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Abstract

In this paper we introduce a new, theoretical model for safety-critical systems in which the distance
from the dangerous conditions can be measured. To describe these systems we use besides the graph
model Petri nets, too. We illustrate the theoretical discussion with some simple examples.
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1. Introduction

In real life there are a lot of systems, which are very difficult to describe. Han-
dling them is usually very complicated, in a lot of cases we are not able to give
correct answers even to easy questions. However, for most systems the questions
corresponding to the safety of the systems are very important. We call a system
safety-critical if its abnormal operation might endanger human lives and cause
significant financial damage. For example in railway systems there are a lot of
safety-critical ones. The latest and probably most important results about the in-
vestigation of safety-critical systems can be found e.g. in [2] and [5]. Of course,
absolute safety is an unobtainable goal, at least for a very broad class of systems, if
not for all. There are a lot of factors to consider, e.g. the complexity of the system,
hidden failures, human errors, etc. A possible way of handling this situation is to
‘predict’ the closeness of dangerous system-states, and avoid them, if possible.

There are several references in this topic, but generally well applicable results
are not known yet. In this paper we examine these systems from a rigorous mathe-
matical point of view, by describing a mathematical model to compute the ‘close-
ness’ of critical (dangerous) conditions in safety-critical systems, using graphs. The
theory of distance and probability models described below is an encouraging new
result. In some simple cases we examine the possibility of practical applications,
too.

The handling of these systems usually needs concurrent programming ap-
proaches. Details and some general problems can be found e.g. in [1] and [4]. To
describe concurrent systems, there are some other structures besides the graphs,
such as Petri nets. That is the reason why in the second part of this paper a Petri
net model will be discussed, preserving the results achieved in the first part.
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2. Graphs for Safety-Critical Systems

For a (real-life) system let us introduce a graph G in the following manner. We
denote the status (or condition) of the system in a given moment with a node. The
status of the system can change in the next moment, so from this node edges lead to
other nodes. These edges represent the transitions between the conditions. Cycles
are allowed, too.

In the following we increase the expressive power of this model by labeling
the edges of the graphs in two different manners.

3. Distance Model

We initiate distances as follows (our graphs are directed):

a) edge
Let us denote the distance from status i to status j with di→ j . In the simplest
case all distances are 1, but usually 0 < di→ j <∞.

b) way
Going on consecutive edges the distances are summarized, so distance is
additive. Thus, for conditions i and j let di, j =∑n−1

k=1 dck→ck+1 , where c1 = i
and cn = j .

c) between two nodes
In this case we have to consider all ways connecting these two nodes. Thus,
for the resultant distance di| j we have di| j ≤min(di, j ), according to real life.
The equality can be maintained in some cases, e.g. if one of the di, j -s is 0, if
all di, j -s are∞, or if there is only one way from i to j . There are some other
possibilities, too (see example below). Of course usually di| j �= d j |i .

d) between a node and a set (of nodes)
Similarly, as in point c).

EXAMPLE 1 Let us assume that in a distance model we can reach 2 dangerous
conditions, a1 and a2 from condition c with distances d1 := dc,a1 and d2 := dc,a2 ,
respectively.

System: a1 ←− c −→ a2

In this case obviously dc,a ≤min(d1, d2), where a symbolizes the resultant
danger condition, and dc,a depends on d1 and d2. If e.g. d1 = ∞, then dc,a = d2.
A possible solution to this problem is the use of the harmonic average, so we get

dc,a = 1
1
d1
+ 1

d2

(
= d1 · d2

d1 + d2
, if d1 �= ∞ and d2 �= ∞

)
.
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4. Probability Model

a) edge
Let us denote the probability of the transition from condition i to condition
j with pi→ j . In the simplest case all probabilities are equal, but usually
0 < pi→ j < 1.

b) way
Going on consecutive edges the probabilities are multiplied, so the probability
is multiplicative. Thus, for conditions i and j let pi, j =∏n−1

k=1 pck→ck+1 , where
c1 = i and cn = j .

c) between two nodes
In this case for the resultant probability pi| j we have pi| j = ∑

pi, j , with
pi| j ≤ 1. Of course usually pi| j �= p j |i .

d) between a node and a set (of nodes)
Similarly, as in point c).

EXAMPLE 2 Let us consider a system in the probability model with conditions c1,
c2 and c3 and the transitions

trans. 1: c1 −→ c2 −→ c3

pc1→c2 = 0.4, pc2→c3 = 0.2
trans. 2: c1 −→ c1 −→ c3

pc1→c1 = 0.5, pc1→c3 = 0.1

The probability of transition 1 is

p1
c1|c3
= p1

c1,c3
= pc1→c2 · pc2→c3 = 0.4 · 0.2 = 0.08.

The probability that we arrive at c3 from c1 in at most two steps

p2
c1|c3
= pc1→c3 + pc1→c2 · pc2→c3 + pc1→c1 · pc1→c3 = 0.1+ 0.08+ 0.05 = 0.23.

5. Connections between the Distance and Probability Models

To avoid dangerous situations in every condition we have to know how close the
system will be to danger after the next step. In real life we usually only know the
probability of a transition between conditions, the distance is not known. Thus, it
is useful to find a connection between the two models, and for us now the transition
is more important which makes distance from probability.

We are looking for a measure-function µ : (0, 1] → R+0 which satisfies the
following properties:

(i) continuous,
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(ii) strictly monotonous decreasing,

p1 < p2 ⇒ µ(p1) > µ(p2),

(iii)
µ(1) = 0 and lim

p→0
µ(p) = ∞,

(iv)
µ(p1 · p2) = µ(p1)+ µ(p2),

(v) for parallel ways we have

µ(p1 + p2) = µ(p1) � µ(p2),

where � is a parallel composition operator.

Points (i)-(v) were chosen for real life considerations. E.g. point (ii) asserts
that if the probability of reaching condition 1 is less than that of condition 2, then
condition 2 is closer than condition 1. Point (iii) asserts that the distance of an
impossible event is infinite. To point (v), operator � is not entirely defined yet, we
can use e.g. the harmonic average.

Considering properties (i)–(iii) we have several different function candidates,
e.g.

di→ j ∼ 1

pi→ j
− 1 or ctg

(
pi→ j · π2

)
or log

1

pi→ j
= − log pi→ j .

However, from property (iv) which can be rewritten in the form

di,k = di, j + d j,k

follows that the solution can only be a kind of logarithmic function ([3]).
So for our function di→ j ∼ log 1

pi→ j
= − log pi→ j . Knowing that 0 ≤

pi→ j ≤ 1, we have∞ ≥ − log pi→ j ≥ 0. Obviously 1

− log pi→ j − log pj→k = − log(pi→ j · p j→k),

and assuming the form c(− log pi→ j )+ d we can choose d = 0. The base of the
logarithm can be an arbitrary number a, with a > 1 from property (ii).

Thus, we have the desired connection between the two models. We can
specify the distance from the danger (starting from the probability model) in the
following manner:

a) Starting from a given condition we specify the probability of reaching the
danger(ous conditions).

1The − log pi→ j relationship is not totally new in literature. It was presented formerly e. g. by
C. E. SHANNON in his information theory ([7]).
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b) Using the logarithmical proportionality we change to the distance model,
getting the distance from the danger this way. Now the distance is determined
independently of a constant multiplier. We can refine our model if we know
the exact value of at least one of the distances (see the following example).

EXAMPLE 3 Let us assume that in a probability model we can directly go into three
conditions from a given condition c1, dangerous (a1 and a2). How far are we from
the danger (denoted by a)? 2

System:

a2 ←− c1 −→ a1

↓
c2

where pc1→c2 = 0.85, pc1→a1 = 0.1, pc1→a2 = 0.05. Then pc1,a = 0.1 + 0.05 =
0.15, dc1,a = − log 0.15, and− ln 0.15 ≈ 1.8971. This distance is only determined
independently of a (yet unknown) constant multiplier.

We can determine the ‘expected value’ of the distance from the danger with
another method, using a very simple estimate. Analysing the safe transitions

0.854 ≈ 0.5220 > 0.5 > 0.855 ≈ 0.4437,

i.e. we expect the system to run into danger from c1 in 4 − 5 steps. Thus, using
the function ln is suitable to apply a constant multiplier c ≈ 2.3 to get the correct
distance.

6. Petri Nets

Petri nets are special graphs. With their use we are able to examine complex
concurrent systems effectively. In this section we briefly summarize the basic
definitions from the Petri net theory. More detailed discussion can be found e.g. in
[4] and in [6].

In a directed bipartite graph let us call the elements of the first node-set places
(S elements, from the German word Stellen), and those of the second transitions (T
elements). The connections between the places and the transitions are represented
with arcs, this results in a relation which is called the flow relation.

DEFINITION 1 A triple N = (S, T, F) is called a Petri net if

a) The sets S and T disjoint, S ∪ T is finite,
b) F ⊆ (S × T ) ∪ (T × S) is a binary relation, the flow relation of N .

2Of course, this model is over-simplified because we omit the analysis of the behaviour of the
system after conditions a1, a2 and c1.
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Graphically, the S elements are represented with circles, while the T elements
with boxes. We represent the flow relation with arcs between the circles and boxes.

The theory of Petri nets was developed by C. A. PETRI in 1962. He used these
nets to describe connections between events and conditions. To the occurrence of
an event the realization of some conditions is needed, and after it the realization
of some other new conditions starts. Events and conditions are symbolized with
circles and boxes, respectively. The realization of a condition is marked graphically
by a token (dot symbol) in the circle. In one circle there can only be one token,
since the condition is either satisfied or not. According to the above description,
we use a marking function M1 : S → {0, 1}. Thus, M(S) = 1 and M(S) = 0 is
denoted in the net by � and©, respectively.

The concept of Petri net was generalized by A. W. HOLT in 1968. He allowed
more than one token in one place. Thus, we initiate a weight function, M2 : S → N.

DEFINITION 2
1 A transition is firing if the weights of its input places are non-zero (in a given

moment).
2 The action of the transitions changes the weights, decreasing the weight of

all input places and increasing the weight of all output places (with one unit)
– during this tokens can disappear or arise.

7. Application of Petri Nets in Safety-Critical Systems

We can characterize a system-state Ai with a list, which contains the places with
token(s). If there are n > 1 tokens in a given place, then this place can be found in
the list n-times. Concurrency is realized with the use of parallel ways. Then from
transition Ti we can reach more than one places. In this case during the action of the
given transition at least one token arises. In ‘or ’ construct we can reach more than
one transitions from place si . In this case the number of tokens does not change,
the system-flow can proceed only in one direction.

S1

T1

S2

T2

Fig. 1. ‘Or’ construct
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S1

S2

T1

T2 T3

S3

S S4 5

T

S

4

6

Fig. 2. Concurrency

The possible system-states in Fig. 1 are A1 = (s1) and A2 = (s2).

The possible system-states in Fig. 2 are A1 = (s1), A2 = (s2, s3), A3 =
(s2, s5), A4 = (s3, s4), A5 = (s4, s5), A6 = (s6).

According to our former results we have to ‘develop’ the distance and prob-
ability models for Petri nets. First, let us give distances d(Ti ) and probabilities
p(Ti ) to the transitions. As in real life we stipulate d(Ti ) ≥ 0. Probabilities clearly
satisfy 0 ≤ p(Ti ) ≤ 1. Furthermore, for transitions which can be reached from a
given place

∑
p(Ti ) ≤ 1 holds, i.e. the token remains unchanged with probability

1−∑
p(Ti ) (which is allowed in assyncron Petri nets). This essentially means that

the system can have a transition c→ c with a probability greater than 0.
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8. Distance Model

We initiate distances for lists containing places (i.e. for system-states):
Let us assume that state Aj follows state Ai . Then d(Ai ,A j ) is computed

taken the rules for normal graphs – concerning the possible ‘or’ construct and
concurrency (see the following example). If A1,A2, . . . ,An is a sequence of con-
secutive system-states (without concurrency and ‘or’ construct), then

d(A1,An) =
n−1∑
i=1

d(Ai ,Ai+1),

where d(Ai ,Ai+1) = d(Ti ) (which is only true in this simple case).

EXAMPLE 4 In the previous net with ‘or’ construct

d(A1,A2) = d(T1)d(T2)

d(T1)+ d(T2)
or min(d(T1), d(T2)).

In the previous net with parallel ways

d(A1,A2) = d(T1),

d(A2,A4) = d(T2),

d(A2,A5) = max(d(T2), d(T3)),

d(A1,A6) = d(T1)+ max(d(T2), d(T3))+ d(T4).

We use the max() function ‘intuitively’, following real-life considerations.

9. Probability Model

Let us assume that state Aj follows state Ai .
Without ‘or’ construct and parallel ways, p(Ai ,A j ) is the probability p(Ti ),

according to the transition. If there is an ‘or’ construct, then the probabilities are
summarized, in the case of parallel ways they are multiplied. If A1,A2, . . . ,An is
a sequence of consecutive system-states without ‘or’ construct, then

p(A1,An) =
n−1∏
i=1

p(Ai ,Ai+1).

Thus, we have the interesting situation that in the probability model concurrency
and consecutivity are computed with the same formula in spite of the different
background (see the following example).
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EXAMPLE 5 In the previous net with ‘or’ construct

p(A1,A2) = p(T1)+ p(T2).

In the previous net with parallel ways

p(A1,A6) = p(T1) · p(T2) · p(T3) · p(T4),

since the token(s) has/have to overcome transitions T2 and T3 to reach system-state
A6 = (s6).

S2S1

T1 T2

T3

S6

S3

S S4 5

T

TT

6

54

S0

Fig. 3. Example-net

EXAMPLE 6 The possible system-states in Fig. 3 are
A0 = (s0), A1 = (s1), A2 = (s6), A3 = (s2, s3), A4 = (s2, s5), A5 =

(s3, s4), A6 = (s4, s5),
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d(A0,A2) = (two possibilities)

1◦ = min(d(T1)+ d(T3)︸ ︷︷ ︸
d1

, (T2)+max(d(T4), d(T5))+ d(T6)︸ ︷︷ ︸
d2

),

2◦ = d1 · d2

d1 + d2
,

p(A0,A2) = p(T1) · p(T3)+ p(T2) · p(T4) · p(T5) · p(T6).

10. An Algorithm

Finally, we present an algorithm for systems which can be described by graphs
(Petri nets) without circles.

1. Let us order the nodes in the following way: if i < j , then it is only allowed
to go from i to j .

2. Let us determine the length of the ways in the graph, using the edges.
3. Using the ways and the operators above, the distances can now be introduced.

This method is applicable to wide classes of safety-critical systems.
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