
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 45, NO. 1, PP. 43–64(2001)

EFFICIENT MULTI-PARTY CHALLENGE-RESPONSE
PROTOCOLS FOR ENTITY AUTHENTICATION

Levente BUTTYÁN∗ , Attila NAGY∗∗ and István VAJDA∗∗∗
∗Swiss Federal Institute of Technology – Lausanne

Institute for Computer Communications and Applications
EPFL-DSC-ICA, CH-1015 Lausanne, Switzerland∗∗Budapest University of Technology and Economics

Faculty of Natural Sciences
H–1521 Budapest, Hungary∗∗∗Budapest University of Technology and Economics

Department of Telecommunications
H–1111 Budapest, Sztoczek u. 2, Hungary

Received: April, 2001

Abstract

In this paper, we address the problem of multi-party entity authentication. We prove that the lower
bound on the number of messages of multi-party challenge-response protocols is 2n − 1, wheren
is the number of the participants of the protocol, and proposes two protocols that achieve this lower
bound. Our protocols are, thus, efficient in the sense that they use the minimum number of messages
required to solve the multi-party entity authentication problem based on challenge-response principles.

Keywords: challenge-response protocols, entity authentication, protocol graph, reflection attack.

1. Introduction

Entity authentication is the process whereby a party gains assurance of the identity
of another party involved in a protocol [7]. Entity authentication is a fundamental
security service, which is used for preventing impersonation and unauthorized ac-
cess to services in distributed systems. Common examples for entity authentication
include user authentication in computer systems (login procedure) and subscriber
authentication in GSM networks.

Strong entity authentication is based on cryptographic challenge-response
protocols, in which a party (the prover) proves its identity to another party (the
verifier) by demonstrating knowledge of a secret that is known to be associated
with the prover. This is done by providing a response to a time-variant challenge,
where the response depends on both the secret and the challenge in such a way that an
attacker cannot obtain the secret from the response. Furthermore, since subsequent
challenges differ, the attacker cannot use the response from one execution of the
protocol in a subsequent execution. Depending on the mechanisms used, the verifier
may or may not know the secret that is used in the computation of the response. If
the verifier does not know the secret, nevertheless, it can still verify the response,

44 L. BUTTYÁN et al.

then the protocol is called zero-knowledge protocol [10]. In this paper, we are not
concerned with this type of protocols, but exclusively focus on classical challenge-
response protocols, where the verifier knows the secret associated with the prover,
and uses it to verify the response.

A considerable amount of work has been carried out on the design and analysis
of two-party challenge-response protocols for entity authentication [9, 3]. In this
paper, we consider the multi-party case, which, to the best of our knowledge, has
been neglected so far. In multi-party entity authentication, each of then (n ≥ 2)
participating parties proves its identity to each of the other parties. Although, in
principle, multi-party entity authentication can be obtained by running two-party
mutual entity authentication protocols between each pair of parties, in practice, this
approach is not desirable, because it leads to highly inefficient protocols that use
O(n2) messages. We propose much more efficient protocols that use onlyO(n)
messages. Furthermore, we show that our protocols are optimal in the sense that
no protocol can solve the problem with less numbers of messages than ours do.

In spite of their apparent simplicity, the design of entity authentication pro-
tocols is surprisingly error prone, especially, if they are combined with session key
establishment. Many protocols have been proposed that were found to be flawed
and vulnerable to some forms of replay attack later [5]. The reason for this is that
flaws are usually subtle and hard to find. In order to solve this problem, many papers
propose methods that can be used for formal verification of entity authentication
and key establishment protocols [4, 6, 11], and principles that can help to avoid
common mistakes in their design [1, 2]. In this paper, we do not aim at contributing
to these efforts, but we rather build on them: we adhere to the design principles of
[1] and use a formal logic [11] to explain some of the subtle details of our protocols.

The outline of the paper is the following. In Section 2, we introduce our
system model and clarify the concept of entity authentication in this model. Then,
in Section 3, we prove that the lower bound on the number of messages of multi-
party challenge-response protocols for entity authentication is 2n − 1, wheren is
the number of participants of the protocol. Before presenting our protocols, which
achieve this lower bound, we review two flawed entity authentication protocols in
Section 4. Our aim is to give an insight into two design principles that our protocols
build on. In Section 5 we present our protocols and analyze them with the help of
a formal logic. Finally, in Section 6 we conclude the paper.

2. System Model and the Goal of Entity Authentication

We consider a system that consists of a set of principals (users, hosts, and processes)
and a network that connects them. Principals communicate with each other by
sending messages via the network. In order to authenticate each other, a subset
of the principals may engage in a given multi-party entity authentication protocol.
We assume that all the principals know this protocol. We also assume that any of

MULTI-PARTY CHALLENGE-RESPONSE PROTOCOLS 45

the principals can play any of the roles in the protocol1 (e.g., in case of two-party
protocols, anybody can be initiator as well as responder). We further assume that
principals may run several instances of the protocol concurrently, and play different
roles in different instances.

As usual in the literature [8], we assume that the network is under the control
of the attacker. This means that the attacker can observe every message sent via the
network, furthermore, it can intercept, modify, generate, delay, and replay messages
or parts of them. We assume that the attacker knows the protocol that is run by the
principals, and it may try to play any of its roles. In addition, it can arrange that a
principal starts an instance of the protocol at any time chosen by the attacker. On the
other hand, the attacker does not know any of the long-term secrets associated with
legitimate principals (see also next paragraph), and it cannot break the cryptographic
primitives used for encryption, digital signature, etc. This leaves the attacker with
the only possibility to mount a replay attack, in which it tries to impersonate some
principals by constructing fake messages from data recorded in previous and/or
concurrent runs of the protocol.

Sometimes we assume that the attacker compromised the long-term secret
of a principal or a small subset of principals. In this case, we are interested in
if the attacker can use the compromised secret(s) to impersonate a principal that
is not compromised. If the authentication protocol is designed properly, then this
should not be possible. Note, however, that the attacker can always impersonate
the compromised principals, no matter how careful the design of the authentication
protocol was.

As we said before, entity authentication is the process whereby a party gains
assurance of the identity of another party involved in a protocol. At first sight,
this suggests that a principal can use an entity authentication protocol to verify that
the identity of another principal with which it communicates (i.e., from which it
received a message), is as claimed. Note, however, that in our system model, each
principal does actually communicate with the attacker, because messages are sent to
and received from the network, which is under the control of the attacker. What can
an entity authentication protocol achieve in this model? Indeed, all we can expect
from a correct entity authentication protocol is that it guarantees for a principal
who successfully run it that the assumed other participating principals were present
and sent some messages during the protocol run. We formalize this concept in the
following definition:

Definition 1 (Entity authentication) Let us consider two principals A and B. We
say that A authenticatedB if there exists a bounded time interval I in the local time
of A such that A is convinced that B was alive (i.e., sent some messages) in I .

Example 1 As an example let us consider the following unilateral two-party entity
authentication protocol:

1 Later, we will introduce special roles (e.g., authentication server), which can be played only by
designated principals. We omit this issue in the presentation of the general system model, because it
depends on the particular protocol in question.

46 L. BUTTYÁN et al.

1. B → A : {T }K −
b
.

The protocol works as follows:B digitally signs the current valueT of its local
clock using its private keyK−

b , and sends the signed time-stamp{T }K −
b

to A. It is
assumed that the clocks ofA andB are synchronized with some accuracy�t . This
means that at any timet the local clockca(t) of A and the local clockcb(t) of B
do not differ more than�t (i.e.,∀t : |ca(t) − cb(t)| ≤ �t). When A receives the
message, it verifies the digital signature ofB. If this verification is successful, then
A authenticatedB, since it is convinced thatB was alive and used its private key at
some time in the interval[T − �t, T + �t] in the local time ofA (seeFig. 1). 2

{T}Kb
-

T
Dt

Dt

T

{

{

A B

Fig. 1. A is convinced thatB was alive at some time in the interval[T − �t, T + �t]

Example 2 Another common example for a unilateral two-party entity authentica-
tion protocol is the following:

1. A → B : r
2. B → A : {r}K −

b

Here, A generates an unpredictable random numberr , and sends it toB at time
T1 in its local time. B signsr with its private keyK−

b , and sends the result{r}K −
b

back toA. A receivesB’s response at timeT2 in its local time, and verifies that it
is indeed its random numberr signed byB. If this verification is successful, then
A authenticatedB, since it is convinced thatB was alive and used its private key at
some time in the interval[T1, T2] (seeFig. 2). 2

3. Lower Bound on the Number of Messages

After having defined what we mean by entity authentication, we now turn our
attention to multi-party entity authentication protocols in which each party au-
thenticates every other participating party. We are exclusively concerned with
challenge-response type protocols, where authentication is based on response to an

MULTI-PARTY CHALLENGE-RESPONSE PROTOCOLS 47

{r}Kb
-

T1

T2

A B

r

Fig. 2. A is convinced thatB was alive at some time in the interval[T1, T2]

unpredictable random challenge (like in Example 2). The question we investigate
in this section is: What is the lower bound on the number of messages in multi-party
challenge-response protocols for entity authentication?

We start by constructing a model of the protocol, in which we abstract away
from the exact content of messages and retain only the message passing structure
of the protocol:

Definition 2 (Protocol graph) Let us represent a protocol with a directed graph
G = (V, E), where V is the set of vertices and E is the set of edges in G. Each
vertex of G represents a party of the protocol, and it is labelled with the name of that
party. The edges of G correspond to the messages of the protocol; each message
sent by party A to party B is represented by a directed edge from the vertex that is
labeled with A to the vertex that is labeled with B.

We define the following binary relations on the edges ofG:

Definition 3 (Precedence) The precedence relation is a subset P of E × E such
that for all (e, f) ∈ P the message that corresponds to e is sent earlier than the
message that corresponds to f in every execution of the protocol. If (e, f) ∈ P,
then we say that e precedesf or f succeedse, and we denote this by e ≺ f .

Definition 4 (Precedence or equality) The precedence or equality relation is a
subset P ′ of E × E defined as P′ = P ∪ {(e, f) ∈ E × E : e = f }. We use the
e � f notation to denote that (e, f) ∈ P′.

It is clear that if the messagee is always sent earlier than the messagef , and
f is always sent earlier thang, thene is always sent earlier thang, which means
that P andP ′ are transitive (i.e.,e ≺ f ≺ g impliese ≺ g, ande � f � g implies
e � g). In addition, P′ is reflexive and antisymmetric as well (i.e.,e � e, and
e � f and f � e impliese = f). Therefore,P′ is a partial ordering. The reason
for being only partial and not total ordering is that the protocol may have concurrent
messages, the order of which cannot be guaranteed. This means thatG may have
two edgese and f , such that neithere � f nor f � e.

48 L. BUTTYÁN et al.

We find it convenient in explaining the theory to introduce a notation for
directly preceding edges:

Definition 5 (Direct precedence) An edge e directly precedesan edge f , denoted
by e � f , if e ≺ f and there is no other edge g such that e ≺ g ≺ f .

The following lemma states that directly preceding edges must be joined by
a common vertex:

Lemma 1 Let us consider a protocol graph G. If for two edges e = (u, v) and
f = (w, z) in G, e � f , then v = w.

Proof: Let us assume thatv �= w. This means that they correspond to different
parties of the protocol. Let the parties that belong tov andw be A and B, re-
spectively. In order to guarantee that messagef is sent after messagee in every
execution of the protocol,A andB must be synchronized:A must be able to notify
B thate arrived, andB must sendf only if it received this notification. This means,
however, that the protocol must have a messageg (the notification), which succeeds
e and precedesf . This contradicts our assumption thate � f . 2

Lemma 2 Let us consider a protocol graph G. If for two edges e and f inG, e ≺ f ,
then either e � f , or there is a sequence of edges g1, g2, . . . , gk , where k ≥ 1,
such that e � g1 � g2 � . . . � gk � f .

Proof: Let us denote the set of edges that succeedse and precedesf by G (i.e.,
G = {g ∈ E : e ≺ g ≺ f }). If G is empty, thene � f by definition. So let us
assume thatG is not empty. Letg be (one of) the “latest” edge(s) inG (i.e., there
is nog′ ∈ G such thatg ≺ g′). Note that because of the finite size ofG, and thus
G, such an edge always exists.g must directly precedef , because if there was an
edgeg′ such thatg ≺ g′ ≺ f , theng′ would be inG, andg would not be (one of)
the latest edge(s). Thus, we have thate ≺ g � f . Now we can repeat the same
argument fore ≺ g. SinceG is finite, after a finite numberk of repetition, we are
done. 2

According to Definition1, a partyA authenticated a partyB if A is convinced
that B was alive and sent some messages in a bounded time intervalI in the local
time of A. In case of challenge-response protocols,I is defined by the time of
sending a challenge and the time of receiving a response. Therefore, the following
lemma holds for any challenge-response protocol for entity authentication:

Lemma 3 Let us consider a challenge-response protocol for entity authentication
and its protocol graph G. Let A and B be two parties of the protocol, and let us
denote the vertices that correspond to A and B by u and v, respectively. If party A
authenticates party B in the protocol, then there exist three edges e, e′, and f in G
such that e is an outgoing edge from u (challenge), e′ is an incoming edge to u, f
is an outgoing edge from v (response), and e ≺ f � e′.

MULTI-PARTY CHALLENGE-RESPONSE PROTOCOLS 49

Corollary of Lemma 3: A direct consequence of the previous lemma is that if each
party authenticates at least one other party in the protocol, then each vertex ofG

has an outgoing edgee and an incoming edgee′ such thate ≺ e′. 2

Lemma 4 Let us consider a challenge-response protocol for entity authentication
and its protocol graph G. If each party authenticates every other party in the
protocol, then any two vertices of G are connected with a directed path.

Proof: Let us consider two verticesu andv of G, whereu corresponds to partyA
andv corresponds to partyB. Because of Lemma3, there exist two edgese and f
such thate originates fromu, f originates fromv, ande ≺ f . Using Lemma2, we
get that eithere � f , or there is a sequence of edgesg1, g2, . . . , gk, (k ≥ 1) such
that e � g1 � g2 � . . . � gk � f . Because of Lemma1, this means, in both
cases, that there is a directed path fromu to v. 2

Corollary of Lemma 4: A consequence of Lemma4 is that if each party authen-
ticates every other party in the protocol, then the protocol graph is connected.

2

We now introduce the notion of unfolded protocol graphs. The unfolded
protocol graph̃G of the protocol graphG can be obtained by the following procedure:

We build upG̃ fromG step-by-step starting from an empty graph and extending
it with one new edge taken fromG in each step. During the construction ofG̃, we
execute a depth-first search on the edges ofG following the direct precedence
relation on the edges. This search determines the order in which the edges ofG are
processed and inserted inG̃, as well as the originating vertex of each new edge inG̃.

Let us assume that the first edge given by the depth-first search ise = (u, v).
Since at this point̃G is empty, we simply insert a new edgeẽ (with new originating
and destination vertices) iñG. The originating and destination vertices ofẽ get the
same labels asu andv, respectively.

Now, let us assume that we have processed edgee′ from G and inserted̃e′ in
G̃. Furthermore, let us assume that the next edge given by the depth-first search is
e′′ = (u′′, v′′). There are two cases: (1)e′ � e′′ or (2) there is no edge that succeeds
e′, ande′′ is obtained bybacktracking (i.e., stepping back on already processed edges
up to an edge which has an as yet unprocessed direct successor). The originating
and destination vertices of the new edgeẽ′′ inserted inG̃ are determined as follows:

Case (1)

• Originating vertex: the originating vertex ofẽ′′ is the destination vertex ofẽ′.
• Destination vertex:

– if a direct successorf of e′′ has already been processed and the corre-
sponding edgef̃ has already been inserted inG̃, then the destination
vertex ofẽ′′ is the originating vertex of̃f ,

50 L. BUTTYÁN et al.

– if no direct successor ofe′′ has been processed yet, then the destination
vertex of ẽ′′ can be any vertex iñG that has the same label asv′′ has,
given that this does not cause a directed loop inG̃,

– otherwise, a new vertex is inserted inG̃ with the same label asv′′ has,
and this new vertex becomes the destination vertex ofẽ′′.

Case (2)

• Originating vertex: we perform a backtracking inG̃ parallel with the back-
tracking inG. The vertex, in which this parallel backtracking stops, becomes
the originating vertex of̃e′′.

• Destination vertex: the same applies as in case (1).

A

B

C

D

e

f

g

h

i

j

protocol graph G unfolded protocol graph G
~

e << f; e << g; g << h;
f << i; h << i; f << j; h << j

e

f

g
h

i

j

A
B

C

D

A

B

~

~

~
~

~

~

Fig. 3. An example for unfolding a protocol graph

As an example, let us considerFig. 3. Given the protocol graph on the left
hand side of the figure, the procedure builds the unfolded protocol graph on the
right hand side. According to the depth-first search, the edges are processed in the
following order: e, g, h, j , i , and f . ẽ, g̃, andh̃ are simply inserted iñG one after
the other. In order to avoid a directed loop, whenj̃ is inserted, we need to add a
new vertex with labelA to G̃, and this new vertex becomes the destination vertex
of j̃ . Since j does not have any successor inG, we then perform a backtracking,
which stops at the destination vertex ofh in G, and the destination vertex ofh̃ in
G̃. Therefore, the originating vertex of the next edge to insert (i.e.,ĩ) will be the
destination vertex of̃h. As before, in order to avoid a directed loop, we need to
add a new vertex, this time with labelB, to G̃, and this new vertex becomes the
destination vertex of̃i . Then we perform a backtracking again, which stops at the
destination vertex ofe in G, and the destination vertex ofẽ in G̃. Therefore, the
originating vertex of the last edgẽf will be the destination vertex of̃e. f has two
direct successorsi and j in G, and both of them have already been processed and

MULTI-PARTY CHALLENGE-RESPONSE PROTOCOLS 51

inserted inG̃. Thus, the destination vertex of̃f will be the originating vertex of̃i
and j̃ .

The following lemma guarantees that, for all the direct successorsf, f′, . . .
of an edgee, the corresponding edgesf̃ , f̃ ′, . . . originate from the same vertex iñG.
This ensures that we can always unambiguously determine the destination vertex
of an edge to be inserted iñG if its direct successors have already been processed
and inserted iñG.

Lemma 5 If two concurrent edges e and f originate from the same vertex in G,
then the corresponding edges ẽ and f̃ originate from the same vertex in G̃.

Proof: Let us assume that the procedure processese and inserts̃e first. Then, it
continues with the successors ofe. When all the successors ofe are processed
we perform the backtracking in the protocol graph and in the (partial) unfolded
protocol graph as well. Sincef is not processed yet the backtracking stops at the
originating vertex off (which is also the originating vertex ofe) in G and in the
originating vertex of̃e in G̃. Therefore, this vertex (the originating vertex ofẽ) will
be the originating vertex of̃f . 2

The following statements are direct consequences of the unfolding procedure
given above:

Lemma 6 Let us consider a protocol graph G = (E, V) and its unfolded protocol
graph G̃ = (Ẽ, Ṽ).

• G̃ is a Directed Acyclic Graph (DAG);
• if G is connected, then G̃ is connected as well;
• |E | = |Ẽ | and there exists a one-to-one mapping m : E → Ẽ such that if

e � f in G, then the destination vertex of m(e) = ẽ and the originating
vertex of m(f) = f̃ are the same in G̃.

• The vertices of G̃ are labeled with the names of the protocol participants
in such a way that for any edge ẽ in G̃, the labels on the originating and
destination vertices of ẽ are the same as the labels on the originating and
destination vertices of m−1(ẽ) = e in G, respectively.

Now, we are ready to state and prove the main result of this section:

Theorem 1 Any n-party challenge-response protocol for entity authentication, in
which each party authenticates every other party, uses at least 2n − 1 messages.

Proof: Let us consider the protocol graphG of the protocol and the unfolded
protocol graphG̃. First, using the corollary of Lemma4, we get thatG is connected,
and from this, using Lemma6, we get thatG̃ is connected as well. Second, from the
corollary of Lemma3, we get that each vertexu of G has an outgoing edgee and
an incoming edgee′ such thate ≺ e′. The corresponding edges inG̃ areẽ = m(e)

52 L. BUTTYÁN et al.

and ẽ′ = m(e′), respectively. The originating vertex̃u of ẽ and the destination
vertex ṽ′ of ẽ′ have the same labels iñG, because they both inherited the label of
u in G. However,ũ cannot be the same asṽ′, since according to Lemma2 and the
construction ofG̃, this would mean that there is a directed loop inG̃. This means
that each label is used at least twice inG̃, or in other words, that̃G has at least 2n
vertices. It is well-known that the minimum number of edges that can connect 2n
vertices is 2n − 1. Therefore,G̃ has at least 2n − 1 edges. By Lemma6, however,
G has the same number of edges asG̃, and each edge inG represents a message in
the protocol. 2

4. Two Lessons Learned

Before presenting our protocols, we recall two common flaws in entity authenti-
cation protocols by reviewing two protocols that exhibit these flaws. The first one
is a unilateral entity authentication protocol, which is similar to the protocol of
Example 2, but this time a symmetric key cryptography is used:

1. A → B : ra

2. B → A : {ra}Kab

The protocol works as follows:A sends an unpredictable random numberra to
B. B encrypts the received challenge with the symmetric keyKab that it shares
with A, and sends the encrypted random number{ra}Kab back to A. A decrypts
the response with the same key, and verifies that the resulted cleartext is indeed
its random numberra. The claim is that if this verification is successful, thenA
authenticatedB.

This is wrong, becauseA cannot be sure that it wasB who encryptedra with
Kab, sinceB is not the only one who can encrypt with this key. Ironically, it may
be A itself who generated{ra}Kab in a concurrent run of the same protocol initiated
by the attacker. The attack scenario that exploits this flaw is illustrated inFig.4.

A attacker

ra

{ra}Kab

{ra}Kab

ra

Fig. 4. Reflection attack

MULTI-PARTY CHALLENGE-RESPONSE PROTOCOLS 53

In this attack, the attacker impersonatesB. In order to do so, it has to respond
to the challenge ofA by encryptingra with Kab. Since it does not possess this key, it
cannot itself perform the encryption. Instead, it starts a new instance of the protocol
with A pretending to beB, and challengesA with ra. Recall that, according to our
system model introduced in Section 2,A may run several instances of the protocol
concurrently, and it may play different roles in different instances. Here,A runs
two instances of the protocol, and in the first one it plays the initiator, while in the
second one it plays the responder role. Hence,A encrypts the false challenge with
Kab and sends the result to the attacker in the second instance. The attacker can
now replay it back toA and complete the attack in the first instance.

The usual solution proposed in the literature for this problem is to include a
direction label explicitly in each encrypted message. A protocol can, for instance,
adopt the convention that each encrypted message contains the name of the principal
who generated it (i.e., a from field). In a more economical solution, the direction
label can even be a single bit. One can imagine, for instance, that the names of the
principals can be lexicographically ordered (bit strings typically have this property).
Then each encrypted message sent byA to B, whereA < B, could contain a 0, while
encrypted messages in the reverse direction could contain a 1. When a principal
decrypts a message, it looks at the direction label, and if this indicates that the
message was generated by the principal itself, then the message is discarded.

The conclusion is the following:

Lesson 1: If symmetric key encryption is used, then some mechanism is needed to
ensure that the intended direction of each encrypted message can unambiguously
be determined by those who can decrypt the message. 2

The next example for a flawed entity authentication protocol is the WOO–
LAM protocol [12]:

1. A → B : A
2. B → A : rb

3. A → B : {rb}Kas

4. B → S : {A, {rb}Kas }Kbs

5. S → B : {rb}Kbs

A major difference between this protocol and the previous one is that this one uses a
designated principal called the authentication serverS. Instead of sharing keys with
each other, principals share a secret key with the authentication server. It is also
assumed that the authentication server is trusted for correctly translating a message
encrypted with the key of a principal to a message encrypted with the key of another
principal.

The WOO–LAM protocol works as follows:A claims that its identity isA.
In order to verify this,B challengesA with an unpredictable random numberrb.
A proves its identity by encrypting the challenge with the keyKas , which it shares

54 L. BUTTYÁN et al.

with the authentication serverS. The response{rb}Kas is sent toB. SinceB does
not possessKas , it cannot verify the response. Therefore, it calls for the help of
the authentication server:B sends the message{A, {rb}Kas }Kbs to S. S decrypts
the request and then decryptsA’s response inside; it knows that it has to useKas
for decrypting the response, because the request contains the name ofA. Then,
S encrypts the resulted random number with the keyKbs and sends{rb}Kbs to B.
Finally, B decrypts the message ofS and verifies that it received back its random
numberrb . The claim is that if this verification is successful, thenB authenticatedA.

Battacker

rb'

{rb}Kms

rb

A

M

{rb}Kms

S

{A, {rb}Kms }Kbs

{M, {rb}Kms }Kbs

{rb}Kbs

{x}Kbs

Fig. 5. Attack against the WOO–LAM authentication protocol

This time, it is not so obvious why this is wrong. Nevertheless, the protocol
is known to be vulnerable [1] to the following attack (Fig. 5): Let us assume that
the attacker compromised the key of a legitimate principalM of the system. This
means that the attacker knows the keyKms shared byM and the serverS. Using
this key, it can impersonateA (who is not compromised) toB. The attacker starts
two instances of the protocol withB concurrently; the first instance is started in
the name ofA and the second one is in the name ofM. B generates two random
numbersrb andr ′

b and sends them as challenges toA and M, respectively. These
messages are intercepted by the attacker and they never arrive toA and M. The
attacker then encryptsrb, which was intended forA, with the keyKms and sends
the result{rb}Kms to B in both instances of the protocol. It is very likely that the
protocol is implemented in such a way thatB does not check responses received in

MULTI-PARTY CHALLENGE-RESPONSE PROTOCOLS 55

different instances of the protocol for equality. Therefore,B believes that it received
the responses fromA andM, and sends the corresponding requests{A, {rb}Kms }Kbs

and {M, {rb}Kms }Kbs , respectively, toS. S decrypts the received responses with
Kas andKms , respectively, thus, using the wrong key for the first response. Let us
denote the result of decrypting{rb}Kms with Kas by x . Because of the properties
of symmetric key ciphers,x looks like a random number. Since the authentication
server expects a random number as a result of the decryption, and it cannot check
that it is the right number, because it does not know what was the challenge sent by
B to A, it acceptsx , and does not detect the attack. It responds to the requests ofB
by sending{x}Kbs and{rb}Kbs to B. WhenB verifies these messages, it recognizes
that the first response is wrong. It does, however, accept the second one, which
containsrb, and since this number was the challenge forA, B attributes the second
response toA. Finally, B concludes thatA was alive and responded to its challenge,
while someone might try to impersonateM.

The source of the flaw is that the authentication server suppresses some critical
information when it responds to a request: it does not tell the requesting principal
which key it used to decrypt the response. At first glance, one might think that the
requesting principal can infer this information from the context, but, as the previous
attack shows, this is false. Therefore, it is more secure to mention which key was
used by putting a key identifier or the name of the corresponding principal in the
last message.

The lesson we can learn from this example is the following:

Lesson 2: If a trusted mediator is used to translate a message encrypted with a given
key K to a message encrypted with another keyK′, then all the semantical informa-
tion of the original message must be retained. In particular, the translated message
should contain the key identifier ofK or other equivalent data from which this
information can be securely inferred by the destination of the translated message.

2

5. Multi-Party Entity Authentication Protocols

In Section 3 we proved that the lower bound on the number of messages ofn-party
challenge-response protocols for entity authentication is 2n −1. In this section, we
present two protocols that achieve this lower bound. Both protocols have the same
message passing structure, but they differ in the assumptions about trust among the
protocol participants, and thus, in the content (semantics) of messages.

5.1. Message Passing Structure

Before going into the details of our protocols, it is worth to tell some words about
their message passing structure. We recall Lemma3, which states that ifA authenti-

56 L. BUTTYÁN et al.

catesB in a given challenge-response protocol, then there must be three edgese, e′,
and f in the protocol graph such thate is an outgoing edge fromu, e′ is an incoming
edge tou, f is an outgoing edge fromv, ande ≺ f � e′, whereu andv are the
vertices that correspond toA and B, respectively. This actually means, that in the
unfolded protocol graph, there is a directed path, which starts from and ends in a
vertex that is labeled withA, and goes through a vertex that is labeled withB. If A
authenticates every other partyB, C, . . . in the protocol, then each of these parties,
or more precisely vertices that are labeled with their names, must be traversed by a
directed path starting from and ending in a vertex that is labeled withA. Note that
one single path can do the job (seeFig. 6 (a)). If B, C, . . . also authenticate every
other party in the protocol, then there is a similar path forB, C, . . . as well. We
obtain the protocol with the least number of messages by maximally overlapping
these paths (seeFig. 6 (b)). The resulting protocol graph has exactly 2n − 1 edges
(Fig. 6 (c)).

A B C A

B C A B

C A B C

A B C A B C

e
f

g

h

i

e << f << g << h << i

(a)

(b)

(c)

A

B

C

A B C A

Fig. 6. Message passing structure of the basic protocols

MULTI-PARTY CHALLENGE-RESPONSE PROTOCOLS 57

5.2. Protocols

In order to make the presentation easier, we describe the three-party versions of our
protocols in detail and sketch the generaln-party versions only briefly. In addition,
we should also mention that our protocols use symmetric key cryptography, but
it is straightforward to obtain the versions that use asymmetric key cryptography
by replacing symmetric key encryption with digital signatures of the appropriate
parties.

Protocol 1:

• Principle: The basic idea of Protocol 1 is the following: Each participant
generates an unpredictable random number, which is used as a challenge.
Challenges are passed around among the protocol participants in a circulating
message. Each participant that receives the message and sees the challenges
that the message contains includes its identifier in the message before passing
it further to the next participant. When a challenge gets back to the principal
that generated it, the message contains the list of those principals that saw
the challenge and forwarded the message. These forwarding principals must
have been alive during the protocol run.

• Assumptions: We assume that each pair of principals in the system share a
long-term secret key. The secret key shared betweenA andB, for instance,
is denoted byKab. We also assume that principals trust each other for exe-
cuting the protocol honestly. In particular, each principal must be trusted for
correctly attributing a received message to its sender and faithfully copying
all the relevant fields of the received message into the message that is passed
further. We will return to this issue of trust later when we analyze Protocol 1
in Subsection5.3.. Finally, we assume that each protocol participant knows
(or at least has an assumption about) who the other participants are from the
context or additional plaintext fields not mentioned in the description below.

• Messages of the three-party version:

1. A → B : ra

2. B → C : rb, {B, ra}Kbc

3. C → A : rc{C, rb, B, ra}Kac

4. A → B : {A, rc, C, rb}Kab

5. B → C : {B, A, rc}Kbc

• Description of the three-party version: A generates an unpredictable random
numberra, and sends it toB in message 1. Upon reception of message 1,B
generates an unpredictable random numberrb, encrypts its own identifierB
and the random numberra with the keyKbc, and sendsrb and the result of the
encryption toC in message 2. The identifier in the encrypted part serves as
an explicit direction label that allowsB to recognize its own messages. Upon

58 L. BUTTYÁN et al.

reception of message 2,C decrypts the encrypted part, and verifies that it
was indeed generated byB by checking the identifier in the first field. If this
verification is successful, thenC generates an unpredictable random number
rc, encrypts its own identifierC, the random numberrb, the identifier ofB,
and the random numberra with the keyKac, and sendsrc and the result of the
encryption toA in message 3. The identifier ofC serves again as a direction
label. WhenA receives message 3, it decrypts the encrypted part of it, and
verifies that it was indeed generated byC by checking the identifier in the first
field. Furthermore, it checks if it received back its random numberra and if the
message contains the identifier ofB too. If these verifications are successful,
thenA authenticatedB andC, and it continues by encrypting its own identifier
A, the random numberrc, the identifier ofC, and the random numberrb with
the keyKab. A sends the result of the encryption toB in message 4. When
B receives message 4, it decrypts it, and verifies that it was indeed generated
by A by checking the identifier in the first field. Furthermore, it checks if it
received back its random numberrb and if the message contains the identifier
of C too. If these verifications are successful, thenB authenticatedA andC,
and it continues by encrypting its own identifierB, the identifier ofA, and
the random numberrc with the keyKbc. B sends the result of the encryption
to C in message 5. Finally, whenC receives message 5, it decrypts it, and
verifies that it was indeed generated byB by checking the identifier in the
first field. It also checks if it received back its random numberrc and if the
message contains the identifier ofA too. If these verifications are successful,
thenC authenticatedA andB and the protocol terminates.

• Messages of the n-party version:

1. P1 → P2 : r1
2. P2 → P3 : r2, {P2, r1}K2,3

3. P3 → P4 : r3, {P3, r2, P2, r1}K3,4

4. P4 → P5 : r4, {P4, r3, P3, r2, P2, r1}K4,5

.
n. Pn → P1 : rn, {Pn, rn−1, Pn−1, rn−2, Pn−2, . . . , r2, P2, r1}K1,n

n + 1. P1 → P2 : {P1, rn, Pn, rn−1, Pn−1, . . . , r3, P3, r2}K1,2

n + 2. P2 → P3 : {P2, P1, rn, Pn, rn−1, Pn−1, . . . , r4, P4, r3}K2,3

.
2n − 1. Pn−1 → Pn : {Pn−1, Pn−2, Pn−3, . . . , P1, rn}Kn−1,n

• Remark for the n-party version: Let us consider any of the encrypted mes-
sages of the protocol above. For a given random numberr in this message, the
identifiers that stand beforer correspond to those parties who have already
seen and forwardedr . For instance, in messagen, the identifiers beforer2 are
P3, P4, . . . , Pn, and indeed, apart fromP1, all the participants have already
seenr2 when messagen is sent. Therefore, when a party receives back its
random number in a message, it must check if all the other parties are listed
before its random number in the message.

MULTI-PARTY CHALLENGE-RESPONSE PROTOCOLS 59

Note that Protocol 1 takes into account Lesson 1 and Lesson 2 of Section4..
First, we used sender identifiers (from fields) as explicit direction labels in messages
in order to prevent reflection attacks. Second, since each party acts as a trusted
mediator, and translates messages encrypted with one key for messages encrypted
with another key, we ensured that all the semantical information of the original
message is retained by keeping all fields that are relevant for the further processing
of the translated message (including the identifier of the sender of the original
message).

Protocol 2:

• Principle: The main drawback of Protocol 1 is that it relies on the assumption
that the protocol participants trust each other for honestly executing the pro-
tocol. In Protocol 2, we remove this assumption. The main idea of Protocol 2
is that we allow each protocol participant to directly verify who responded
its challenge. Like in Protocol 1, the challenge of each participant is passed
around among the other participants, but unlike in Protocol 1, this time it is
encrypted with the key that is shared by the challenging and the responding
principals before it is passed further to the next participant. Indeed, respond-
ing parties do not encrypt the challenge itself, but the encrypted challenge
that they receive from the previous responding party. The challenging party
finally receives back its random number encrypted by every other party, one
after the other. The challenging party verifies the response by decrypting
it with the keys it shares with the other parties. If, after performing all the
decryptions, it recovers its original random number, then it is convinced that
all the other parties were alive during the protocol run.

• Assumptions: We assume that each pair of principals in the system share a
long-term secret key, and each protocol participant knows (or at least has
an assumption about) who the other participants are from the context or
additional plaintext fields not mentioned in the description below.

• Messages of the three-party version:

1. A → B : ra
2. B → C : rb, {B, ra}Kab

3. C → A : rc, {C, rb}Kbc, {C, {B, ra}Kab}Kac

4. A → B : {A, rc}Kac, {A, {C, rb}Kbc}Kab

5. B → C : {B, {A, rc}Kac}Kbc

• Description of the three-party version: A generates an unpredictable random
numberra, and sends it toB in message 1. Upon reception of message 1,
B generates an unpredictable random numberrb, encrypts its own identifier
B and the random numberra with the keyKab, and sendsrb and the result
of the encryption toC in message 2. Like in Protocol 1, in Protocol 2 as
well, the identifier of the encrypting party in an encrypted message always
serves as an explicit direction label to foil reflection attacks. Upon reception
of message 2,C generates an unpredictable random numberrc, encrypts

60 L. BUTTYÁN et al.

its own identifierC and the random numberrb with Kbc, encrypts its own
identifierC and the encrypted part of message 2 withKac, and sendsrc and
the results of the encryptions toA in message 3. WhenA receives message 3,
it first verifies the last encrypted part of it by decrypting it with the keysKac
andKab, and checking the identifiers and the random number found inside.
If the identifiers match those ofC and B, and the random number matches
ra, then A authenticatedB and C, and it continues by encrypting its own
identifier A and the random numberrc with the key Kac, and encrypting
its own identifierA and the other encrypted part of message 3 with the key
Kab. ThenA sends the results of the encryptions toB in message 4. When
B receives message 4, it verifies the last encrypted part of it by decrypting
it with the keysKab and Kbc, and checking the identifiers and the random
number found inside. If the identifiers match those ofA and C, and the
random number matchesrb, thenB authenticatedA andC, and it continues
by encrypting its own identifierB and the other encrypted part of message 4
with the keyKbc. ThenB sends the result of the encryption toC in message 5.
Finally, whenC receives message 5, it verifies it by decrypting it with the
keysKbc andKac, and checking the identifiers and the random number found
inside. If the identifiers match those ofB and A, and the random number
matchesrc, thenC authenticatedA andB, and the protocol terminates.

• Messages of the n-party version:

1. P1 → P2 : r1
2. P2 → P3 : r2, {P2, r1}K1,2

3. P3 → P4 : r3, {P3, r2}K2,3, {P3, {P2, r1}K1,2}K1,3

.
n. Pn → P1 : rn, {Pn, rn−1}Kn−1,n ,{Pn, {Pn−1, rn−2}Kn−2,n−1}Kn−2,n , . . . ,{Pn, {Pn−1, . . . {P2, r1}K1,2 . . .}K1,n−1}K1,n

n + 1. P1 → P2 : {P1, rn}K1,n ,{P1, {Pn, rn−1}Kn−1,n }K1,n−1, . . . ,{P1, {Pn, . . . {P3, r2}K2,3 . . .}K2,n }K1,2

n + 2. P2 → P3 : {P2, {P1, rn}K1,n }K2,n ,{P2, {P1, {Pn, rn−1}Kn−1,n }K1,n−1}K2,n−1, . . . ,{P2, {P1, . . . {P4, r3}K3,4 . . .}K1,3}K2,3

.
2n − 1. Pn−1 → Pn : {Pn−1, {Pn−2, . . . {P1, rn}K1,n . . .}Kn−2,n }Kn−1,n

Note that Protocol 2 takes into account Lesson 1 by using the identifiers of the
encrypting principal in each encrypted message as an explicit direction label that
prevents reflection attacks. It does not, however, use Lesson 2, because here princi-
pals do not translate messages encrypted with one key for messages encrypted with
another key.

MULTI-PARTY CHALLENGE-RESPONSE PROTOCOLS 61

5.3. Analysis and Comparison

In order to better understand Protocol 1 and Protocol 2, and the differences between
them, we sketch how their main assumptions and achievements could be formalized
in a formal logic called SvO [11]. We analyze the three-party protocols from the
point of view of party A, but the same reasoning applies forn-party protocols
(n > 3) and the other parties as well.

The first question is: How can the goal of entity authentication be modelled
in the SvO logic? We recall that entity authentication means that a party, sayA, is
convinced that another party, sayB, was alive and sent some messages in a bounded
time interval in the local time ofA. In the SvO logic, the following formula can
represent this:

A believes(B saysX),

whereX is some message or a part of a message (typically a certain function of a
fresh nonce generated byA).

Now, let us investigate how such a formula can be derived for Protocol 1. The
last message thatA receives in Protocol 1 is message 3. Only the encrypted part is
interesting forA, which we idealize as:

{C, rb, B, ra, (B saidra)}Kac .

Using the assumption thatA believes thatKac is a good shared secret key between
A andB, we can easily derive that

A believes(C said(C, rb, B, ra, (B saidra))).

SinceA believes that its own random numberra is fresh,A believes that the message
received fromC is fresh. This allows us to derive that

A believes(C says(C, rb, B, ra, (B saidra))),

from which we can easily get that

A believes(C saysra) (1)

and
A believes(C says(B saidra)) (2)

(1) means thatA authenticatedC. In order to go further and derive thatA authen-
ticatedB as well, the following must hold:

A believes(C controls(B saidra)). (3)

Then, from (2) and (3) we can derive that

A believes(B saidra).

62 L. BUTTYÁN et al.

Since we assumed thatA believes that its own random numberra is fresh, we get
that

A believes(B saysra).

This means thatA authenticatedB.
Note, however, that (3) cannot be derived from the protocol, thus, we must

make the assumption that it holds. Indeed, (3) modelsA’s trust inC for correctly
attributing messages toB and for correctly forwarding the content of these messages
to A.

Now, we turn our attention to Protocol 2. The last message received byA
is again message 3. Only the last encrypted part is interesting forA, which we
idealize in the following way:

{C, {B, ra}Kab}Kac .

Assuming thatA believes thatKab andKac are good shared secrets betweenA and
B, and betweenA andC, respectively, we can derive that

A believes(C said{B, ra}Kab) (4)

and
A believes(B saidra) (5)

Since A believes that its own random numberra is fresh, we can easily derive in
the SvO logic thatA believes that{B, ra}Kab is fresh as well. Thus, from (4) we get
that

A believes(C says{B, ra}Kab)

and from (5) we get that
A believes(B saysra).

This means thatA authenticated bothB andC.
Note that, although Protocol 1 and Protocol 2 achieve the same goal, unlike

Protocol 1, Protocol 2 does not need any assumptions about existing trust between
the parties.

6. Conclusion

In this paper, we addressed the problem of multi-party entity authentication. We
proved that the lower bound on the number of messages of multi-party challenge-
response protocols for entity authentication is 2n − 1, wheren is the number of the
parties participating in the protocol. Our proof is based on modelling the protocol
with a directed graph, the vertices of which correspond to the parties, and the
edges of which correspond to the messages of the protocol, and defining a partial
ordering on the edges according to the timing of messages in the protocol. Besides,
allowing us to prove the lower bound on the number of messages, this model proved

MULTI-PARTY CHALLENGE-RESPONSE PROTOCOLS 63

to be helpful in understanding some interesting structural properties of challenge-
response type entity authentication protocols.

We presented two protocols that are efficient in the sense that they use the
minimum number of messages required to solve the multi-party entity authentica-
tion problem based on challenge-response principles (i.e., they achieve the lower
bound on the number of messages). The protocols have the same message pass-
ing structure, but they differ in the assumptions about trust among the parties, and
thus, in the content (semantics) of the messages. We analyzed and compared our
protocols with the help of the SvO authentication protocol logic. We note that our
protocols can easily be extended to server assisted entity authentication and session
key establishment, which we did not discuss in this paper due to space limitations.

Finally, we should note that, in this paper, we were mainly concerned with
minimizing the number of messages in challenge-response protocols for entity au-
thentication. On the one hand, this makes sense, because each message sent involves
the use of several lower level protocols down in the communication protocol stack,
and thus, produces some overhead. By minimizing the number of messages of
the authentication protocol, we can minimize this overhead. On the other hand,
minimizing the number of messages does not necessarily minimize the required
bandwidth. If the protocol uses few messages, but these are long, then we do not
gain much in bandwidth, and a protocol with more but smaller messages might be
more desirable. Thus, in general, we are facing a more complex optimization prob-
lem, in which both the number of messages and the total amount of data exchanged
in the protocol must be taken into consideration. We leave this issue for future
study.

References

[1] A BADI , M. – NEEDHAM, R., Prudent Engineering Practice for Cryptographic Protocols, In
Proceedings of the IEEE CS Symposium on Research in Security and Privacy, pp. 122–136,
1994.

[2] A NDERSON, R. – NEEDHAM, R., Robustness Principles for Public Key Protocols. InAdvances
in Cryptology – CRYPTO’95, pp. 236–247, 1995.

[3] BIRD, R. – GOPAL, I. – HERZBERG, A. – JANSON, P. – KUTTEN, S. – MOLVA , R. –
YUNG, M., Systematic Design of a Family of Attack-resistant Authentication Protocols.IEEE
Journal on Selected Areas in Communications, 11(5) (1992), pp. 679–693.

[4] BURROWS, M. – ABADI , M – NEEDHAM, R., A Logic of Authentication.ACM Transactions
on Computer Systems, 8(1) (1990), pp. 18–36.

[5] CLARK , J. – JACOB, J., A Survey of Authentication Protocol Literature.
http://www-users.cs.york.ac.uk/˜ jac/papers/drareview.ps.gz

[6] GONG, L. – NEEDHAM, R. – YAHALOM , R., Reasoning about Belief in Cryptographic Proto-
cols. InProceedings of the IEEE CS Symposium on Research in Security and Privacy, pp. 234–
248, 1990.

[7] M ENEZES, A. – VAN OORSCHOT, P. – VANSTONE, S.,Handbook of Applied Cryptography.
CRC Press, 1997.

[8] M ILLEN , J. – CLARK , S. – FREEDMAN, S., The Interrogator: Protocol Security Analysis.
IEEE Transactions on Software Engineering, SE13(2) (1987), pp. 274–288.

h

64 L. BUTTYÁN et al.

[9] M ITCHELL, C., Limitations of Challenge-Response Entity Authentication.IEE Electronics
Letters, 25 (17) (1989).

[10] MITROPOULOS, A. – MEIJER, H., Zero Knowledge Proofs – a Survey. Technical Report No.
90-IR-05, Queen’s University at Kingston, Kingston, Ontario, Canada, 1990.

[11] SYVERSON, P. –VAN OORSCHOT, P., On Unifying Some Cryptographic Protocol Logics. In
Proceedings of the IEEE CS Symposium on Research in Security and Privacy, pp. 14–28, 1994.

[12] WOO, T. – LAM , S., Authentication for Distributed Systems.Computer, 25(1) (1992), pp. 39–
52.

	Introduction
	System Model and the Goal of Entity Authentication
	Lower Bound on the Number of Messages
	Two Lessons Learned
	Multi-Party Entity Authentication Protocols
	Message Passing Structure
	Protocols
	Analysis and Comparison

	Conclusion

