
PERIODICA POLYTECHNICA SER. EL. ENG. VOL. 45, NO. 2, PP. 139–156 (2001)

DISCRETE SIMULATION OF DISTRIBUTED SYSTEMS –
PERFORMANCE EVALUATION OF A NOTIFICATION

CHANNEL FEDERATION

József HOSSZÚ

Department of Telecommunication and Telematics
Budapest University of Technology and Economics
1117 Budapest, Pázmány Péter sétány 1/D, Hungary

e-mail: hosszu@ttt-atm.ttt.bme.hu

Received: 3 Nov., 2000; Revised: 1 Dec. 2000

Abstract

This paper presents how discrete simulation can be used for performance evaluation of distributed
systems. With this methodology it is not needed to implement the system itself, only a model of proper
specification is required. Simulation models for distributed systems can be easily adopted from other
models which are already used in network simulations with good results. The tool that supports our
measurements is a powerful telecom simulation platform, a simulations development environment that
supports object-oriented programming. The model used for demonstration represents a notification
channel federation including an arbitrary number of event suppliers and event consumers connected
to a scalable network. Performance is evaluated for various configurations, and results are presented.

Keywords: event notification, modelling, simulation, performance evaluation.

1. Introduction

This paper introduces a methodology suitable for performance assessments of
CORBA-based distributed systems. With simulation, even large-scale configu-
rations can be examined which may be based on any CORBA implementations,
such as real-time and radio access object computing frameworks. Usually CORBA
implementations and software components using CORBA are examined in point-to-
point topology networks, according to the point-to-point nature of GIOP (General
Inter-ORB Protocol). In this case only low and middle scale configurations can
be examined. On the other hand, simulation makes it possible to deal with a wide
range of configurations without their actual implementation or assembly. Only
a proper simulation model and parameters from real circumstances and existing
implementations are needed for the assessments.

Event notification is essential in network management. Many components in
a distributed network management system need an event notification mechanism,
and so an event notification framework is expected to facilitate the development
of the components. CORBA (Common Object Request Broker Architecture [7])
provides an object-oriented platform to build such a framework, but its performance

140 J. HOSSZÚ

is not always sufficient for monitoring large-scale networks. Higher performance
is rather necessary when message filters are applied in network elements.

The paper is organized as follows: Section 2 outlines the CORBA reference
model and the Notification Service; Section 3 summarizes the performance eval-
uation methods of distributed systems, requirements of testing, and the basics of
discrete event driven simulation; Section 4 introduces the simulation model for a
service of federated notification channels and the applied simulator platform; Sec-
tion 5 presents the measurements and comments on the results; Section 6 discusses
the extensions to the preliminary model, and points to important ORB functionality
that can be improved using the simulation results; and Section 7 presents concluding
remarks.

2. On CORBA-based Distributed Systems

2.1. Synopsis of CORBA

CORBA is a distributed object computing middleware standard being defined by the
Object Management Group (OMG). CORBA is designed to support the develop-
ment of flexible and reusable distributed services and applications by (1) separating
interfaces from (potentially remote) object implementations and (2) automating
many common network programming tasks, such as object registration, location,
and activation; request demultiplexing; framing and error-handling; parameter mar-
shalling and demarshalling; and operation dispatching.

Fig. 1. OMG Reference Model Architecture

Fig. 1 illustrates the primary components in the OMG Reference Model Ar-
chitecture [11]. At the heart of the OMG Reference Model is the Object Request
Broker (ORB). CORBA ORBs allow clients to invoke operations on target object
implementations without concern for where the object resides, what language the
object is written in, the OS/hardware platform, or the type of communication proto-
cols and networks used to interconnect distributed objects. The conceptual model
developed by OMG is called the Object Management Architecture (OMA)[6] upon
which applications can be constructed. The OMG OMA attempts to define, at a high
level of abstraction, the various facilities necessary for distributed object-oriented

NOTIFICATION CHANNEL FEDERATION 141

computing. The OMG OMA partitions the problem space into practical, high-level
architectural components that can be addressed by technology proposers. It con-
sists of four components: Object Request Broker (ORB), Object Services, Common
Facilities, and Application Objects. These components define the composition of
objects and their interfaces. Object Services is comprised of a set of interfaces to
lower level infrastructure objects. The CORBAservices [5] specifications define
sets of objects which perform fundamental functions such as naming, life cycle
services, and transactions. Common Facilities are defined by OMA as having an
application focus and mostly used by developers working in a distributed environ-
ment. Common Facilities provide standardized interfaces to common application
interfaces. The Application Objects component reflects the need for independently
developed application interfaces. While this is one of the components of the OMA,
the OMG will probably never develop standards for it.

CORBA is an architecture for distributed objects. At the lower communica-
tion level, the object interaction takes the form of Remote Procedure Calls (RPCs),
which are synchronous invocations. In addition, CORBA allows asynchronous
interaction by specifying a oneway operation1 semantics in which the client con-
tinues its computation without waiting for a result from the server after issuing
the request. By using the Dynamic Invocation Interface (DII), CORBA supports
deferred synchronous interactions in which the client is allowed to get a response
from the server some time after issuing the request. Asynchronous communica-
tion is also supported by standard CORBA services. For details, see Section 2.2,
and [5].

The Interface Definition Language (IDL) [7] is used to statically define the
interfaces to objects, to allow invocation of operations on objects with differing un-
derlying implementations. From the IDL definitions, it is possible to map CORBA
objects into particular programming languages or object systems. An interface
consists of a set of named operations and the parameters to these operations.

CORBA has designed a very basic inter-ORB protocol, called General Inter-
ORB Protocol (GIOP), which serves as a common backbone protocol. The GIOP
specifications are designed to be easily implementable on most transport systems.
Internet Inter-ORB Protocol (IIOP) is one of the variants of the GIOP.

2.2. The Notification Service

Event notification is especially essential in network management systems. Network
operators monitor and control the managed network through a suitable system. The
network elements provide information to the operators on their state changes and
failures. Using CORBA enables the development of a customizable and effective
notification framework. Generally speaking, the servers of such a framework col-
lect event information from the network elements and dispatch them to the client

1The oneway operation is a request-only operation with best-effort semantics, i.e. it does not
return any result and the requester never synchronizes with the completion (if any) of the request.

142 J. HOSSZÚ

components executed on the operator’s hosts. The communication is based on asyn-
chronous CORBA event messages. The proper standard CORBA service for this
purpose is the CORBA Notification Service [8]. Notification Service extends the
existing OMG Event Service [5], adding new capabilities to it (for details on OMG
Event Service and Notification Service refer to [5] and [8], respectively). The OMG
Event Service supports asynchronous exchange of event messages between clients.
The Event Service introduces event channels which broker event messages, event
suppliers which supply event messages, and event consumers which consume event
messages.

The process of event delivery of the Notification Service can be summarized
as follows. Two software components, the supplier that generates the event, and
the consumer that receives it are using the Notification Service for their interactions
and send asynchronous messages through the service to each other. The channel
creation and connection management is done by the service itself. In a simple
example the client and server objects are located on separated hosts (the separation
is hidden by the transparency provided by the ORB). The hosts are connected to
each other via a network connection. When issuing an event, it is first sent to
the notification channel, and then the channel forwards it to the consumer. Hence,
CORBA method invocations are mostly based on remote procedure calls, these steps
cost at least two RPCs. There is a need, but no standard specification for interfaces
that manage the creation and usage of networks of federated channels, because it
raises many complex issues related to unique message identification, transactions
and security [8]. If the supplier and the consumer cannot use the same notification
service for their communication, or the service requires several connected (i.e.
federated) channels, they may use several services and their channels at the same
time. It is trivial that the cost of event delivery increases, and the number of RPCs
is twice as many as the number of channels used. It also generates mathematical
problems, e.g. problems with directed cycles in the network graph, too. There are
certain CORBA implementations that include Event Service or Notification Service
supporting some sort of federated event channels. For examples, see [3] and [9].

3. Methods for CORBA Performance Measurements

The primary characteristics of any distributed systems concerning time and duration
as important factors are the following:

• Throughput: the amount of requests that the system is able to serve in a given
time period.

• Latency: the time spent by the system, between issuing the request and
receiving the response.

• Scalability: this parameter informs about the scale of the system, e.g. the
possible number of processors or separated waiting queues, satisfying certain
performance or QoS requirements.

NOTIFICATION CHANNEL FEDERATION 143

• Overload possibility: this value assumes the rate at which the system becomes
temporarily unusable or malfunctioning in certain circumstances.

• Concurrency: informs about the number of processes being executed in par-
allel.

• Distribution: determines the range of hosts and services used during the
interactions in the system.

These characteristics form the metrics of the performance of distributed systems.
Measurements are generally carried out with configurations of two hosts on a net-
work (e.g. Ethernet) segment, and client objects on one of the hosts issue requests to
the server objects on the other host. Requests are scheduled and the response times
are measured. Additionally, compile time and executable program size may also
be in the scope of examinations. Despite the large number of tests, no general con-
siderations had been found which could serve as a basis of objective comparisons.
Generally speaking, tests are performed in order to examine services, performance
and interoperability of CORBA implementations.

The performance of a service is mostly measured with its throughput. One
must also take into account the additional information available about the certain
implementation. Performance of a notification server varies with factors coming
into play. Filtering close to the supplier enhances performance as it reduces net-
work traffic and supplier workload. Consumers are, in general, heavier CPU users
than suppliers, which are more likely to be I/O bound. Busy channels are very
sensitive to additional CPU-bound workload; raising channel priority may help in
this case. These parameters mainly affect the communication of CORBA objects.
As mentioned in Section 2.2, the communication is based on RPCs. For the eval-
uation or assessment of system efficiency, costs of the following steps have to be
estimated: (1) parameter marshalling; (2) data transfer from the client to the server;
(3) activation of the proper object implementation at the server; (4) demarshalling
data at the server skeleton.

Several comparative tests have been carried out by researchers and developers.
These are mostly benchmark tests based on remote method invocations and data
transfer. [1] compared a Java based ORB with other CORBA implementations
using various argument types and sizes with the invocations and round trip time
results were presented.

[10] summarizes the experience of its author with distributed programming
technologies under Linux. Different technologies and CORBA implementations are
compared, and interoperability and performance were tested, but the methodology
involved only execution of simple ‘Hello World’ applications.

[3] reports performance evaluation of the notification server bundled by re-
lease 5.1 of HP OpenView Communications CORBA Platform. They present ex-
periment data and results of measurements for low-scale configurations (from 1 up
to 3 hosts on private Ethernet), taking into account distribution, filtering and priority
related issues. The main idea of the tests is invoking remote methods with various
argument types and sizes.

A thorough, scientific investigation of CORBA performance is being per-
formed by D. SCHMIDT. [9] presents their own real-time implementation of the

144 J. HOSSZÚ

COS Event Service. The TAO Event Service is enhanced with federations sup-
port. However, it is an exhaustive evaluation, and TAO is developed for important
and time critical purposes such as mission avionics. [9] does not report results or
experience using the service for broadcasting on the Internet or other busy shared
networks.

Another way of measuring (more accurately: assessing) the performance of
a system is supplied by simulation. Several simulation methods exist, out of which
discrete event driven simulation is considered to be a powerful, easy-to-implement
paradigm. Discrete simulation maps the events and actions onto a virtual simulated
time scale according to the simulation schedule and to the events that occur during
the execution. When all events and actions are performed at the current simulated
time, the virtual time pointer jumps directly to the next entry on the scale. Simulation
makes it possible to evaluate the performance of complex systems, large-scale
network configurations also considering the effects of real-life circumstances such
as heavy traffic on the network, resource sharing, data loss, etc.

4. Simulator for Federated Channels

4.1. On the Simulations Platform

The PLASMA simulation development environment was developed by researchers
and programmers at Ericsson Telecommunications Ltd., Hungary. The concept is
the integration of network simulation with sophisticated mathematical algorithms,
provides more efficient support for the analysis of network performance [2]. The
simulation frame system has been also used for numerous other applications, e.g.
an ATM network call level and cell level simulator, an intelligent network simulator
and a mobile network simulator.

The simulator is based on a general discrete event driven simulation frame
implemented using object-oriented methods. Objects that are common for every
simulator are coded in PlasmaCORE. PLASMA simulator applications have the
following main parts:

• Scheduler: Keeps track of the current value of simulated time as simulation
proceeds.

• Agent: Controls the information flow between the simulated objects and the
communication interface. For this purpose the simulator is extended by a Tcl
interpreter.

• Measure Manager: The Measure Manager performs the creation of history
from measurement attributes of the simulated objects.

• Simulated Objects: Simulated Objects are C++ modules that inherit commu-
nication, management and measurement abilities from a common ancestor.
They represent a certain part of the simulation model and hence, they are
simulation specific, simulated objects can perform different events. They are
located in the Simulation Arena and can be connected to and communicate
with each other.

NOTIFICATION CHANNEL FEDERATION 145

In the simulator the modelled system is realised as a network of interconnected
simulated objects, that communicate with each other entirely using pre-defined
message forms. They may have an arbitrary number of attributes, which determine
the state of them.

Results of simulated measurements can be read from the measurement at-
tributes of simulated objects. Simulated measurement results are calculated on the
basis of counting events during the simulation. The measurement period can be 1,
5, 15, 60 minutes of simulated time in accordance with ITU-T recommendations.

4.2. The Simulation Model

Because networks of federated channels can grow countrywide, e.g. an event noti-
fication framework of a national telecom operator, there is no chance to assemble
the configuration and measure the overall performance prior to final installations.
Simulation is useful instead, supported by a powerful telecom network simulation
platform. This platform was Ericsson’s PlasmaCORE in our measurements. An
event notification network is simulated and its overall throughput is measured. The
nodes of the network are elements that broadcast all incoming events. The edges
of the network are notification channels. Filters can be assigned to each notifica-
tion channel to prevent the network of flooding with unnecessary and multiplied
instances of the events. Filters perform match operations on the type fields of the
events, and accept only the types enlisted in the filtering constraints. Suppliers
which generate, and Consumers which consume and destruct events are connected
to the nodes of the network. Generally computers or hosts can behave both as sup-
pliers and consumers; in this case such a host is modelled as a pair of one supplier
and one consumer connected to the same network node.

The overall throughput is measured by means of calculating the time spent
on forwarding all instances of the events. Latency measurements are carried out
in order to determine the average time spent in the system by one event instance.
Concurrency and scalability measurements are based on throughput measurements.
These are supported by timestamps added to the events at generation and destruction,
and the instance counters.

It is out of scope now, the problem includes but the simulation model lacks the
powerful filter allocation algorithm which ensures that only the necessary events
are forwarded through the channels. The importance of this algorithm is expressed,
because the location of suppliers and consumers may differ dynamically as the
network configuration changes. For simulation purposes a model for the notification
channel federation was required. A network is built up of objects of the following
types:

• Supplier: generates structured events of offered types. The inter-arrival times
and length of the event sequences (structured events) are determined by cus-
tomizable distributions.

146 J. HOSSZÚ

• Consumer: consumes events, but accepts only those of the subscribed types.
Sends measurement data gained from the timestamps carried by the event
sequences to a global measurer object.

• Network Node: forwards the incoming events to the connected Notification
Channels in a broadcast fashion, therefore unique message identification is
necessary. A built-in delay stands for the time costs of remote procedure calls
while delivering events to the channels.

• Notification Channel: the model for the event channel applied in the Noti-
fication Service, serving as connections between the nodes of the network.
The internal structure of the Notification Channel model is depicted in Fig.2.
The Notification Channel follows the push mechanism2, which means that
when an event arrives at its input, it is then scheduled to be forwarded to the
output. A customizable data loss module stands for the possible loss of events
on real connections (e.g. buffer overflow on TCP/IP networks, using IIOP as
inter-ORB protocol). The built-in delay module represents the time costs of
RPCs that occur during event delivery. Filter objects can be attached to the
Notification Channel. To prevent the network from flooding with multiplied
event instances, a powerful filter allocation algorithm is needed.

Fig. 2. Model of the Notification Channel

Measurements are based on the delivery of structured events (sequences of
events), and the delivery time is measured. In our approach (as we are measur-
ing the throughput of federated services) the delivery time of one generated
event includes all the time spent on delivering all its multiplied instances.

• Event Filter: receives event sequences and performs match operations on
each item of them. A time cost is assigned to the filter and it is a linear
function of the sequence length (in our tentative model, filtering is based on

2In the case of pull mechanism the channel is requested at the output port for an event that is then
requested from the object connected to the input port.

NOTIFICATION CHANNEL FEDERATION 147

event type matching, other fields of events are neither modelled, therefore
nor filtered).

Arbitrary number of instances of the objects can be used in such a simulation,
building network configurations of them.

5. Measurements

5.1. Configurations

In our tentative experiments the attributes and parameters were set to model No-
tification Service implementations based on Java, running on 400 MHz Pentium
III computers connected with 10 Mbps Ethernet. Parameters were obtained from
[12]. The suppliers timed the event delivery of structured events to the consumers.
The need for these measurements arose from the idea that the network manage-
ment framework used by e.g. a national telecom operator should be based on COS
Notification Service, making use of its customizable broadcast capabilities. The
configurations tested and the results follow in the subsections below. As mentioned
above, the event delivery time of one event included all the time spent in the net-
work by all multiplied instances of that given event. Note that filtering was not
applied in the cases of various network configurations (Figs.3 and 4). Modifying
the eight-channel configuration with 25 consumers results in network graphs with
different supplier-to-consumer-route lengths (i.e. graph depths). Concurrency is
examined using these variants. A four-channel configuration was used for various
filter configurations.

Fig. 3. One and three-channel configurations

Fig. 4. Eight-channel configuration

148 J. HOSSZÚ

One-channel configuration

This configuration included three Suppliers and various number of Consumers using
one Notification Channel as the broadcast medium.

Three-channel configuration

This configuration also included three Suppliers and various number of Consumers.
The network of the three channels and a Network Node formed Y topology. Events
were pushed from the Suppliers to one of the channels, and the node broadcast them
to the other two channels. Suppliers were proportionally distributed on the output
ports of the last two channels.

Eight-channel configuration

A graph of 8 edges (Notification Channels) and Network Nodes was built. Three
Suppliers and various number of Consumers were connected to the nodes selected
by chance.

No filtering

Configurations in the cases of various filtering complexity were the same, including
three Suppliers and four channels pushing events to various number of Consumers.
In the first case, no filtering was applied.

Simple filters

The filter objects were attached to the Notification Channels and the filter constraints
set similarly as follows:
$event_type==’A’.
For details on the filter constraint syntax, refer to [8].

Complex filters

Because filtering is only based on event types in this model, complex filter con-
straints were set similar to simple constraints:
$event_type==’B’ or $event_type==’C’ and not $event_type==’D’.

NOTIFICATION CHANNEL FEDERATION 149

5.2. Results and Analysis

Various network configurations

The more consumers are connected to the channel, the lower is the throughput.
The reason is evident: the notification channel has to invoke a remote operation
on every connected supplier, by which the event is pushed to its destination. At a
single channel, these invocations may be executed sequentially or parallel, accord-
ing to the thread-management of the actual implementation. The more channels
are interconnected, the more RPC’s are needed for event transfer, so throughput
drops. Hence, channels are generally not connected sequentially after another in
the notification system, the overall throughput is not inversely proportional to their
number. Results for this class of measurements is depicted in Fig.5.

0 5 10 15 20 25
200

250

300

350

400

450

500

550

600

Number of Consumers

T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

1 channel
3 channels
8 channels

(a) Throughput

0 5 10 15 20 25
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Consumers

La
te

nc
y

(m
se

c)

1 channel
3 channels
8 channels

(b) Latency

Fig. 5. Results at various network configurations

Concurrency and scalability issues

Table 1 summarizes how the level of concurrency affects the throughput of the
network. As the average graph depth increases, the level of concurrency is degraded,
as channels are more likely to be interconnected sequentially. More channels in
a route mean more RPCs, so the higher the average graph depth, the lower is the
overall throughput of the system.

The throughput figures for various network configurations (Fig.5a) provide
data for Table 2, which indicates the configurations that fulfil the requirement of
serving at least 350 events per second. Configurations passing our scalability test

150 J. HOSSZÚ

at our settings are marked with
√

. Note that this requirement in large scale router
networks may hit the value of 1000 events/sec.

Table 1. Results at various concurrency levels

Average graph depth Throughput (events/sec) Latency (ms)
1 288 0.792
2 269 0.823

2.5 246 0.830
3.5 235 0.835
4 227 0.838

Table 2. Scalability of the channel federation

Number of consumers 1 channel 3 channels 8 channels
1

√ √ √
2

√ √ √
5

√ √
–

10
√ √

–
15

√ √
–

20 – – –
25 – – –

Various filtering complexity

Event filters use a large amount of computing capacity, which is the bottleneck in
notification networks rather than link capacity between network elements or hosts.
The reason why throughput decreases as the number of consumers increases has
already been discussed in the previous subsection. Fig. 6 shows that the more
complex is the filter constraint, ergo the more CPU-time is needed for filtering, the
lower is the overall throughput of the notification system.

The qualitative results of the measurements illustrate the possibility of assess-
ing the performance of an object-oriented distributed system by means of discrete
simulation. On the other hand, quantitative results provide useful data for designing
the desired configurations.

NOTIFICATION CHANNEL FEDERATION 151

0 5 10 15 20 25
0

100

200

300

400

500

600

700

Number of Consumers

T
hr

ou
gh

pu
t (

ev
en

ts
/s

ec
)

No filter
Simple filters
Complex filters

(a) Throughput

0 5 10 15 20 25
1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Number of Consumers

La
te

nc
y

(m
se

c)

1 channel
3 channels
8 channels

(b) Latency

Fig. 6. Results at various filter complexity

6. Simulation of Extended Systems

The tentative model presented above is not suitable for performance evaluation
of all CORBA services, it only highlights the possibility and advantages of simu-
lating CORBA systems. Extensions and improvements are being considered and
carried out.

6.1. Further Simulated Components

The extended model is capable of simulating traffic on real networks. Background
traffic generators are used to generate load on the network. The parameter settings
can be customized to model HTTP, FTP, and WAP, etc. protocols, with which IIOP
share network resources. The set of objects is also expanded with general clients,
servers, ORBs and hosts. Hosts are the computers connected to networks, and
they execute arbitrary number of ORBs, according to the actual technology of the
modelled CORBA implementation. ORBs behave as transparent communication
buses for server and client software components.

Object behaviour is described with scripts written in an IDL-like language,
but special objects or standard services, like Naming, Event, Time, etc. may come
already encoded. Client scripts include data necessary for specifying the objects
to invoke operations on; the distribution-determined speed of request generation,
and time costs of function calls. Server scripts include parameters concerning their
throughput.

The ORB objects manage network connections, load sharing between servers,
security features, error-handling, multi-threading, scheduling and synchronization,

152 J. HOSSZÚ

and parameter marshalling and demarshalling. The network connection model is
derived from existing TCP/IP network models; links, buffers, switches, and routers
are applied. Being simulated objects, the simulated client and server software com-
ponents collect data in their own measurement attributes, and also share necessary
information with the global measurer object that evaluates the overall performance
of the network.

In CORBA systems the method invocation mechanism consists of the fol-
lowing steps: (1) Function call on the stub, (2) GIOP message transfer via the
communication framework, which may include several message exchanges, and
(3) Function call on the object implementation. As mentioned above in Section 4.1,
inter-object communication in the simulation software is by means of message
transfer. Due to the essential requirement of modelling, being as substantial as
possible, all these steps are modelled as message transfer; the message type is the
name of the method, and arguments form the message parameters.

6.2. Detail Levels

The model enables three types of simulation.

• ORB-level simulation: Networks, hosts and ORBs are simulated, and their
behaviour is described by possibility distributions. This is a GIOP-level si-
mulation.

• Stochastic software component level simulation: ORB-level simulation ex-
tended with client and servant software component objects. The behaviour
of the objects is also determined by distributions.

• Detailed simulation: Includes all types of objects, their behaviour depends
on their actual internal state and stimuli arriving at their input. This enables
tests for certain use-cases, exceptional and error situations.

The user of the simulator may choose the type that fits his needs, and com-
plexity and detail level of the desired model.

6.3. Sample Scenario

Architecture

The sample system models the classic CORBA sample application: a bank with
a central server managing the customers’ accounts, and several branches (clients)
around the world initiating transactions (deposits and withdrawals). Branches know
only the name of the bank object, they have to retrieve its Inter-Object Reference
(IOR) from a Naming Service object. Time Service [5] is also used for the syn-
chronisation scheduling of transactions. The architecture is depicted in Fig.7. The
network transfers messages between host1, host2 and host3. ORB objects act as

NOTIFICATION CHANNEL FEDERATION 153

the middleware interface to the client and server objects: Naming Service, Time
Service, Bank server and Client.

Fig. 7. Sample architecture

This is a detailed simulation (see Section 6.2). The reference application
was also developed in order to obtain real parameter values for the simulations.
host1 was a SUN Ultra Enterprise 420R equipped with 4 450MHz UltraSPARC-II
processors and 1 GByte of RAM. host2 and host3 were SUN Ultra5 computers
with a 270MHz UltraSPARC-IIi processor and 128 MByte of RAM, each. The
interconnecting network was a busy enterprise 100Mbit Ethernet. The operating
system was Solaris 5.6. MICO 2.3.1 CORBA implementation [4] with GNU g++
2.9.5 compiler was applied.

Fig. 8 presents the IDL definition of the used interfaces, and Fig.9 an illus-
trative script that was applied to the model.

interface Account
{

void deposit(in unsigned long amount);
void withdraw(in unsigned long amount);
long balance();

};

interface Bank
{

void new_customer(in string name,
in unsigned long amount);
void delete_customer(in string name);
Account get_customer_account(in string name);

};

Fig. 8. Interface definitions

154 J. HOSSZÚ

bank_ref = nsd->resolv(bank_name);
for(i = 0; i < count1; i++)
{

mrCustomer = new Customer("MrCustomer");
bank_ref->new_customer("MrCustomer", amount0);
nsd->bind("MrCustomer",
bank_ref->get_customer_account("MrCustomer"));
for(j = 0; j < count2; j++)
{

customer_account = nsd->resolv("MrCustomer");
customer_account->deposit(amount1);
customer_account->withdraw(amount2);

}
nsd->unbind("MrCustomer");
bank_ref->delete_customer("MrCustomer");

}

Fig. 9. Simulation script of client

Validation and experimental results

Simulation scripts similar to that described in Fig.9 were executed with the simulator
and with a real implementation of the system, as well as invoking several methods of
different resource requirements (i.e. resolving an object name in the naming service
consumes up to 10 times more CPU time than depositing an account). Table 3
presents experimental data. Total number of method invocations and execution
times, which are assessments on the cases of simulation, are presented.

Table 3. Execution times of scripts

Execution time(sec)
Method invocations Implementation Simulation

1000 17.485 17.012
5000 86.312 88.334

10000 172.887 169.960
20000 351.506 355.264

Results validate that the model is suitable for performance assessments of
such systems. Maximal difference between real and assessed execution times was
2.71 percent, which reasonably fulfils the requirements.

NOTIFICATION CHANNEL FEDERATION 155

7. Conclusions

This paper focuses on a new field of applying discrete event driven simulation:
software components of CORBA-based broadcast system are simulated and perfor-
mance evaluation is carried out.

As a summary we declare that an actual problem was simulated. The model of
the Notification Service and its usage in federated channels environment was devel-
oped and measurements were carried out. The tentative model represents distributed
network management or alarm management system over CORBA. The simulation
model is now suitable for performance evaluation of an arbitrary number of noti-
fication service implementations and configurations, and can easily be adapted to
other services and application objects, based on any CORBA implementations.

The simulation makes it possible to evaluate the performance of large-scale
network configurations. There is a certain complexity of the network the distributed
system uses, at which performance cannot be evaluated, and behaviour cannot
be assessed using pencil and paper queuing analysis. Simulation makes it also
possible to deal with various loads on the network using so-called time profiles, e.g.
peak hours or transients. The advantage of the method is that it is not necessary
to implement and assemble the whole system, which may even grow country-
wide. It is easier to take into account the properties of a shared network or the
Internet with a sophisticated telecom simulator, where models for non-CORBA
communication technologies have been evaluated and used at high reliability in
several other applications.

For small scale distributed systems the usual way of performance evaluation
is more effective: there is no need for simplifications and/or estimations to build
the actual model. Using private or dedicated networks, point-to-point topologies
make it also unnecessary to model background traffic on shared resources.

References

[1] BROSE, G., JacORB Performance Compared,
http://www.inf.fu-berlin.de/∼brose/jacorb, Mar. 2000.

[2] Ericsson Telecommunications AB, PlasmaCORE Programmer’s Guide, Stockholm, Sweden,
1999.

[3] Hewlett-Packard Company, HP OpenView Communications Notification Server Performance,
http://www.hp.com/ovc/library/np/np.html, 1999.

[4] MICO - Mico Is COrba, http://www.icsi.berkeley.edu/∼mico, 1998.
[5] Object Management Group, CORBAservices: Common Object Services Specification, Revised

Edition, Mar. 1995.
[6] Object Management Group, A Discussion of the Object Management Architecture, Jan. 1997.
[7] Object Management Group, The Common Object Request Broker: Architecture and Specifica-

tion, Revision 2.2, Feb. 1998.
[8] Object Management Group, Notification Service, Joint Revised Submission, Jan. 1998.
[9] SCHMIDT, D. C. – HARRISON, T. H. – O’RYAN, C. – LEVINE, D. L., The Design and Perfor-

mance of a Real-time Event Service, Department of Computer Science, Washington University,
St. Louis, MO 63130, USA, 1999.

http://www.inf.fu-berlin.de
http://www.hp.com/ovc/library/np/np.html
http://www.icsi.berkeley.edu

156 J. HOSSZÚ

[10] VEPSTAS, L., Linux DCE, CORBA and DCOM Guide,
http://linas.org/linux/corba.html, Apr. 2000.

[11] VINOSKI, S., CORBA: Integrating Diverse Applications Within Distributed Heterogeneous
Environments, IEEE Communications Magazine, 14, February 1997.

[12] WILLIAMSON, I., OpenFusion Notification Service: Performance Evaluation, A White Paper,
PrismTech Corporation, Jan. 2000.

http://linas.org/linux/corba.html

	Introduction
	On CORBA-based Distributed Systems
	Synopsis of CORBA
	The Notification Service

	Methods for CORBA Performance Measurements
	Simulator for Federated Channels
	On the Simulations Platform
	The Simulation Model

	Measurements
	Configurations
	Results and Analysis

	Simulation of Extended Systems
	Further Simulated Components
	Detail Levels
	Sample Scenario

	Conclusions

