In Section 2, we introduce our
system model and clarify the concept of entity authentication in this model. Then,
in Section 3, we prove that the lower bound on the number of messages of multi-
party challenge-response protocols for entity authenticatiom is 2, wheren is
the number of participants of the protocol. Before presenting our protocols, which
achieve this lower bound, we review two flawed entity authentication protocols in
Section 4. Our aim s to give an insight into two design principles that our protocols
build on. In Section 5 we present our protocols and analyze them with the help of
a formal logic. Finally, in Section 6 we conclude the paper.

2. System Model and the Goal of Entity Authentication

We consider a system that consists of a set of principals (users, hosts, and processes)
and a network that connects them. Principals communicate with each other by
sending messages via the network. In order to authenticate each other, a subset
of the principals may engage in a given multi-party entity authentication protocol.
We assume that all the principals know this protocol. We also assume that any of

MULTI-PARTY CHALLENGE-RESPONSE PROTOCOLS 45

the principals can play any of the roles in the proto¢elg., in case of two-party
protocols, anybody can be initiator as well as responder). We further assume that
principals may run several instances of the protocol concurrently, and play different
roles in different instances.

As usual in the literature?], we assume that the network is under the control
of the attacker. This means that the attacker can observe every message sent via the
network, furthermore, it can intercept, modify, generate, delay, and replay messages
or parts of them. We assume that the attacker knows the protocol that is run by the
principals, and it may try to play any of its roles. In addition, it can arrange that a
principal starts an instance of the protocol at any time chosen by the attacker. On the
other hand, the attacker does not know any of the long-term secrets associated with
legitimate principals (see also next paragraph), and it cannot break the cryptographic
primitives used for encryption, digital signature, etc. This leaves the attacker with
the only possibility to mount a replay attack, in which it tries to impersonate some
principals by constructing fake messages from data recorded in previous and/or
concurrent runs of the protocol.

Sometimes we assume that the attacker compromised the long-term secret
of a principal or a small subset of principals. In this case, we are interested in
if the attacker can use the compromised secret(s) to impersonate a principal that
is not compromised. If the authentication protocol is designed properly, then this
should not be possible. Note, however, that the attacker can always impersonate
the compromised principals, no matter how careful the design of the authentication
protocol was.

As we said before, entity authentication is the process whereby a party gains
assurance of the identity of another party involved in a protocol. At first sight,
this suggests that a principal can use an entity authentication protocol to verify that
the identity of another principal with which it communicates (i.e., from which it
received a message), is as claimed. Note, however, that in our system model, each
principal does actually communicate with the attacker, because messages are sent to
and received from the network, which is under the control of the attacker. What can
an entity authentication protocol achieve in this model? Indeed, all we can expect
from a correct entity authentication protocol is that it guarantees for a principal
who successfully run it that the assumed other participating principals were present
and sent some messages during the protocol run. We formalize this concept in the
following definition:

Definition 1 (Entity authentication) Let us consider two principals A and B. We
say that A authenticated if there exists a bounded timeinterval | inthelocal time
of A suchthat Aisconvinced that B was alive (i.e., sent some messages) in | .

Examplel As an example let us consider the following unilateral two-party entity
authentication protocol:

1 Later, we will introduce special roles (e.g., authentication server), which can be played only by
designated principals. We omit this issue in the presentation of the general system model, because it
depends on the particular protocol in question.

46 L. BUTTYAN etal.

1L B— A (Th.

The protocol works as followsB digitally signs the current valu& of its local
clock using its private ke, and sends the signed time-stalfer}Kg to A ltis

assumed that the clocks 8fandB are synchronized with some accuraty. This
means that at any timethe local clockg,(t) of A and the local clocl,(t) of B

do not differ more thamt (i.e.,Vt : |G (t) — cy(t)| < At). When A receives the
message, it verifies the digital signatureBflf this verification is successful, then
A authenticated, since it is convinced thd was alive and used its private key at
some time in the intervdll — At, T 4+ At] in the local time ofA (seeFig.1). O

Fig. 1. Ais convinced thaB was alive at some time in the interja@l — At, T + At]

Example 2 Another common example for a unilateral two-party entity authentica-
tion protocol is the following:

1. A—-B:r
2. B—>A:{r}K6

Here, A generates an unpredictable random numbeand sends it td at time
Ty in its local time. B signsr with its private keyK;', and sends the resqh}KE
back toA. A receivesB’s response at tim&; in its local time, and verifies that it
is indeed its random numbersigned byB. If this verification is successful, then
A authenticated, since it is convinced tha was alive and used its private key at
some time in the intervdlly, T,] (seeFig. 2). O

3. Lower Bound on the Number of Messages

After having defined what we mean by entity authentication, we now turn our
attention to multi-party entity authentication protocols in which each party au-
thenticates every other participating party. We are exclusively concerned with
challenge-response type protocols, where authentication is based on response to an

MULTI-PARTY CHALLENGE-RESPONSE PROTOCOLS 47

Fig. 2. Ais convinced thaB was alive at some time in the interyi@l,, T>]

unpredictable random challenge (like in Example 2). The question we investigate
in this section is: What is the lower bound on the number of messages in multi-party
challenge-response protocols for entity authentication?

We start by constructing a model of the protocol, in which we abstract away
from the exact content of messages and retain only the message passing structure
of the protocol:

Definition 2 (Protocol graph) Let us represent a protocol with a directed graph
G = (V, E), where V isthe set of vertices and E is the set of edgesin G. Each
vertex of G represents a party of the protocol, and it islabelled with the name of that
party. The edges of G correspond to the messages of the protocol; each message
sent by party Ato party B isrepresented by a directed edge from the vertex that is
labeled with A to the vertex that islabeled with B.

We define the following binary relations on the edgeg of

Definition 3 (Precedence) The precedence relation isa subset P of E x E such
that for all (e, f) € P the message that corresponds to e is sent earlier than the
message that corresponds to f in every execution of the protocol. If (e, f) € P,
then we say that e precedesf or f succeedg, and we dencte thisbhy e < f.

Definition 4 (Precedence or equality) The precedence or equality relation is a
subset P’ of E x E definedas PP = PU{(e, f) € E x E:e= f}. Weusethe
e < f notation to denote that (e, f) € P'.

Itis clear that if the messageis always sent earlier than the messdgand
f is always sent earlier thay, thene is always sent earlier thag, which means
thatP andP’ are transitive (i.ege < f < gimpliese < g, ande < f < gimplies
e < g). In addition, P’ is reflexive and antisymmetric as well (i.e,< e, and
ex fandf < eimpliese = f). Therefore,P’ is a partial ordering. The reason
for being only partial and not total ordering is that the protocol may have concurrent
messages, the order of which cannot be guaranteed. This meagsritaat have
two edges and f, such that neithee < f nor f < e.

48 L. BUTTYAN etal.

We find it convenient in explaining the theory to introduce a notation for
directly preceding edges:

Definition 5 (Direct precedence) An edge e directly precedean edge f, denoted
bye « f,ife < f andthereisno other edge g suchthate < g < f.

The following lemma states that directly preceding edges must be joined by
a common vertex:

Lemmal Let us consider a protocol graph G. If for two edges e = (u, v) and
f=w,2)ing,ex f,thenv = w.

Proof: Let us assume that # w. This means that they correspond to different
parties of the protocol. Let the parties that belongtand w be A and B, re-
spectively. In order to guarantee that messége sent after messagein every
execution of the protocolA and B must be synchronizedA must be able to notify

B thate arrived, andB must sendf only if it received this notification. This means,
however, that the protocol must have a messgdlee notification), which succeeds
e and precedeg$. This contradicts our assumption theatg f. O

Lemma?2 Letusconsider aprotocol graphG. If for twoedgeseand f inG,e < f,
then either e « f, or thereis a sequence of edges g, 0, ..., Ok, Wwherek > 1,
suchthate<K g1 <K R K ... K K K f.

Proof: Let us denote the set of edges that succexaisd precedes by G (i.e.,
G={ge E:e<g~=< f}). If Gisempty, there « f by definition. So let us
assume tha6 is not empty. Leg be (one of) the “latest” edge(s) 1& (i.e., there
isnog € G such thaty < g'). Note that because of the finite sizeGfand thus
G, such an edge always existgmust directly precedd , because if there was an
edgeg’ such thaig < g < f, theng would be inG, andg would not be (one of)
the latest edge(s). Thus, we have that g « f. Now we can repeat the same
argument for < g. SinceG is finite, after a finite numbek of repetition, we are
done. |

According to Definitiori, a partyA authenticated a part if Ais convinced
that B was alive and sent some messages in a bounded time inteirvéthe local
time of A. In case of challenge-response protocadlds defined by the time of
sending a challenge and the time of receiving a response. Therefore, the following
lemma holds for any challenge-response protocol for entity authentication:

Lemma 3 Let us consider a challenge-response protocol for entity authentication
and its protocol graph G. Let A and B be two parties of the protocol, and let us
denote the vertices that correspond to A and B by u and v, respectively. If party A
authenticates party B in the protocol, then there exist three edges e, €, and f inG

such that e is an outgoing edge from u (challenge), € is an incoming edgeto u, f

is an outgoing edge fromv (response), ande < f < €.

MULTI-PARTY CHALLENGE-RESPONSE PROTOCOLS 49

Corollary of Lemma3: Adirect consequence of the previous lemmaiis that if each
party authenticates at least one other party in the protocol, then each vefiex of
has an outgoing edgeand an incoming edge such thae < €. O

Lemma4 Let us consider a challenge-response protocol for entity authentication
and its protocol graph G. If each party authenticates every other party in the
protocol, then any two vertices of G are connected with a directed path.

Proof: Let us consider two verticasandv of G, whereu corresponds to parti
andv corresponds to part®. Because of Lemma there exist two edgesand f
such thae originates fromu, f originates fronv, ande < f. Using Lemma, we
get that eithee « f, or there is a sequence of edggsg,, . . ., G, (k > 1) such
thate € 01 €K O K ... K gk < f. Because of Lemma, this means, in both
cases, that there is a directed path froto v. O

Corollary of Lemma4: A consequence of Lemmis that if each party authen-
ticates every other party in the protocol, then the protocol graph is connected.

O

We now introduce the notion of unfolded protocol graphs. The unfolded
protocol graplg of the protocol graply can be obtained by the following procedure:
We build upg from g step-by-step starting from an empty graph and extending

it with one new edge taken frog in each step. During the constructiongofwe
execute a depth-first search on the edgeg dbllowing the direct precedence
relation on the edges. This search determines the order in which the edgaseof

processed and inserteddnas well as the originating vertex of each new eddg in
Let us assume that the first edge given by the depth-first seagch i@, v).

Since at this poing is empty, we simply insert a new edgéwith new originating

and destination vertices) ¢h The originating and destination verticeséaet the

same labels as andv, respectively.
Now, let us assume that we have processed €dgem G and inserted in

G. Furthermore, let us assume that the next edge given by the depth-first search is
€' = (U, v"). There are two cases: (&)« €’ or (2) there is ho edge that succeeds

€, ande’ is obtained bypacktracking (i.e., stepping back on already processed edges
up to an edge which has an as yet unprocessed direct successor). The originating

and destination vertices of the new edfjnserted inj are determined as follows:
Case (1)
« Originating vertex: the originating vertex éfis the destination vertex &.
 Destination vertex:
— if a direct successof of € has already been processed and the corre-

sponding edge has already been in:serteddm then the destination
vertex ofé&’ is the originating vertex of,

50 L. BUTTYAN etal.

— if no direct successor & has been processed yet, then the destination
vertex of& can be any vertex igg that has the same label ashas,
given that this does not cause a directed logp,in

— otherwise, a new vertex is inserteddrwith the same label as’ has,
and this new vertex becomes the destination verte. of

Case (2)

« Originating vertex: we perform a backtrackingdrparallel with the back-
tracking inG. The vertex, in which this parallel backtracking stops, becomes
the originating vertex o#'.

+ Destination vertex: the same applies as in case (1).

protocol graph G unfolded protocol graph G
C
~ h - B
g i
e
AO——— @)

B D\

j OA

f

e<<f; e<<g; g<<h;
f<<i; h<<i; f<<j; h<<j

Fig. 3. An example for unfolding a protocol graph

As an example, let us considerg. 3. Given the protocol graph on the left
hand side of the figure, the procedure builds the unfolded protocol graph on the
right hand side. According to the depth-first search, the edges are processed in the

following order: e, g, h, j,i,andf. & g, andh are simply inserted i one after

the other. In order to avoid a directed loop, wheis inserted, we need to add a
new vertex with labelA to G, and this new vertex becomes the destination vertex
of j. Sincej does not have any successorginwe then perform a backtracking,
which stops at the destination vertextofn G, and the destination vertex fofn

G. Therefore, the originating vertex of the next edge to insert i().&ill be the
destination vertex ofi. As before, in order to avoid a directed loop, we need to
add a new vertex, this time with lab@, to G, and this new vertex becomes the
destination vertex df. Then we perform a backtracking again, which stops at the
destination vertex o& in G, and the destination vertex éfinG. Therefore, the
originating vertex of the last eddgewill be the destination vertex @& f has two
direct successotisand j in G, and both of them have already been processed and

MULTI-PARTY CHALLENGE-RESPONSE PROTOCOLS 51

inserted inG. Thus, the destination vertex éfwill be the originating vertex af
and].
The following lemma guarantees that, for all the direct succesgofs. ..

of an edges, the corresponding edgés f', . . . originate from the same vertexgn
This ensures that we can always unambiguously determine the destination vertex

of an edge to be inserted éhif its direct successors have already been processed
and inserted iy .

Lemma5 If two concurrent edges e and f originate from the same vertex in G,
then the corresponding edges & and f originate from the same vertexing.

Proof: Let us assume that the procedure processasd inserts first. Then, it
continues with the successors @f When all the successors efare processed
we perform the backtracking in the protocol graph and in the (partial) unfolded
protocol graph as well. Sincé is not processed yet the backtracking stops at the
originating vertex off (which is also the originating vertex @) in G and in the

originating vertex ofinG. Therefore, this vertex (the originating vertex&fwill
be the originating vertex off . O

The following statements are direct consequences of the unfolding procedure
given above:

Lemma6 Letus consider a protocol graph G = (E, V) and its unfolded protocol
graph G = (E, V).

« G isa Directed Acyclic Graph (DAG);

« if G is connected, then G is connected as well;

* |E| = |E| and there exists a one-to-one mapping m : E — E such that if
e « f in g, then the destination vertex of m(e) = & and the originating
vertex of m(f) = f arethesameing.

« The vertices of G are labeled with the names of the protocol participants
in such a way that for any edge & in G, the labels on the originating and
destination vertices of & are the same as the labels on the originating and
destination vertices of m™1(&) = ein G, respectively.

Now, we are ready to state and prove the main result of this section:

Theorem 1 Any n-party challenge-response protocol for entity authentication, in
which each party authenticates every other party, uses at least 2n — 1 messages.

Proof: Let us consider the protocol gragh of the protocol and the unfolded
protocol grapl§. First, using the corollary of Lemn#awe get thatj is connected,

and from this, using Lemnt we get that; is connected as well. Second, from the
corollary of LemmaB, we get that each vertaxof G has an outgoing edgeand

an incoming edge€ such thae < €. The corresponding edgesgrare& = m(e)

52 L. BUTTYAN etal.

and& = m(€), respectively. The originating vertax of & and the destination

vertexi’ of & have the same labels § because they both inherited the label of
uin G. However,i cannot be the same &s since according to Lemnfaand the

construction ofj, this would mean that there is a directed Ioo@inThis means

that each label is used at least twic&iror in other words, thag has at least 2
vertices. It is well-known that the minimum number of edges that can connect 2

vertices is & — 1. Thereforeg has at leastr2— 1 edges. By Lemm@, however,

G has the same number of edgegjaand each edge ifi represents a message in
the protocol. O

4, Two Lessons L earned

Before presenting our protocols, we recall two common flaws in entity authenti-
cation protocols by reviewing two protocols that exhibit these flaws. The first one
is a unilateral entity authentication protocol, which is similar to the protocol of
Example 2, but this time a symmetric key cryptography is used:

1 A—B:r,
2. B— A {ralky

The protocol works as followsA sends an unpredictable random numRetio
B. B encrypts the received challenge with the symmetric Kgythat it shares
with A, and sends the encrypted random numfogi,, back toA. A decrypts
the response with the same key, and verifies that the resulted cleartext is indeed
its random number,. The claim is that if this verification is successful, than
authenticated.

This is wrong, becausA cannot be sure that it wdwho encrypted, with
Kan, sinceB is not the only one who can encrypt with this key. Ironically, it may
be Aitself who generatefra}«,, in a concurrent run of the same protocol initiated
by the attacker. The attack scenario that exploits this flaw is illustrateghia.

A attacker

A4

Fig. 4. Reflection attack

MULTI-PARTY CHALLENGE-RESPONSE PROTOCOLS 53

In this attack, the attacker impersonaBesin order to do so, it has to respond
to the challenge of\ by encrypting, with K5,. Since it does not possess this key, it
cannot itself perform the encryption. Instead, it starts a new instance of the protocol
with A pretending to bd3, and challenge# with r,. Recall that, according to our
system model introduced in Section®2may run several instances of the protocol
concurrently, and it may play different roles in different instances. H&rejns
two instances of the protocol, and in the first one it plays the initiator, while in the
second one it plays the responder role. Hercencrypts the false challenge with
Kab and sends the result to the attacker in the second instance. The attacker can
now replay it back toA and complete the attack in the first instance.

The usual solution proposed in the literature for this problem is to include a
direction label explicitly in each encrypted message. A protocol can, for instance,
adopt the convention that each encrypted message contains the name of the principal
who generated it (i.e., a from field). In a more economical solution, the direction
label can even be a single bit. One can imagine, for instance, that the names of the
principals can be lexicographically ordered (bit strings typically have this property).
Then each encrypted message semibyB, whereA < B, could containa0, while
encrypted messages in the reverse direction could contain a 1. When a principal
decrypts a message, it looks at the direction label, and if this indicates that the
message was generated by the principal itself, then the message is discarded.

The conclusion is the following:

Lesson 1. If symmetric key encryption is used, then some mechanism is heeded to
ensure that the intended direction of each encrypted message can unambiguously
be determined by those who can decrypt the message. O

The next example for a flawed entity authentication protocol is theow
LAM protocol [L7]:

A—-B: A

B— A:ry

A— B : {rplkys

B— S: {A {Io}kastKes
S— B : {Io}kps

g wdpE

A major difference between this protocol and the previous one is that this one uses a
designated principal called the authentication seBsdnstead of sharing keys with
each other, principals share a secret key with the authentication server. It is also
assumed that the authentication server is trusted for correctly translating a message
encrypted with the key of a principal to a message encrypted with the key of another
principal.

The Woo-LAM protocol works as follows:A claims that its identity isA.
In order to verify this,B challengesA with an unpredictable random numbgr
A proves its identity by encrypting the challenge with the kgy, which it shares

54 L. BUTTYAN etal.

with the authentication serve8. The responsény}k,. is sent toB. SinceB does

not possesK,s, it cannot verify the response. Therefore, it calls for the help of
the authentication serveB sends the messadé\, {rp}x,}k, 0 S. Sdecrypts

the request and then decrypAs response inside; it knows that it has to uge

for decrypting the response, because the request contains the naneTbien,

S encrypts the resulted random number with the Kgyand sendgrp}«,, to B.
Finally, B decrypts the message 8fand verifies that it received back its random
numberr,. The claimis thatif this verification is successful, tieauthenticated\.

attacker B S

3>
>

{A {0}k ms YKps

Y

{M, {rb}Kms YKps

Fig. 5. Attack against the Wo—LAM authentication protocol

This time, it is not so obvious why this is wrong. Nevertheless, the protocol
is known to be vulnerablel] to the following attack Fig. 5): Let us assume that
the attacker compromised the key of a legitimate princiabf the system. This
means that the attacker knows the k€y shared byM and the serveB. Using
this key, it can impersonata (who is not compromised) tB. The attacker starts
two instances of the protocol witB concurrently; the first instance is started in
the name ofA and the second one is in the namehf B generates two random
numbersy, andr;, and sends them as challengesAtand M, respectively. These
messages are intercepted by the attacker and they never ardvand M. The
attacker then encrypts, which was intended foA, with the keyK,s and sends
the result{ry}«,. to B in both instances of the protocol. Itis very likely that the
protocol is implemented in such a way thatloes not check responses received in

MULTI-PARTY CHALLENGE-RESPONSE PROTOCOLS 55

different instances of the protocol for equality. Theref@delieves thatit received

the responses frod andM, and sends the corresponding reqUeALS{li} k e} Kps
and{M, {rp}k.lkys respectively, toS. S decrypts the received responses with
Kas and Ky, respectively, thus, using the wrong key for the first response. Let us
denote the result of decrypting,}k,. With Kas by x. Because of the properties

of symmetric key ciphersg looks like a random number. Since the authentication
server expects a random number as a result of the decryption, and it cannot check
that it is the right number, because it does not know what was the challenge sent by
B to A it acceptsx, and does not detect the attack. It responds to the requeBts of

by sending{x}k,, and{rp}k, to B. WhenB verifies these messages, it recognizes
that the first response is wrong. It does, however, accept the second one, which
containsry,, and since this number was the challengeApB attributes the second
response t@\. Finally, B concludes thaA was alive and responded to its challenge,
while someone might try to impersonaié.

The source of the flaw is that the authentication server suppresses some critical
information when it responds to a request: it does not tell the requesting principal
which key it used to decrypt the response. At first glance, one might think that the
requesting principal can infer this information from the context, but, as the previous
attack shows, this is false. Therefore, it is more secure to mention which key was
used by putting a key identifier or the name of the corresponding principal in the
last message.

The lesson we can learn from this example is the following:

Lesson 2: If atrusted mediator is used to translate a message encrypted with a given
key K to a message encrypted with another kéythen all the semantical informa-

tion of the original message must be retained. In particular, the translated message
should contain the key identifier df or other equivalent data from which this
information can be securely inferred by the destination of the translated message.

O

5. Multi-Party Entity Authentication Protocols

In Section 3 we proved that the lower bound on the number of messaggsanfy
challenge-response protocols for entity authenticatiomis 2. In this section, we
present two protocols that achieve this lower bound. Both protocols have the same
message passing structure, but they differ in the assumptions about trust among the
protocol participants, and thus, in the content (semantics) of messages.

5.1. Message Passing Structure

Before going into the details of our protocols, it is worth to tell some words about
their message passing structure. We recall Lewaich states that iA authenti-

56 L. BUTTYAN etal.

catesB in a given challenge-response protocol, then there must be threeedges

and f in the protocol graph such thats an outgoing edge fromn éis an incoming

edge tou, f is an outgoing edge from, ande < f < €, whereu andv are the
vertices that correspond # and B, respectively. This actually means, that in the
unfolded protocol graph, there is a directed path, which starts from and ends in a
vertex that is labeled with\, and goes through a vertex that is labeled vidthif A
authenticates every other paly C, . .. in the protocol, then each of these parties,

or more precisely vertices that are labeled with their names, must be traversed by a
directed path starting from and ending in a vertex that is labeled AvitNote that

one single path can do the job (d€i@.6 (a)). If B, C, ... also authenticate every
other party in the protocol, then there is a similar pathBoC, ... as well. We
obtain the protocol with the least number of messages by maximally overlapping
these paths (sd€g. 6 (b)). The resulting protocol graph has exactty-2 1 edges

(Fig. 6 (c)).

A B C A
o o o o)
@
A B c A
o o o)
B C A B
o o
C A B C
o o
A B C A B C
o o

(b)

C
/O
. .
AO & |
k
C)B

e<<f<<g<<hc<<i

(©

Fig. 6. Message passing structure of the basic protocols

MULTI-PARTY CHALLENGE-RESPONSE PROTOCOLS 57

5.2. Protocols

In order to make the presentation easier, we describe the three-party versions of our
protocols in detail and sketch the generadarty versions only briefly. In addition,

we should also mention that our protocols use symmetric key cryptography, but
it is straightforward to obtain the versions that use asymmetric key cryptography
by replacing symmetric key encryption with digital signatures of the appropriate
parties.

Protocol 1:

 Principle: The basic idea of Protocol 1 is the following: Each participant
generates an unpredictable random number, which is used as a challenge.
Challenges are passed around among the protocol participants in a circulating
message. Each participant that receives the message and sees the challenges
that the message contains includes its identifier in the message before passing
it further to the next participant. When a challenge gets back to the principal
that generated it, the message contains the list of those principals that saw
the challenge and forwarded the message. These forwarding principals must
have been alive during the protocol run.

Assumptions: We assume that each pair of principals in the system share a
long-term secret key. The secret key shared betweand B, for instance,

is denoted byK,,. We also assume that principals trust each other for exe-
cuting the protocol honestly. In particular, each principal must be trusted for
correctly attributing a received message to its sender and faithfully copying
all the relevant fields of the received message into the message that is passed
further. We will return to this issue of trust later when we analyze Protocol 1

in Subsectiorb.3.Finally, we assume that each protocol participant knows
(or at least has an assumption about) who the other participants are from the
context or additional plaintext fields not mentioned in the description below.
Messages of the three-party version:

A— B :r,

B— C :rp {B,ralky
C— A:r{C.rp, B, ralky
A— B : {Ar1:C rplky
B— C: {B, Arclky

asdwdhpE

Description of the three-party version: A generates an unpredictable random
numberr,, and sends it t@ in message 1. Upon reception of messagB 1,
generates an unpredictable random nunmmpegncrypts its own identifieB

and the random numbegy with the keyKy., and sends, and the result of the
encryption toC in message 2. The identifier in the encrypted part serves as
an explicit direction label that allowB to recognize its own messages. Upon

58

L. BUTTYAN et al.

reception of message £, decrypts the encrypted part, and verifies that it
was indeed generated B/by checking the identifier in the first field. If this
verification is successful, théb generates an unpredictable random number
re, encrypts its own identifie€, the random numbaey, the identifier ofB,

and the random numbey with the keyK,., and sendg; and the result of the
encryption toA in message 3. The identifier 6f serves again as a direction
label. WhenA receives message 3, it decrypts the encrypted part of it, and
verifies that it was indeed generated®¥py checking the identifier in the first
field. Furthermore, itchecksifitreceived back its random numasard if the
message contains the identifier®too. If these verifications are successful,
thenAauthenticated® andC, and it continues by encrypting its own identifier
A, the random numbeg, the identifier ofC, and the random numbegywith

the keyKgp. A sends the result of the encryption Boin message 4. When

B receives message 4, it decrypts it, and verifies that it was indeed generated
by A by checking the identifier in the first field. Furthermore, it checks if it
received back its random numbgiand if the message contains the identifier
of C too. If these verifications are successful, tieauthenticatedA andC,

and it continues by encrypting its own identifiB the identifier ofA, and

the random numbaet with the keyKp.. B sends the result of the encryption
to C in message 5. Finally, whe@ receives message 5, it decrypts it, and
verifies that it was indeed generated Byby checking the identifier in the
first field. It also checks if it received back its random numbemnd if the
message contains the identifierAdfoo. If these verifications are successful,
thenC authenticatedA and B and the protocol terminates.

Messages of the n-party version:

1. Ph—P: n

2. P, — P3: a2, {P2, 1}k,

3. Ps— Py: 13, {Ps, 12, P2, I1ky,

4. Py — Ps: r4,{P4, 13, P3, 12, P2, 1},

n Pn - Pl . rn’ {Pna rnfla Pnfla rnfza Pnfza) r2’ PZ’ rl}Kl_n

n + 1 Pl - P2 : {Pls rn, Pns rn—ls Pn—ls R r3s P3s r2}K142
n + 2 PZ - P3 : {P25 Plv rna Pn’ rnfl’ Pnfl’ RN r4’ P4’ r3}K2_3

2n—1 Pyo1— Py {Poo1, P2, Paos, .., P, rn}Kn,l_n

Remark for the n-party version: Let us consider any of the encrypted mes-
sages of the protocol above. Fora given random numirghis message, the
identifiers that stand beforecorrespond to those parties who have already
seen and forwarded Forinstance, in messagethe identifiers beforg are

Ps, P4, ..., Py, andindeed, apart from,, all the participants have already
seenr, when messaga is sent. Therefore, when a party receives back its
random number in a message, it must check if all the other parties are listed
before its random number in the message.

MULTI-PARTY CHALLENGE-RESPONSE PROTOCOLS 59

Note that Protocol 1 takes into account Lesson 1 and Lesson 2 of Séction
First, we used sender identifiers (from fields) as explicit direction labels in messages
in order to prevent reflection attacks. Second, since each party acts as a trusted
mediator, and translates messages encrypted with one key for messages encrypted
with another key, we ensured that all the semantical information of the original
message is retained by keeping all fields that are relevant for the further processing
of the translated message (including the identifier of the sender of the original
message).

Protocol 2:

 Principle: The main drawback of Protocol 1 is that it relies on the assumption
that the protocol participants trust each other for honestly executing the pro-
tocol. In Protocol 2, we remove this assumption. The main idea of Protocol 2
is that we allow each protocol participant to directly verify who responded
its challenge. Like in Protocol 1, the challenge of each participant is passed
around among the other participants, but unlike in Protocol 1, this time it is
encrypted with the key that is shared by the challenging and the responding
principals before itis passed further to the next participant. Indeed, respond-
ing parties do not encrypt the challenge itself, but the encrypted challenge
that they receive from the previous responding party. The challenging party
finally receives back its random number encrypted by every other party, one
after the other. The challenging party verifies the response by decrypting
it with the keys it shares with the other parties. If, after performing all the
decryptions, it recovers its original random number, then it is convinced that
all the other parties were alive during the protocol run.

« Assumptions: We assume that each pair of principals in the system share a
long-term secret key, and each protocol participant knows (or at least has
an assumption about) who the other participants are from the context or
additional plaintext fields not mentioned in the description below.

» Messages of the three-party version:

A— B:r,

B— C: rp, {B, ralky

C— A: e, {C’ rb}Kbcs {C’ {Bv ra}Kab}KaC
A— B: {A’ rC}KaC’ {A’ {Cv rb}Kbc}Kab
B— C: {B,{A rclka)Kec

grLODNDE

* Description of the three-party version: A generates an unpredictable random
numberr,, and sends it td in message 1. Upon reception of message 1,
B generates an unpredictable random nunmegncrypts its own identifier
B and the random numbes with the keyK,,, and sends, and the result
of the encryption taC in message 2. Like in Protocol 1, in Protocol 2 as
well, the identifier of the encrypting party in an encrypted message always
serves as an explicit direction label to foil reflection attacks. Upon reception
of message 2C generates an unpredictable random numpeencrypts

60 L. BUTTYAN etal.

its own identifierC and the random numbey with Ky, encrypts its own
identifier C and the encrypted part of message 2 vkth, and sends. and

the results of the encryptions fin message 3. WhefAreceives message 3,

it first verifies the last encrypted part of it by decrypting it with the k&ys

and Ky, and checking the identifiers and the random number found inside.
If the identifiers match those @ and B, and the random number matches
ra, then A authenticatedB and C, and it continues by encrypting its own
identifier A and the random numbeyg with the key K., and encrypting

its own identifier A and the other encrypted part of message 3 with the key
Kap. ThenA sends the results of the encryptionsBdan message 4. When

B receives message 4, it verifies the last encrypted part of it by decrypting
it with the keysKa,, and Ky, and checking the identifiers and the random
number found inside. If the identifiers match thosefofind C, and the
random number matches thenB authenticatedA andC, and it continues

by encrypting its own identifieB and the other encrypted part of message 4
with the keyK.. ThenB sends the result of the encryption@an message 5.
Finally, whenC receives message 5, it verifies it by decrypting it with the
keysKy. andK,., and checking the identifiers and the random number found
inside. If the identifiers match those &f and A, and the random number
matches, thenC authenticatedA and B, and the protocol terminates.

» Messages of the n-party version:

1. Pl — P2 : r

2. P, — P3: 12, {P2ri}ky,

3. P3 - P4 . rs, {P3a r2}K2_3a {P3a {PZa rl}Kl’z}Kl’g,
n. Pn— P1: n, {Pn, rn—1}Kn,1_n,

{Pna {Pn—la rnfz}Kn,zn,l}Kn,z‘na D)

{Pns {Pn—ls e {P2s rl}K]_‘z . '}Kln—l}KLn
n+1 Pl —> PZ . {P]_, rn}Kl_n,

{Pl’ {Pns rn—l}Kn,Ln}KLn,ls s

{PL, {Pn, .. . {P3,2}kp3 - - FKan) Koo
N+2. Po— P3: {P2, {P1, I'nlkintkons

{P2, {P1, {Pn, "'n—1}Kn 10 Kin 1 Konoas -+ -0

{st {Pls co {P4s r3}K3,4 . '}K1<3}K2,3

2n—1 Pya— Py (P (P2, (P fdkyn - - FKosan Knotn

Note that Protocol 2 takes into account Lesson 1 by using the identifiers of the
encrypting principal in each encrypted message as an explicit direction label that
prevents reflection attacks. It does not, however, use Lesson 2, because here princi-
pals do not translate messages encrypted with one key for messages encrypted with
another key.

MULTI-PARTY CHALLENGE-RESPONSE PROTOCOLS 61
5.3. Analysis and Comparison

In order to better understand Protocol 1 and Protocol 2, and the differences between
them, we sketch how their main assumptions and achievements could be formalized
in a formal logic called SvOl[l]. We analyze the three-party protocols from the
point of view of party A, but the same reasoning applies feparty protocols

(n > 3) and the other parties as well.

The first question is: How can the goal of entity authentication be modelled
in the SvO logic? We recall that entity authentication means that a party,say
convinced that another party, sBywas alive and sent some messages in a bounded
time interval in the local time ofA. In the SvO logic, the following formula can
represent this:

A believes(B saysX),

where X is some message or a part of a message (typically a certain function of a
fresh nonce generated #).

Now, let us investigate how such a formula can be derived for Protocol 1. The
last message tha& receives in Protocol 1 is message 3. Only the encrypted part is
interesting forA, which we idealize as:

{Cv rba Bv ra’ (B Saidra)}Kac-

Using the assumption tht believes thakK,. is a good shared secret key between
A andB, we can easily derive that

A believes(C said(C, ry, B, r, (B saidry))).

SinceA believes that its own random numbigrs fresh,Abelieves that the message
received fromC is fresh. This allows us to derive that

A believes(C says(C, rp, B, ra, (B saidry))),
from which we can easily get that
A believes(C saysr,) Q)

and
A believes(C says(B saidr,)) 2)

(1) means thatA authenticatedC. In order to go further and derive thAtauthen-
ticatedB as well, the following must hold:

A believes(C controls(B saidry)). 3)
Then, from @) and @) we can derive that

A believes(B saidr,).

62 L. BUTTYAN etal.

Since we assumed thatbelieves that its own random numbgiis fresh, we get
that
A believes(B saysr,).

This means thaf authenticated.

Note, however, that3] cannot be derived from the protocol, thus, we must
make the assumption that it holds. Inde&jinjodelsA’s trust in C for correctly
attributing messages ® and for correctly forwarding the content of these messages
to A

Now, we turn our attention to Protocol 2. The last message received by
is again message 3. Only the last encrypted part is interesting, farhich we
idealize in the following way:

{C,{B, ra}Kkap}Kac-

Assuming thatA believes thak,, andK,. are good shared secrets betweeand
B, and betweerA andC, respectively, we can derive that

A believes(C said{B, ra}k,,) (4)

and
A believes(B saidr,) (5)

Since A believes that its own random numbrgris fresh, we can easily derive in
the SvO logic thatA believes thafB, ra}«,, is fresh as well. Thus, fromf we get
that

A believes(C says{B, ra}k,,)

and from p) we get that
A believes(B saysr,).

This means thaf\ authenticated botB andC.

Note that, although Protocol 1 and Protocol 2 achieve the same goal, unlike
Protocol 1, Protocol 2 does not need any assumptions about existing trust between
the parties.

6. Conclusion

In this paper, we addressed the problem of multi-party entity authentication. We
proved that the lower bound on the number of messages of multi-party challenge-
response protocols for entity authenticationnis21, wheren is the number of the
parties participating in the protocol. Our proof is based on modelling the protocol
with a directed graph, the vertices of which correspond to the parties, and the
edges of which correspond to the messages of the protocol, and defining a partial
ordering on the edges according to the timing of messages in the protocol. Besides,
allowing us to prove the lower bound on the number of messages, this model proved

MULTI-PARTY CHALLENGE-RESPONSE PROTOCOLS 63

to be helpful in understanding some interesting structural properties of challenge-
response type entity authentication protocols.

We presented two protocols that are efficient in the sense that they use the
minimum number of messages required to solve the multi-party entity authentica-
tion problem based on challenge-response principles (i.e., they achieve the lower
bound on the number of messages). The protocols have the same message pass-
ing structure, but they differ in the assumptions about trust among the parties, and
thus, in the content (semantics) of the messages. We analyzed and compared our
protocols with the help of the SvO authentication protocol logic. We note that our
protocols can easily be extended to server assisted entity authentication and session
key establishment, which we did not discuss in this paper due to space limitations.

Finally, we should note that, in this paper, we were mainly concerned with
minimizing the number of messages in challenge-response protocols for entity au-
thentication. Onthe one hand, this makes sense, because each message sentinvolves
the use of several lower level protocols down in the communication protocol stack,
and thus, produces some overhead. By minimizing the number of messages of
the authentication protocol, we can minimize this overhead. On the other hand,
minimizing the number of messages does not necessarily minimize the required
bandwidth. If the protocol uses few messages, but these are long, then we do not
gain much in bandwidth, and a protocol with more but smaller messages might be
more desirable. Thus, in general, we are facing a more complex optimization prob-
lem, in which both the number of messages and the total amount of data exchanged
in the protocol must be taken into consideration. We leave this issue for future
study.

References

[1] ABaDI, M. — NEEDHAM, R., Prudent Engineering Practice for Cryptographic Protocols, In
Proceedings of the IEEE CS Symposium on Research in Security and Privacy, pp. 122-136,
1994.

[2] ANDERSON R.—NeEeDHAM, R., Robustness Principles for Public Key Protocol#\dumances
in Cryptology — CRYPTO' 95, pp. 236—247, 1995.

[3] BIRD, R. — GOPAL, |I. — HERZBERG, A. — JANSON, P. — KUTTEN, S. — MoLVA, R. —

Y UNG, M., Systematic Design of a Family of Attack-resistant Authentication ProtoltefE
Journal on Selected Areasin Communications, 11(5) (1992), pp. 679-693.

[4] BURROWS M. — ABADI, M — NEEDHAM, R., A Logic of AuthenticationACM Transactions
on Computer Systems, 8(1) (1990), pp. 18—36.

[5] CLARK, J. - AcCOB, J., A Survey of Authentication Protocol Literature.
http://lwww-users.cs.york.ac.uk/” jac/papers/drareview.ps.gz

[6] GONG, L.— NEEDHAM, R. — YAHALOM, R., Reasoning about Belief in Cryptographic Proto-
cols. InProceedings of the IEEE CS Symposium on Research in Security and Privacy, pp. 234—
248, 1990.

[71 MENEZES A. — VAN OORSCHOT, P. — VANSTONE, S.,Handbook of Applied Cryptography.
CRC Press, 1997.

[8] MILLEN, J. — Q.ARK, S. — RREEDMAN, S., The Interrogator: Protocol Security Analysis.
| EEE Transactions on Software Engineering, SE13(2) (1987), pp. 274—288.

h

64 L. BUTTYAN etal.

[9] MITCHELL, C., Limitations of Challenge-Response Entity AuthenticatidE Electronics

Letters, 25 (17) (1989).

[10] MiTROPOULOS A. — MEIJER, H., Zero Knowledge Prosf— a Survey. Technical Report No.
90-IR-05, Queen’s University at Kingston, Kingston, Ontario, Canada, 1990.

[11] SYyVvERSON, P. —vAN OORSCHOT P., On Unifying Some Cryptographic Protocol Logics. In
Proceedings of the | EEE CS Symposium on Research in Security and Privacy, pp. 14-28, 1994.

[12] Woo, T. — Lam, S., Authentication for Distributed Systen@omputer, 25(1) (1992), pp. 39—
52.

	Introduction
	System Model and the Goal of Entity Authentication
	Lower Bound on the Number of Messages
	Two Lessons Learned
	Multi-Party Entity Authentication Protocols
	Message Passing Structure
	Protocols
	Analysis and Comparison

	Conclusion

