
PERIODICA POlinXHNICA SflR. E L ENG VOL. 44. NO. I . PP. i$~M OHOO]

L O W C O M P L E X I T Y P A R A M E T R I Z E D C O D E S F O R LZ77
C O M P R E S S I O N

Pe'ter A . F E L V E G I

Department of Aulomalion and Applied Informatics
Budapesi University of Technology and Economics

H- l 111. Budapest. Goldmann Gyorgy te> 3, Hungary
e-mail: petschy@avalon.aui.bme.hu

Received: Nov. 3. 2000

Abstract

In the LZ77 compressors family the compression ratio can be increased in two possible ways: first,
by better parsing of the input data into Kdistance, length> pairs and <liieral> characters, and second,
by better encoding of the result of the parsing.

The parsing can be enhanced by increasing the size of the sliding window and by using
sophisticated parser heuristics to decide which match to take and which to discard. This topic was
studied by several people already and is beyond the scope of this paper.

The efficiency of coding depends on how good estimates we can give on the probabilities of
the distance, length and literal values. The most widely used LZ77 derivatives use a semi-static
approach with Huffman coding. This requires two passes over the input data and the transmission of
the codetables along with [he compressed data. too.

In this paper 1 investigate the case where constraints arc on processing power and memory at
the decompressor side. Having a certain parser, we want to code the <distance, length> pairs and
<literal> characters as effectively as possible. Because of the constraints 1 omit arithmetic code and
also omit Huffman code.

Codes for representing integers of an assumed distribution (with exponentially decaying overall
behaviour) are already proposed by several researchers. These codes are simple, require no additional
memory but can adapt only in a restricted way or not at all to the actual distribution of the values.
Thus they only perform well if the actual distribution is 'near' to the assumed one.

I will present a new family of codes that keep the simplicity of the already known codes but
can adapt better to the actual distribution through a few integer parameters. As the distribution is still
assumed to have exponentially decaying tendency these codes perform well encoding the distance
and length values, but usually arc not suitable for the literal characters.

Keywords: LZ77, compression, source coding.

1. LZ77 Compression — Introduction

The family of LZ77 derived compression algorithms is rather long. A lot of im
proved variants have been proposed since the publication of the original algorithm
[1] in 1977. Of these, some have focused on how to improve the parsing in terms of
temporal and spatial complexity, the others dealt with the coding part of the algo
rithm. Nowadays the most widely used compression programs also employ some
variation of the LZ77 algorithm (e.g.: zip, gzip, arj, rar).

mailto:petschy@avalon.aui.bme.hu

14 P A FELVgGI

The LZ77 algorithm is a dictionary-based compression method. This kind
of methods uses the principle to replace substrings of the text with references to
the dictionary. In the case of the LZ77 algorithm the dictionary is dynamic, i.e. it
changes continuously as the input is processed. As the matter of fact the dictionary
is the previously seen JV characters of the text. References to the dictionary are
made by a pair of values : <distance, length>.] The distance tells us how far
back from the current position begins the substring and the length shows how many
characters the substring consists of. Of course, there are cases when the substring
at the current position is not in the dictionary, i.e. it did not exist before. In that
very case a literal character is emitted 2 and the algorithm continues from the next
position. The <distance, length> pairs and the literal characters are then coded.
Surprisingly, a reasonable amount of compression can be achieved by storing these
values with flat binary code only without paying attention to the actual distribution.
Of course, the more sophisticated the coding part is the better (he compression wil l
be. The general block diagram of the compression process is shown in Fig. / . The
only thing that has not been mentioned yet is the coding scheme. The scheme tells
the coder how to distinguish between literals and matches, what codes to use, etc.
For an example refer to the lest results on page 21 or see [3].

INPUT PARSER INPUT PARSER CODER OUTPUT CODER OUTPUT

SCHEME

Fig. I General block diagram of the LZ77 compressor

/./. Parsing

The process of dividing the text into <distance, length> pairs (references of sub
strings in the dictionary) and <literal> characters (that are not in the dictionary yet)
is called parsing. There are several algorithms for effective parsing considering
speed and memory requirements. The parsing also affects the compression ratio,
because usually there are several matching substrings in the dictionary with the one

The original LZ77 paper used triples of <distance, length, lileral>. This is rather inefficient, so
I am using here the approach of separating the references from the literals found in [2].

2the one at the current position

LZ77 COMPRESSION 15

at the current position. The process of deciding which match to take is usually con
trolled by some heuristics. This topic has been extensively studied and is beyond
the scope of this paper.3

1.2. Coding

After parsing, coding takes place. We want to achieve as good compression as pos
sible so we must take the probability distributions of the distance, length and literal
values into account and employ some sort of source coding. The above mentioned
compression programs use Huffman coding in a semi-static manner: first they make
frequency counts, then build the appropriate code for that distribution. This method
usually gives quite good coding efficiency, although it has some drawbacks. First,
one has to process the data twice and second, one must transmit the codetables,
too. 4 I f there are limitations in processing power and memory on the decompressor
side (which is the assumption of the present investigation) one has to look for other
kinds of codes.

The flat binary code works fine of course, but we can do better than that. We
can benefit from the general observation that for the distance and length values
the smaller values tend to be more frequent and the larger values seem to occur
less frequently. For the literal values we cannot state anything similar, because the
distribution depends more on the kind of data being compressed. Because of that,
from this point we focus on the encoding of the distance and length values only.

The general observation of the distributions of the distance and length values
leads to the conclusion that the distributions have an overall exponentially decaying
tendency. Of course, this is just a rough estimate, there could be serious deviations
for some kind of files5, but for the majority of cases, it is good enough. There are
codes already that might be used for coding values with this kind of distribution, I
wi l l discuss them in more detail after the decompression part.

1.3. LZ77 Decompression

The decompression is much simpler and faster than the compression, because no
string matching is required (which is usually the most time consuming part of the
compression). After decoding a literal character there is just a memory write; after
decoding a <distance, length> pair there is just a memcpy{).

The speed of the decompression is mainly determined by the speed of the
decoder. Here we can see the asymmetric property of the LZ77 algorithm from the

3 For the ones who are interested in how the parsing is made in practice 1 suggest starting with [31
and [4], about the heuristics one might read in [5] and [6| and find further references.

4 ln practice this is usually just a marginal overhead, although for small lilcs it may become
significant.

5See more about this later; the kennedy.xls file from the Canterbury Corpus is a nice example.

P A. FELVEGI

compression-decompression point of view. I f the coder is reasonably fast6, then
decompression wil l be significantly faster than compression.

2. Simple Codes Already Known

There are already simple codes proposed by several people for assumed distribu
tions. The common in these codes is that they consist of two parts: first a unary
code, then a binary 7 code whose length is fixed or dependent on the value decoded
from the unary part.

Some of the following codes originally started coding numbers with one
instead of zero. For me starting from zero is more logical since things usually start
from zero when one works with computers. Because of that I made all the codes
start from zero.

2. / . Unary Code

This code is the simplest of all. To encode the number i > 0 one has to emit i
ones and a zero bit at the end. Since we know from [7] that there is a relationship
between the ideal coded length and the probability

U = - log2 Pi
we can calculate the probability distribution for which the code is optimal:

li = i + l,

I

As it can be seen the distribution is exponentially decaying, though the decay is far
too drastic for our current purpose.

2.2. Binary Code

Of course this code is known by everyone. To encode a number 0 < i < 2 V we
use /V bits. The implied probability distribution is

U = N,
1

ft = 2*'

'faster than ihc parser
The 8 code is an exception.

LZ7? COMPRESSION 17

i.e. uniform.
A l l the following codes have the common property that their implied proba

bility distributions lie between the binary exponential decay of the unary code and
the uniform distribution of the binary code.

2.3. Elias y and 8 Codes

These codes were first described in [8]. The y code consists of a unary and a binary
part. The length of the binary part depends on the unary value. Let the unary value
be u then the length of the binary part is lbi„ = u bits. According to [9] the implied
probability distribution is

1
P i ~ 2 (1 + 1 ? '

The 8 code is similar, but there we have y code instead of the unary code. This
way the codes grow less rapidly which corresponds to a less drastic decay in the
distribution. The implied probability distribution is

1
P i ~ 2(/ + l) (l o g 2 (i + l))2 '

2.4. Golomb and Rice Codes

These codes still consist of a unary and a binary part, yet they have an additional
integer parameter, b. Coding the value i is done in two steps according to [10].
First, write the quotient q = [i/b] with unary code, then the remainder i - qb on
either (Jog2 b\ or f log 2 b] bits coded in binary. The codelength corresponding to
the value i can be approximated from above with

k b - \ + q + \ \ Q g 2 b \ t

thus the probability distribution is

1
2i+9+fiog2fe]'

I

Rice codes have a restriction on parameter b to be an integer power of two: b =
2", a € Z + .

18 I' A FELVEG!

2.5. Start-Step-Stop Codes

Again, a unary and a binary part build the code, where the length of the binary part
is given as //„•„ = start + step • u where u is the unary coded value. The stop
parameter makes it possible to omit the zero from the end of the unary code for the
greatest values. This code was proposed in [4] and as it can be seen, it uses three
integer parameters.

3. The New Parametrized Codes

Let us suppose that there are restrictions on the decompressor side in computing
power and available memory. In this case the compression ratio can be enhanced in
two ways. First, using a more sophisticated parser algorithm, since this increases
the compressor complexity only and the decompression remains as fast as it was.
Second, employing more effective codes in the coder. We wil l deal with this second
means of enhancement in the rest of this paper.

Since we want to keep the complexity at a minimum, we omit arithmetic
coding and also omit Huffman coding. We want codes that keep the simplicity
of the above mentioned ones while they can approximate the actual probability
distribution more precisely.

Generalizing the idea of the previously mentioned codes the code still consists
of a unary and a binary part, yet the length of the binary part is an arbitrary function
of the unary value

kin = f m

Let us assume that the probability distribution is exponentially decaying, from this
we can calculate the ideal coded length:

Pi =ax-QI, i > 0,

/, = - i o g 2 f l . r a / ,

/, = - (l o g 2 « - (Wlog 2 j 0 ,
/, = ai log 2 .r - log 2 a ,

where a is chosen so that the distribution is normalized, .v > 1 is the base of the
exponent and a > 0 controls the rate of the decay. After substituting the constant
expressions with capital letters we have

/, = X/ - M .

where
X — a log 2 x,

A = - l o g 2 a .

thus the ideal coded length is a linear function of the value i to be coded.

L7.77 COMPRESSION 19

The ideal coded length is usually not integer, yet we have to deal with integer
number of bits. Anyway, we know that the length should be a linear function so we
choose / (H) to be

/ (H) = [ru + b\,

where r and b are nonnegative real numbers. The total number of bits needed then
is

/ == [t +u + ru + b\,

/ = [«(!+r) + 0+DJ.

This is a linear function of u (inside the [J), just as we wanted it to be.
We want integer parameters, because dealing with real (in practice: rational)

numbers is slower. Thus we write

P
— H
Q J

+ B.

where B, P and Q are integer parameters, (B, P > 0 and Q > 1).
We introduce a fourth parameter C to have control over the point where the

rounding jumps to the next integer value. The final form of / (i /) is then

The total number of bits needed is

Pu + C

Q
+ B.

I = 1 + u +
Pit + C

Q
+ B.

As it can be seen the code can be described with four parameters <B, C, P, Q>.
These parameters have to be optimized for the actual distribution, so we use the
codes in a semi-static manner. This is not a problem, since it is done in the com
pressor, and the decompressor wi l l need only the parameters, whose transmission
is just a very small overhead.8

The only thing that remains is to find the connection between / and u. We have
seen that /, should be a linear function of i for an exponential distribution. But what
we have now (neglecting the [j) is a linear function of u. I f the correspondence
between i and u is linear, then / wi l l be a linear function of i also. Unfortunately
that is not always the case depending on the parameters.

The relationship between u and i is

j=0

^One byte is usually enough for a parameter, so the overhead totals 4 bytes.

20 PA.FELV&JI

and it is the smallest number for which the inequality holds. It is clear that the
it = g(/) function wil l only be linear i f f(j) is constant, and usually this is not the
case.

Is it a real problem? Because of rounding, the relationship cannot be entirely
linear anyway and the actual distributions are not exactly exponential either. As we
wil l see from the test results the code performs quite well on real-world files.

Interestingly, a few of the above mentioned simple codes can be achieved
with certain parameters:

• <0.0,0,1> is the unary code
• <0,0,1,I> is the gamma code
• <B,0,P, 1> is the start-step-stop code with start = B, step = P and stop =

oo
• <B,0,(),l> is the Rice code with parameter 2B

It is clear that the proposed new code can perform better (or at least equally)
than these codes because it can exploit all the freedom offered by its parameters.

4. Empirical results

4.I. Practical Considerations

For practical reasons I have made three variants of the code using two, three and all
four parameters:

/{«)= Pu + B,

u 4- €
f(u) =

/ («) =

L Q J
Pu + C

Q
+ B.

These wi l l be referenced later as C2, C3 and C4 codes. Of course, the C4 code wil l
always be the best (or at least equal), followed either by the C2 code or the C3 code
depending on the rate of the decay of the actual distribution.

4.2. Optimizing the Parameters

As I have said before, the codes should be used in a semi-static manner, because
parameters must be optimized for the actual distribution. I made exhaustive search
with some heuristics based on the meaning of the parameters to find the optimum.
There might be a more effective optimization algorithm for that purpose, but this is
beyond the scope of the current investigation.9

yThe optimization is not easy, because we do not have the function in analytical form, thus it is
not differentiate, it is multivariate and we have to deal with integer numbers.

LZ77 COMPRESSION

• Parameter B: I thought first that the codelength based on pQ was a good
estimate 1 0, but the tests showed that it was not usually the case. Because of
that, B goes from 0 to a user defined maximum. 1 1

• Parameter C: Goes from 0 to Q - 1 since above that the effect is the same
as increasing B.

• Parameter P and Q: P goes from 0 to a user defined maximum. 1 2 Q goes
from 1 to the same maximum as P. That maximum value affects in how fine
granule can be the slope of altered. The finer the granule, the better the
approximation, but this requires more loops in the optimizer, thus slows the
process down.

4.3. The Coding Scheme Used

The coding scheme used in the tests was rather simple. The actual codes for the
length and distance values differed only, everything else was the same to have fair
comparisons. The scheme was the following:

• 1 bit decision
• 8 bits literal
• y/5/Huffman/C2/C3/C4 coded length
• binary coded the 7 lowest bits of the distance
• y/6/Huffman/C2/C3/C4 coded the remaining upper bits of the distance

4.4. Results on the Test Files

The tests run on a PC with Pentium-233MMX processor under linux. A l l the coders
and other modules were written by myself; they are not optimized (yet) for speed,
rather they help to build compression programs fast to test new ideas.

Two compression test suites were used: the Calgary Corpus and the Can
terbury Corpus as they are widely used for compression benchmarks.

In Figs. 2 and 3 the compression ratios are shown in percentage. The ratio is
computed as

compressed size
ratio = 100%

original size

so the smaller the number, the better the compression. The meaning of the columns
is:

• ent theoretical ratio based on the entropy

, 0 For i- = 0 we have / 0 = 1 + 0 + /(0) = 1 + 5.
' 'which is a small number since we suppose thai the firsi values are the most frequent ones. 1 have

used 6 in the tests.
, 2 I have used 16 for that in the tests.

P A. EELV£GI

• huf Huffman coded ratio including the codetables13

• yy, 88, y8 and by the first Greek letter tells what code was used for the
length encoding and the second corresponds to the code used for encoding
the high bits of the distance

• C2, C3 and C4 C2, C3 and C4 coded ratios

In Figs. 4 and 5 one can see the ratios against the Huffman coded sizes. The
ratio is computed as

Huffman coded size
ratio = 100% •

compressed size

so the greater the number, the better the coding efficiency. In some cases the new
codes outperform the Huffman codes (where the ratios are over 100%). 1 4

filename ent huf 77 86 7t5 S-y c2 c.3 c4

bib 32.25 32.64 37.27 36.86 36.23 37.90 32.99 32.84 32.82
bookl 41.63 41.83 51.57 49.77 49.09 52.26 43.05 43.05 42.97
bonk2 33.92 34.12 40.52 39.57 38.89 41.19 34.95 34.92 34.87

geo 69.69 70.21 81.39 82.04 79.37 84.06 73.70 73.49 73.25
news 36.92 37.23 43.06 42.01 41.31 43.77 38.32 38.14 37.99
ob j l 48.28 48.96 49.51 50.43 49.C9 50.26 49.42 49.22 49.04
obj2 33.17 33.54 35.85 35.78 35.18 36.46 34.28 34.33 33.99

paper 1 36.57 36.96 40.80 41.01 40.26 41.55 37.43 37.32 37.31
paper 2 37.97 38.37 43.91 43.77 42.98 44.70 38.96 38.77 38.77
paper3 41.24 41.69 46.67 46.86 45.95 47.57 42.21 42.06 42.06
paper4 44.46 45.09 47.42 48.79 47.74 48.48 45.34 45.21 45.14
paper5 44.23 44.93 46.58 48.04 47.01 47.60 45.08 44.92 44.88
paperG 36.80' 37.29 40.17 40.73 39.93 40.96 37.63 37.57 37.50

pie 11.66 11.87 13.32 13.04 12.90 13.46 12.29 12.38 12.22
proge 35.41 35.86 38.44 38.94 38.20 39.18 36.30 36.26 36.13
progl 23.76 24.18 26.06 26.29 25.86 26.49 24.59 24.43 24.30

progp 23.51 24.01 25.39 25.77 25.28 25.89 24.35 24.19 24.09
f.rans 20.90 21.34 22.89 22.88 22.56 23.20 21.59 21.54 21.46

total 33.31 33.60 39.16 38.43 37.79 39.81 34.48 34.44 34.32

Fig. 2 Compression ratios of Calgary Corpus [%]

Finally the times needed for the compression are presented in Figs. 6 and 7.
The values are in seconds and were measured with the unix times() function. The
letters O, C and D mean optimization, coding and decoding, respectively.15 As it

1 3 Canonical Huffman codes were used and the codetables were stored compressed similarly as in
gzip; see [3] for details.

1 4This is possible only because the codetable is included in the Huffman ratio. Anyway, real-life
applications require the codetable too, so this is a fair comparison; nevertheless, the code parameters
are also included into the ratios for the new codes.

l 5 For Huffman codes optimization should be read as code construction.

LZ77 COMMISSION 23

filename cnt huf 77 55 7<S 6f c2 c3 c4

aliee29.txt 37.09 37.43 43.93 43.30 42.58 44.65 38.04 37.97 37.95
asyoulik.txt 41.09 41.52 48.59 47.85 47.12 49.32 42.46 42.35 42.33

cp.html 34.94 35.50 37.32 37.86 37.19 38.00 35.79 35.60 35.57
fields.c 29.08 29.79 30.57 31.50 30.92 31.15 29.73 29.57 29.56

grammar, lsp 35.13 36.26 36.25 37.50 36.78 36.97 35.98 35.69 35.64
kennedy.xls 19.61 20.27 31.77 32.41 31.48 32.71 28.02 28.02 28.01

Icetl0.txt 34.21 34.47 41.11 40.15 39.48 41.78 35.17 35.11 35.07
plrabnl2.txt 41.92 42.21 51.86 50.15 49.53 52.48 43.46 43.42 43.37

pttS 11.66 11.87 13.32 13.04 12.90 13.46 12.29 12.38 12.22
sum 34.26 34.73 36.07 36.78 36.03 36.82 35.38 35.41 35.10

xargs.l 43.80 44.83 45.06 46.84 45.87 46.03 44.69 44.23 44.23
total 26.53 26.95 34.80 34.50 33.83 35.47 30.28 30.26 30.21

Fig. 3 Compression ratios of Canterbury Corpus [%]

filename 77 55 7<5 £7 c2 c3 c4

bib 87.57 88.54 90.09 86.10 98.94 99.38 99.44
bookl 81.11 84.04 85.21 80.04 97.16 97.16 97.34
book2 84.21 86.23 87.73 82.83 97.63 97.72 97.84

goo 86.27 85.58 88.46 83.53 95.27 95.54 95.86
news 86.45 88.61 90.12 85.07 97.15 97.60 98.00
objl 98.87 97.08 98.53 97.41 99.05 99.47 99.83
obj2 93.56 93.75 95.35 92.02 97.84 97.70 98.G8

paper 1 90.60 90.13 91.81 88.96 98.76 99.06 99.09
paper2 87.39 87.66 89.28 85.83 98.48 98.97 98.97
paper3 89.32 88.96 90.71 87.62 98.76 99.11 99.11
paper4 95.07 92.40 94.44 93.01 99.44 99.73 99.87
paper5 96.46 93.54 95.57 94.39 99.68 100.02 100.11
papcr6 92.84 91.56 93.38 91.04 99.10 99.25 99.44

pic 89.15 91.04 92.02 88.23 96.59 95.92 97.18
progc 93.31 92.09 93.90 91.53 98.80 98.92 99.26
progl 92.78 91.97 93.50 91.27 98.35 98.99 99.49

piogp 94.53 93.15 94.97 92.73 98.59 99.23 99.65
trans 93.23 93.27 94.57 91.96 98.83 99.08 99.43

total 85.80 87.41 88.91 84.40 97.44 97.56 97.89

Fig. 4 Ratios to Huffman coded size of Calgary Corpus [%]

turns out, the new codes perform well at decompression. I must admit (again) that
no special optimization was made in the coders, but this is hopefully a fair ground
for comparison between them.

The totals for the Canterbury Corpus are somewhat weaker than I expected.

24 P. A. FELVEGl

filename 77 85 76 5-y e2 c3 c4

ali c.e29.txt 85.21 86.45 87.92 83.83 98.39 98.60 98.63
asyoulik.txt 85.44 86.77 88.11 84.19 97.79 98.03 98.09

cp.html 95.12 93.77 95.47 93.43 99.20 99.72 99.81
fields, c 97.44 94.58 96.33 95.64 100.21 100.74 100.79

grammar, lsp 100.U3 96.71 98.59 98.09 100.77 101.62 101.74
kennedy.xls 63.78 62.52 64.38 61.96 72.32 72.32 72.34

lcetl0.txt 83.86 85.86 87.31 82.52 98.02 98.20 98.29
phabnl2.txt 81.40 84.17 85.22 80.43 97.12 97.22 97.31

ptt,5 89.15 91.04 92.02 88.23 96.59 95.92 97.18
sum 96.28 94.42 96.39 94.31 98.17 98.08 98.95

xargs.l 99.48 95.72 97.74 97.39 100.31 101.36 101.36

total 77.46 78.13 79.67 76.00 89.02 89.06 89.21

Fig. 5 Ratios to Huffman coded size of Canterbury Corpus [%]

As it turned out, the file kennedy.xls16 was responsible for this. It has extremely
odd distribution for both the lengths and the distances, thus the new code performs
poorly.

4.5. Some Probability Distributions

Here I present some probability distributions of a few files from the two corpora. The
figures differ mainly in how well the distribution follows (or omits) the supposed
exponential decay. The x-axis should be labeled as the length or distance value
while the y-axis should read probability.

Figs. 8 to U show the length distributions of the files objl, sum, alice29.txt
and kennedy.xls, respectively. The distribution gets stranger and stranger: objl has
a nice decay while kennedy.xls is very-very extreme: just a few length values are
present, the maximal probability is well over 0.5 and the corresponding length is 12!

Figs. 12 to 15 are the distance distributions of the files plrabnl2.txt, paper4,
sum and kennedy.xls. The same is true here as with the lengths : the distribution
gets more and more extreme. Again, kennedy.xls is most deviant with only a few
values present, with high probabilities and big gaps between the values.

which is over 1M and takes more than the third of the whole corpus in size.

LZ77 COMPRESSION

0.0
9

1
0.7

7 I 0.1
7

1
0.3

3
1

I 0.1
9

I

1 1 ! 1 0.
01

0.0

3
1

2
o 0.0

4
1

0.0
5

1

l 0.0
5

|
2.6

8
|

z
D

d 2 s 1 1 5 1 d ! 1 1 I 1 1 I 1 !
o 1 S3 1 s i 1 | 1 ft 1 I 1 1 i
Q
I d i

o
3 1 1 d 1 a I ! 1 I o 1 I 1 S I

u
3 1 ! 1 d

3
d 1 1 1 ! I 1 1 3 1 1 I l 1

l - I 6 I 3 1 1 1 i 1 1 d 3 3
E
pi

Q i I 1 1
t-
3 1 ! 1 1 1 1 d I I 1 I 1

%
O ! 1 § d 1 1 I 1 1 1 I d

3
o

3 1 % o !
c ! 1 1 o

3
d I 1 1 1 1 1 1 ! S l 1 o

$
p

r-
a 1 I 1 o 1 1 | 8

d 1 1 1 1 I
is
d 1 1

u
5 1 1 1 I 1 1 s

d 1 1 1 q-
o 1 § 1 1 3

a is
d d 1 1 1 d

3
o. 1 I I I 3

o

r—
3 1 1 3 I

o
3

i -± 1 1 | p i I 3 ! 1 1 3 I 1 1 1
0 i n

d | £
d

U
d 3 i i 1 3

3
D

3
p 1 1 pi

2
d I— d

r¬
d d 5 d s

s 1 1 1 © 1
o 00

%

s
p

(S
d 1 3 1 1

i¬
d 3

Q 1
3
d p p d

%

d _ d 2 4
d 1

9
d

s 1 1 5 ! 1 3 1
w.

a 1 1 3 3
2
O

s
d

3 S
p 1 1 1 1 f fS

1 1 1 1 d d i
T
d d 1 I 1 !

q 1 i 3
d p

g 1
o 1 1 1 I 1 1

l 8 I 1 3 % 3 s 1 1 o
3 1 1 1 1 1 i

j
i i 1 i -8 I 1 I ! | ! ! | I I

-
a

0.1
4

1

0.1
2

!

1 0.0
0

j

13 3 0.4
8

'

d 1 1
- O I 2

d 1 I! i| d d 1 1 1 I -
C 1 «

fS 5
I s n

n
I 1 1 1

14
0.

17
 i

a 1 d 1 Si
- O)
5 d

•n
3

2
d 1 1

=
o
3 1 1! I I

a 2
i -
3 I 1 1

c I VL
d

2
d !| 11 % S ! 1 I s

%

a a
d 3 1 is 11 3 d

r¬
d 1 I

%
u

d 3 1 1! 11 3 I ss
d 1 1 pi %

Q I 1 1 o c 11 i 1 | 1 3

c
3 3 I c (11 3 d 3 1 S

& 1 1 I fl il 1 1 I I 1 IS

?
a

3
a
d

n
p

ft
d d 1

?
o 1 i 3 i l fi 1 1 1 1 1
a

3 d 1 If 1 s 1 1 1 =

(*
3 1 1 § 1 1 5 s

r

a
d I S 3

*
d d 1 !

r !- 1 3 !3 1 1 I s

Hu
ffm

an

i

Q
3 d 1 1 ! S S3

; d 3 1 1 I

Hu
ffm

an

i

2
d 1 1 S J

d e 11 S § 3 1 I

Hu
ffm

an

i

P o ! 1 i I 1 3

1 1 3 1! 11 s §

J I 1; i
1

t 1 f 1

F/g. 6 Calgary Corpus times F/^. 7 Canterbury Corpus times

P. A. FELVEG1

10:-

0 J

6d so IOO

Fig. S o/y7 lengths

0.2 •

0 0

Fig. I I keneddy.xls lengths

0?5

0.3S

80 1 OCi

Fig. 9.sum lengths

o.n;>—

o.nooo

O.OOO-j

Fig. 12 plrabnI2.txt distances

0.01)5 :•

O.OOH

?0D3

D.00£

O.Knj'
es so i oo - w

Fig. I0alice29.txt lengths Fig. I3paper4 distances

LZ77 COMPRESSION 27

0.6- . •-- - •

0.5'r

0.4

0.3'-

0.2'

0 1

C , 0 [1 L ^ —
0 2\10' -IxtO' G*1C" 6*10' I C'^IO'

Fig. 14 sum distances Fig. 15 kennedy.xls distances

5. Possible Future Work

Another possible application of the codes could be the index compression for full-
text databases. The gaps between the indices seem to have a similar decaying
distribution as discussed here. The ones interested may find an excellent discussion
of index compression in [9].

It might be worth trying to restrict the parameters P and Q to be integer
powers of two. In that case the multiplication and division can be performed by bit
shift operations, thus the codes could be used effectively on even 8 bit micropro
cessors/controllers.17

A stop parameter could be introduced similarly as with the start-step-stop
code. This would save one bit from the unary code for the largest encoded values,
but since these values are the most rare ones, the savings might be just marginal.

As seen from the sample distributions, there are cases where the exponential
decay holds just partly or not at all. For these a different kind of / (w) should be
chosen.

6. Conclusions

I have presented a new family of codes that are parametrized by a few integers.
The codes performed quite well on the test files, nearly as good as Huffman coding.
The advantages of these codes are fast decoding and little memory requirements,
the disadvantage is that the parameters have to be optimized and this increases the
time needed for compression.

0.10,—

0 06

3.03

QvQQ
0 5x10'' 1.0\IO'l.5x10"20x10*2.5/10'

Of course, this will sacrifice some of the efficiency of the code.

28 p. A FELV£GI

References

[I] ZiV. J. - L E M P E L , A.. A Universal Algorithm for Sequential Data Compression, IEEE Trans
actions on Information Theory, 2 3 (1977).

|2] S T O R E R , J. A. - S Z Y M A N S K I , T. G.. Data Compression via Textual Substitution. Journal a]
the ACM, 29(1982).

[3] D E U T S C H , P., DEFLATE Compressed Data Format Specification Version 1.3. Network Working
Group, Request for Comments: 1951, 19%.

[4J F l A L A , E . R . - G R E E N E , D. H.. Data Compression with Finite Windows. Communications of
the ACM, 3 2 (1989).

[5J K A T A J A I N F . N . J. R A I T A . T., An Analysis of the Longest Match and the Greedy Heuristics in
Text Encoding, Journal of the ACM, 3 9 (1992).

[61 W I T T E N , 1. H. - B E L L . T. C , The Relationship between Greedy Parsing and Symbolwisc
Text Compression. Journal of the ACM, 4 1 (1994).

[7] S H A N N O N . C. E . . A Mathematical Theory of Communication, Bell Systems Technical Journal.
2 7 (1948) .

[8] E L I A S , P., Universal Codeword Sets and Representations of the Integers, IEEE Transactions
on Information Theory. 21 (1975).

19] W I T T E N , I. H. - M O F F A T , A. - B E L L , T. C . Managing Gigabytes, Van Nostrand Reinhold,
New York, 1994.

[10] G O I . O M B , S . W., Run-length Encodings, IEEE Transactions on Information Theoty, 1 2 (1966).

