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Abstract

This paper deals with a kind of two-phase PWMs when during each 1/3 of the period one of the motor
phases is connected to the positive (or negative) dc bar and only the remaining two motor phases are
switched between the dc bars. The novel accurate and the simpler approximated analytical equations
of motor voltage harmonics are given and it is shown that the approximated equations provide a
good precision of calculations. In comparison with three-phase PWMs this two-phase PWM – only
for the same inverter commutation frequency – provides better quality of PWMs for high value of
fundamental voltage. The realization of the two-phase PWM with 120◦ cycle is simpler than the
other types of two-phase modulation but the transistor-diode load of the upper and bottom parts of
the inverter bridge differs.

Keywords: voltage source inverter, two phase PWM, voltage spectra.

1. Introduction

  

Fig. 1. Configuration of the inverter (a) and phase reference waves (b)

The carrier-based two-phase PWM techniques with 120◦ cycle are possible
because each sinusoidal reference wave has the interval of 120◦ of the period when
its value is higher (or lower) than the other ones (Fig. 1). Thus e.g. when the a
phase reference signal is higher than the b and the c ones, then the phase sinusoidal
reference signals can be modified by the addition of zero-sequence components in
a manner that the a phase reference signal at π/6 ≤ W1t ≤ 2π/3 will be at its
maximum: uar = 1. The reference waves of the phases in this interval will be
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as follows (where A is the modulation index, W1is angular frequency and t is the
time):

uar = 1 − A sin W1t + A sin W1t = 1,

ubr = 1 − A sin W1t + A sin

(
W1t − 2π

3

)
= 1 − √

3A sin
(

W1t + π

6

)
, (1)

ucr = 1 − A sin W1t + A sin

(
W1t − 4π

3

)
= 1 − √

3A sin
(

W1t − π

6

)
.

This means that the motor phase a is connected on 120◦ of the period to the positive
dc bus-bar (ua0 = Udc, see Fig. 1a). For the time 5π/6 ≤ W1t ≤ 3π/2 the phase
b is switched to the positive dc bar, hence ubr = 1, therefore:

uar = 1 + √
3A sin

(
W1t + π

6

)
, (2)

while in 3π/2 ≤ W1t ≤ 13π/6 the c phase is connected to the dc bar and ucr = 1,
hence:

uar = 1 + √
3A sin

(
W1t − π

6

)
. (3)

The a phase reference wave and its fundamental component are presented in Fig.2.
The different types of two-phase PWMs with 60◦ or 120◦ cycle are investigated in
[1]–[7]. The two-phase PWM with 120◦ cycle was examined in [4], but without
the analytical investigation of the motor voltage spectra, in [9] only a simplified
deduction of the voltage spectra is given.

This paper mainly deals with the analytical determination of the motor voltage
spectra, the other characteristics of this type of PWM will only be shortly given.

2. Voltage Spectra

The order of the harmonics can be given as follows [5, 8]:

ν = Km ± n ′, (4)

where m = f1/ fc and f1 is the fundamental, fc is the carrier (sampling) frequencies,
K and n′ are positive integers.

If the synchronized carrier wave is used, the ua0 motor voltage to the middle
point of dc voltage (Fig. 1a) can be decomposed in Fourier series:

ua0 = a0 +
∞∑
ν=1

(aν cos να + bν sin να), (5)
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where α = W1t and

a0 = 1

2π

∫ 2π

0
ua0 dα,

U ∗
ν = aν + jbν = 1

π

∫ 2π

0
ua0e jνα dα; (6)

or:

U0 = a0

Udc
= 1

2π

∑
i

(αi − αi−1) sign Udc;

Uν = U ∗
ν

Udc
= 2

jπν

∑
i

(
e jναi − e jναi−1

)
sign Udc, (7)

where αi and αi−1 are the modulation angles between 0 ≤ α ≤ 2π .

 

Fig. 2. The a phase reference wave and its fundamental component

The modulation processes for different initial phase angles of the carrier waves
are presented in Figs. 3a and 3b. Since PWM is synchronized with the continuous
carrier wave and the control of the three phases is symmetrical, the value of m/3
must be an integer. The order of non-zero sequence harmonics can be ν∗ = 1±3K

′

(K
′ = 0, 1, 2. . . .) and the sign of ν∗ shows the sequence of harmonics (plus means

the positive one).
Thus, both even and odd order harmonics arise. According to the initial phase

of the carrier wave two different motor voltage spectra are obtained.

2.1. PWM according to Fig. 3a

With the coordinate system according to Fig. 3a and taking (2) into account the
intersection points of the carrier and reference waves for natural sampling during
0 ≤ α ≤ 2π/3 will be [8]:

αi−1 = γ i − γ + γ
[
1 − √

3A sin(αi−1)
]

αi = γ i + γ − γ
[
1 − √

3A sin(αi)
]


 , (8)
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where γ = π

2m
and i = 2, 6, 10 . . . (Fig. 3a).

According to (3) and coordinate system of Fig. 3a the intersection points will
be:

αi−1 = γ i − γ + γ
[
1 − √

3A sin(αi−1 − π/3)
]

αi = γ i + γ − γ
[
1 − √

3A sin(αi − π/3)
]


 (9)

and i = 4m/3 + 2, 4m/3 + 6, 4m/3 + 10, . . .

  

a)

  

b)

Fig. 3. Modulation processes for two-phase PWM with 120˚ and different initial phase
angle of the carrier wave

According to Appendix a) the harmonic amplitudes e.g. of ν = Km − 1
order will belong to p1 = Km, p2 = Km + 2, and p3 = Km − 4 (neglecting
Bessel functions of order |ν − p| ≥ 9):

|UK m−1| =
∣∣∣∣ 4

π
√

3K
J1

(
K A

π

2

√
3
)

− 6

π(Km + 2)
· J3

[(
K + 2

m

)
· A
π

2

√
3

]

1

sin 2π/m
− 6

π(Km − 4)
· J3

[(
K − 4

m

)
A
π

2

√
3

]
1

sin 4π/m

∣∣∣∣ (10)

while for ν = Km + 1 order (p1 = Km, p2 = Km − 2 and p3 = Km + 4):
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|UK m+1| = | 4

π
√

3K
J1

(
K A

π

2

√
3
)

− 6

π(Km − 2)
· J3

[(
K − 2

m

)
· A
π

2

√
3

]

× 1

sin 2π/m
− 6

π(Km + 4)
· J3

[(
K + 4

m

)
A
π

2

√
3

]
1

sin 4π/m

∣∣∣∣ . (11)

 
i l i li d f l h i

Fig. 4. Relative amplitudes of voltage harmonics

Similar expressions can be given for ν = Km ± 5, ν = Km ± 7 etc. For m → ∞
and neglecting the Bessel functions with order |ν − p| ≥ 15 for the motor voltage
harmonics considerably simpler equations are valid:

|Uν| =
∣∣∣∣ 4√

3πK
Jn′

(
K A

π

2

√
3
)

− 9

απ2K
J3

(
K A

π

2

√
3
)

− 27

βπ2 K
J9

(
K A

π

2

√
3
)∣∣∣∣ , (12)
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where α = 2 and β = 20 if n′ = 1, while α = 4 and β = −14 if n′ = 5, then
α = −10 and β = 8 if n′ = 7.

The voltage harmonic of order ν = Km + 2 (see App.) will belong to
p1 = Km − 1, p2 = Km + 5 (for p − ν ≤ 3 only):

|UK m+2| =
∣∣∣∣ 6

π(Km − 1)
· J3

[(
K − 1

m

)
· A
π

2

√
3

]

× 1

sin π/m
+ 6

π(Km + 5)
· J3

[(
K + 5

m

)
A
π

2

√
3

]
1

sin 5π/m

∣∣∣∣ (13)

or with m → ∞ for the harmonics of the order ν = Km ± 2 and ν = Km ± 4 the
voltage amplitudes are expressed by the following expression:

|Uν| =
∣∣∣∣ 36

απ2 K
J3

(
K A

π

2

√
3
)

+ 108

βπ2 K
J9

(
K A

π

2

√
3
)∣∣∣∣ , (14)

where α = 5 and β = 77 if n′ = 2 (ν = Km ± 2), while α = 7 and β = −6.5 if
n′ = 4 (ν = Km ± 4).

The relative amplitudes of the important voltage harmonics for m → ∞ as a
function of the fundamental one are presented in Fig.4. In Fig. 5 the voltage spectra
of the three-phase PWM (space vector method) and two-phase ones are compared
for A = 0.1 and A = 1.0. It can be seen that for low modulation indices there are
significant differences in amplitudes of harmonics of order m+1, 3m+1, . . ., while
for high modulation indexes the differences in amplitudes of important harmonics
are very small.

2.2. PWM according to Fig. 3b

In this case the equations of voltage harmonics are more complicated than before
(See App.). But for m → ∞ the results are the same. Virtually, in dependence
on the initial phase angle of the carrier wave for m ≥ 36 there are no significant
differences in the harmonic amplitudes.

2.3. Results

The voltage spectra investigations have shown that:

1. The voltage harmonics for the low fundamental voltage region – in compar-
ison to three-phase PWMs – vary considerably in magnitude and in order as
well. E.g. for A → 0 the harmonics of order Km ± 1 become equal to the
fundamental voltage (K = 1.2, 3, . . .). For three-phase PWMs this was valid
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Fig. 5. Voltage spectra of two-phase (a) and three-phase PWMs (space vector method) (b)
for A = 0.1 and A = 1.0

only for even K . Owing to this fact the loss-factor of a two-phase PWM for
the same m will be (Km ± 1 ∼= Km):

Kψ =
∞∑

K=1

[
1

(Km − 1)2
+ 1

(Km + 1)2

]
∼= 2

m2

∞∑
1

1

K 2
= π2

3m2
,

consequently by four times more than that for three-phase PWMs and the
same carrier period or by (4*4/9) times more than that in the case of the same
switching frequency since the switching frequency of two-phase PWMs is
2/3 of that for three-phase ones [7].

2. The motor harmonic losses – for the same switching frequency of the inverter
– are considerably higher in the low voltage region than those for a three-
phase PWM, and about from A > 0.82, lower than those in the high voltage
region [4]–[7]. For A = 1.0 e.g. K = 0.156/m2 if three-phase PWMs are
used and K = 0.103/m2 if two-phase PWMs are used [7].

In Fig. 6 the motor phase voltage, stator flux, harmonic current and torque
pulsations are presented for A= 0.5 and A= 1.0 (simulation results). It is seen
that in the case of A = 0.5 the three-phase PWM with m = 48 produces
smaller current and torque pulsations than two-phase PWMs with m = 72
(hence, for the same commutation frequency). In the case of A = 1.0 the
two-phase PWM with m = 36 and 120◦ cycle obtains the smallest current
and about the same torque pulsations as the two-phase PWM with 60◦ cycle.
And confirming the theoretical results, the three-phase PWM with m = 24
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Fig. 6. Motor phase voltage, flux and current and torque pulsations vs time, two-phase
PWM, 120◦ cycle (a) and 60◦ cycle (b), three-phase PWM with space vector method
(c)

(for the same commutation frequency) gives the highest current pulsations.
But the torque ripples of the two-phase PWM are higher than those of the
three-phase space vector modulation (and will be lower than those only for the
three-phase PWM without third harmonic injection in the reference wave).

3. The motor harmonic losses and torque pulsations are mainly determined by
the harmonic currents of the order m ±1, 2m ±1, 3m ±1 and m ±2, 2m ±2,
m ± 4. At the same time the amplitudes of order Km ± 4, Km ± 5 and
Km ± 7 are not significant (Fig. 4 note that the scale of Fig. 4c is twice as
big as that of Figs. 4a–4b).

4. The motor voltage amplitudes were derived for natural sampling, but the
equations for m → ∞ are valid for the regular sampling [9] and for the
two-phase space vector methods too.
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5. In the motor voltage spectrum – in comparison with three-phase PWMs with-
out third harmonic injection – a lot of new components must be taken into
consideration. With a good approximation the harmonic pairs of the impor-
tant orders Km ± n′ have the same values (for m > 18).

6. Several remarks must be made:

a) the zero sequence components of the motor voltage can also be calcu-
lated by means of the analytical equations (they contain the terms with
Bessel functions of orders 1, 5, 7, 11. . .),

b) all the harmonics amplitudes only depend on m owing to the dependence
of the sum of the series similar to (A5) on m which for m > 36 becomes
negligibly small,

c) harmonics for K = 0 consist of the fundamental one (which is equal to
A with an acuracy better than 0.1% when m > 36) and zero sequence
harmonics of the reference wave with the orders 0, 3, 9, 15. . . and
amplitudes:

U0 = 1 − 3
√

3

2π
A; Uν = 3

√
3

π
(
ν2 − 1

) A. (15)

7. Although the equations were derived for synchronous modulation technique,
the numerical computations have shown that the results are valid for asyn-
chronous PWMs too. This statement is confirmed by [7] where the motor
voltage harmonics of two-phase PWMs with 120◦ cycle are determined as
usually using three-phase PWMs with the decomposed in Fourier series refer-
ence wave with harmonics according to (15). In this case the voltage spectra
are independent of the fact whether the synchronous or asynchronous mod-
ulation techniques are used.

3. Transistor Load

The conduction losses of the transistors and diodes on the bridge side to which the
motor phases are connected on 120◦ will be higher than on the other side, especially
for the low voltage region. In Fig. 7 for A = 0.1 and A = 2/

√
3 the transistor and

diode currents are drawn on a period for the positive (+) and negative (−) inverter
sides (about rated load condition, m = 36). The average current and square of the
rms current of both sides as functions of the fundamental voltage are presented in
Fig. 8. It is seen that the load of the two bridge sides of the inverter considerably
differ in the first case and have about the same value for the second one.

The different load of the transistors is a little balanced by higher switching
losses of the negative transistors. At the same time the load of negative diodes will
be very small in comparison with the load of positive diodes.
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i t r +

i d +

i d -

i t r -

a) 

i t r +

i d +

i d -

i t r -

b) 

Fig. 7. Transistor and diode currents vs time for m = 36 a) A = 0.1 b) A = 2/
√

3

4. Verification of the Results

The theoretical calculations were verified by straight computer Fourier analysis of
ua0(t) function and the accurate equations provide 100% accuracy of calculations
both for harmonic amplitudes and its phase angles, but only in the case if all the
terms with Bessel function of different orders with sensitive values are taken into
account. The Bessel function variable is (Km + n)

√
3Aπ/(2m). For A ≤ 2/

√
3

and K ≤ 3 its highest value is about 3π = 9.42 since all the terms with Bessel
functions of orders over 15 can be omitted. At the same time, e.g., for K = 1 one
can neglect Bessel functions of orders over 7. The accurate calculation especially
for PWMs according to Fig. 3b is complicated, too, since the terms with Bessel
functions of even orders have to be taken into account.

The approximated equations provide a simpler calculation of harmonic am-
plitudes for any initial phase angle of the carriers. It was shown (See App.) that for
PWMs in Fig. 3a the deviations of estimated amplitudes were for K ≤ 3 less than
1% if m > 36. For PWMs in Fig. 3b it is valid if m > 66.

5. Conclusion

The novel accurate and approximated equations of motor voltage harmonics for
two-phase PWMs with 120◦ cycle are given and it is shown that this PWM can
be realized by non-synchronized modulation technique. The motor voltage spectra
contain harmonics of order ν = Km ±n′ where K and n are positive integers and m
is the relation of the carrier and the fundamental frequencies. The main harmonics
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Fig. 8. Average current and square of rms current values of transistors (a) and diodes (b)
of the positive (+) and negative (−) sides of the inverter bridge

have the orders m ± 1, 2m ± 1, 3m ± 1 and m ± 2, 2m ± 2 (hence n′ can be even
and odd). Non-zero sequence harmonic amplitude equations consist of the sum of
the terms with Bessel functions of the orders n′, 3, 9, 15 etc. if n′ is odd but only
order of 3, 9, 15 etc. if n′ is even, while the zero sequence harmonic amplitude
equations contain Bessel functions of orders 1, 5, 7, 11, 13 etc. The motor harmonic
losses and torque pulsations are about the same as those for the other types of two-
phase PWMs. The values of these losses – for the same switching frequency of
the inverter – are considerably higher in the low voltage region and lower in the
high one than those for three-phase PWMs. But the torque-ripples are higher than
those for three-phase space vector PWMs in the whole voltage control region. The
transistor and diode conduction and switching losses are different on the positive
and negative sides of the inverter.
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Appendix

a) The intersection point Eqs. (8) can be transformed as follows:

γ i + π = αi−1 + π − √
3Aγ sin (αi−1 + π) ,

γ i = αi − √
3Aγ sin αi , (A1)
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while taking into account (9) the intersection point equations will be:

γ i + 2π/3 = αi−1 + 2π/3 − √
3Aγ sin (αi−1 + 2π/3) ,

γ i − π/3 = αi − π/3 − √
3Aγ sin (α − π/3) , (A2)

according to WATSON G.N. (A Treatise on the Theory of Bessel Functions, Cam-
bridge, 1966, pp. 553–554). If

M = E − ε sin E, (A3)

then

e jνE = ν

∞∑
p=1

1

p

[
Jp−ν (pε) · −e j pM − Jp+ν (pε) · e− j pM

]
, (A4)

where Jp−ν(pε) and Jp+ν(pε) are first kind Bessel functions at p − ν and p + ν
orders, respectively.

In our application for the important harmonics p − ν will have small values
but p +ν high ones, therefore the values of Jp+ν (pε) can be neglected. With (A1),
(A4) and (7) the following equation is valid (sign Udc = −1):

Uν = − 2

jνπ

4m/3−2∑
i=2

[
e jναi − e− jνπe jν(αi−1+π)]

= − 2

jπ

4m/3−2∑
i=2

∞∑
p=1

1

p
Jp−ν

(
p
√

3Aγ
) [

epγ i − e− jνπe j p(γ i+π)].

After the change of order of the summation and taking into account that |ν − p|
must be odd:

Uν = − 4

jπ

∞∑
p=1

1

p
Jp−ν

(
p
√

3Aγ
) 4m/3−2∑

i=2

epγ i .

Let be p = Km + n. In this case the last summation is equal to

4m/3−2∑
i=2

e j (K m+n) π2m i = (−1)K sin nπ/3

sin nπ/m
e jn π3 .

With that:

U ′
ν = − 4

jπ

∞∑
p=1

Jp−ν
(

p
√

3Aγ
)
(−1)K sin nπ/3

sin nπ/m
e jnπ/3.
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After similar computation (ν = Km + n′):

U ′′
ν = − 2

jπ

8m/3−2∑
i=4m/3+2

∞∑
p=1

1

p
Jp−ν

(
p
√

3Aγ
)

× [
e jνπ/3e j p(γ i−π/3) − e− jν2π/3e j p(γ i+2π/3)]

= − 4

jπ

∞∑
p=1

Jp−ν
(

p
√

3Aγ
)

e j (n′+n)π/3 · (−1)K sin nπ/3

sin nπ/m
e jnπ/3.

Then:

Uν = U ′
ν + U ′′

ν = − 4

jπ

∞∑
p=1

1

p
Jp−ν

(
p
√

3Aγ
) [

1 + e j (n′+n) π3
]

× (−1)K sin nπ/3

sin nπ/m
e jnπ/3

= 8

π
j

∞∑
p=1

1

p
Jp−ν

(
p
√

3Aγ
)
(−1)K sin nπ/3

sin nπ/m

× cos
[
(n′ + n)

π

6

]
e jn π2 e jn′ π

6 .

In the coordinate system fixed according to Fig.2 α∗ = α + 5π/6, therefore:

Uν = − 8

π
j

∞∑
p=1

1

p
Jp−ν

(
p
√

3Aγ
)
(−1)K sin nπ/3

sin nπ/m

× cos
[
(n′ + n)

π

6

]
e jn π2 (−1)n

′
e jkm5π/6. (A5)

Let be ν = Km + 1, in this case for K ≤ 2 only Bessel functions of orders
|p − ν| = 1 and |p − ν| = 3 have considerable values, hence only that |p − ν| =
|n − 1| must be taken into consideration, for which n = 0 (p − ν = −1), n = −2
(p − ν = −3) and n = 4 (p − ν = 3).

The component with |p − ν| = 9 only gives considerable value for K > 3.
After the similar computations for m → ∞:

∣∣U ′′′
K m+1

∣∣ =
∣∣∣∣ 27

jπ2K20
J9

(√
3AK

π

2

)∣∣∣∣ .
For ν = Km ± 2 or ν = Km ± 4 the results have the same structure, but only the
components with n = 3, 9, 15 differ from zero.

The dc component of ua0 can be computed as in [8]. The result is:
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U0 = 1 − 8

π

∞∑
1

1

p
Jp(p

√
3Aγ )

sin2 pπ/3

sin pπ/m
,

where p= 1, 5, 7, . . . etc. For m > 36 only p = 1 is important:

U0 = 1 − 6

π
J1

(√
3Aγ

) 1

sin π/m
,

and for m → ∞ with a very good approximation J1

(√
3Aγ

)
= √

3Aγ /2 the dc

component of the reference wave (15) is obtained:

U0 = 1 − 6

π

A
√

3π

4m

m

π
= 1 − 3

√
3

2π
A.

b) According to Fig. 3b the modified intersection point equations for 0 ≤ α ≤ 2π/3
will be:

γ i − 2γ = αi−1 − √
3Aγ sin αi−1,

γ i + 2γ + π = αi + π − √
3Aγ sin(αi + π)

and for 2π/3 ≤ α ≤ 4π/3:

γ i − 2γ − π/3 = αi−1 − π/3 − √
3Aγ sin (αi−1 + −π/3) ,

γ i + 2γ + 2π/3 = αi + 2π/3 − √
3Aγ sin (αi + 2π/3) .

After the similar computations as in App. a) and with sign Udc = 1 a more compli-
cated expression is obtained (in the coordinate system fixed according to Fig.2):

Uν = 4

πν
sin ν

π

3
e
− jν
π

2 + U ′
ν + U ′′

ν ,

where for odd |p − ν|:

U ′
ν = − 8

π
j

∞∑
p=1

1

p
Jp−ν

(
p
√

3Aγ
)sin nπ/3

tg nπ/m
·cos

[
(n′ + n)

π

6

]
e jn π2 (−1)n

′
e jkm5π/6,

while for even |p − ν|:

U ′′
ν = 8

π

∞∑
p=1

1

p
Jp−ν

(
p
√

3Aγ
)

sin nπ/3 · cos
[
(n′ + n)

π

6

]
e jn π2 (−1)n

′
e jkm5π/6.

For high values of m only U′
ν produces considerable values, therefore for m → ∞

the result will be the same as in App. a) and harmonic amplitudes can be written
as in (12) and (14).
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Examples. For m= 36 and A =0.5 the straight digital calculations for different
initial phase angle of the carrier wave give: U35

∼= U37 = 0.74310 ÷ 0.74331,
U34

∼= U38 = 0.06653 ÷ 0.06833, U137
∼= U151 = 0.03967 ÷ 0.04260 (related to

fundamental component value). Using (12) and (14) gives:

Um±1 = 1

0.5

(
4√
3π

0.5345 − 9

2π2
0.0466

)
= 0.7433

(maximum deviation: 0.15%).

Um±2 = 1

0.5

(
36

5π2
0.0466

)
= 0.06806

(max. deviation: 2.2%, for m = 66 the deviation decreases to 0.3%).
With Bessel functions of order 7 and 3:

U4m±7 = 1

0.5

(
0.08215√

3π
+ 9 · 0.2710

40π2

)
= 0.04255

(max. deviation: 4.8%).
Taking into account the Bessel function of order n = 9:

U4m+7 = 0.04255 − 27

32π2

0.0111

0.5
= 0.04065

(max. deviation: 4.8 %, for m = 66 it decreases to 1.3%).
For A = 1.0 the digital calculation gives U35

∼= U37 = 0.20214 ÷ 0.2023
and (12) gives:

U35,37 = 4

π
√

3
· 0.43521 − 9

2π2
· 0.2579 = 0.2023

(max. 0.08%).
Similarly U71

∼= U73 = 0.18713 ÷ 0.18917, but (12) gives:

U71,73 = 2√
3π

· 0.34414 + 9

4π2
· 0.27104 = 0.1883

(max. 0.6%).
Or U32

∼= U40 = 0.13405 ÷ 0.13506, acccording to (14):

U32,40 = 36

7π2
0.2579 = 0.1344,

(max. 0.5%).
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The ν = 3 zero sequence harmonic belongs to p1 = n = 2 and p2 = n = 4,
therefore, for m → ∞:

U3 = 3

2π2
m J1

(
2
√

3A
π

2m

)
− 3

8π2
m J1

(
4
√

3A
π

2m

) ∼= 3
√

3

8π
= 0.2067.

Thus, it is equal to the third harmonic amplitude in the reference wave. For A = 0.5
and m = 36 the straight calculation gives U3 = 0.2095 while for m = 66 it is
U3 = 0.2075. Similarly from (A4) e.g. the zero-sequence harmonic of order m +3
is Um+3 = 0.1620 (m → ∞). The computer gives 0.1640 if m = 36 (deviation
1.2%) and 0.1610 if m = 66 (deviation 0.6%).
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