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Abstract 

In the LZ77 compressors family the compression ratio can be increased in two possible ways: first, 
by better parsing of the input data into Kdistance, length> pairs and <liieral> characters, and second, 
by better encoding of the result of the parsing. 

The parsing can be enhanced by increasing the size of the sliding window and by using 
sophisticated parser heuristics to decide which match to take and which to discard. This topic was 
studied by several people already and is beyond the scope of this paper. 

The efficiency of coding depends on how good estimates we can give on the probabilities of 
the distance, length and literal values. The most widely used LZ77 derivatives use a semi-static 
approach with Huffman coding. This requires two passes over the input data and the transmission of 
the codetables along with [he compressed data. too. 

In this paper 1 investigate the case where constraints arc on processing power and memory at 
the decompressor side. Having a certain parser, we want to code the <distance, length> pairs and 
<literal> characters as effectively as possible. Because of the constraints 1 omit arithmetic code and 
also omit Huffman code. 

Codes for representing integers of an assumed distribution (with exponentially decaying overall 
behaviour) are already proposed by several researchers. These codes are simple, require no additional 
memory but can adapt only in a restricted way or not at all to the actual distribution of the values. 
Thus they only perform well if the actual distribution is 'near' to the assumed one. 

I will present a new family of codes that keep the simplicity of the already known codes but 
can adapt better to the actual distribution through a few integer parameters. As the distribution is still 
assumed to have exponentially decaying tendency these codes perform well encoding the distance 
and length values, but usually arc not suitable for the literal characters. 

Keywords: LZ77, compression, source coding. 

1. LZ77 Compression — Introduction 

The family of LZ77 derived compression algorithms is rather long. A lot of im­
proved variants have been proposed since the publication of the original algorithm 
[ 1 ] in 1977. Of these, some have focused on how to improve the parsing in terms of 
temporal and spatial complexity, the others dealt with the coding part of the algo­
rithm. Nowadays the most widely used compression programs also employ some 
variation of the LZ77 algorithm (e.g.: zip, gzip, arj, rar). 
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The LZ77 algorithm is a dictionary-based compression method. This kind 
of methods uses the principle to replace substrings of the text with references to 
the dictionary. In the case of the LZ77 algorithm the dictionary is dynamic, i.e. it 
changes continuously as the input is processed. As the matter of fact the dictionary 
is the previously seen JV characters of the text. References to the dictionary are 
made by a pair of values : <distance, length>.] The distance tells us how far 
back from the current position begins the substring and the length shows how many 
characters the substring consists of. Of course, there are cases when the substring 
at the current position is not in the dictionary, i.e. it did not exist before. In that 
very case a literal character is emitted 2 and the algorithm continues from the next 
position. The <distance, length> pairs and the literal characters are then coded. 
Surprisingly, a reasonable amount of compression can be achieved by storing these 
values with flat binary code only without paying attention to the actual distribution. 
Of course, the more sophisticated the coding part is the better (he compression wil l 
be. The general block diagram of the compression process is shown in Fig. / . The 
only thing that has not been mentioned yet is the coding scheme. The scheme tells 
the coder how to distinguish between literals and matches, what codes to use, etc. 
For an example refer to the lest results on page 21 or see [3]. 

INPUT PARSER INPUT PARSER CODER OUTPUT CODER OUTPUT 

SCHEME 

Fig. I General block diagram of the LZ77 compressor 

/./. Parsing 

The process of dividing the text into <distance, length> pairs (references of sub­
strings in the dictionary) and <literal> characters (that are not in the dictionary yet) 
is called parsing. There are several algorithms for effective parsing considering 
speed and memory requirements. The parsing also affects the compression ratio, 
because usually there are several matching substrings in the dictionary with the one 

The original LZ77 paper used triples of <distance, length, lileral>. This is rather inefficient, so 
I am using here the approach of separating the references from the literals found in [2]. 

2the one at the current position 
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at the current position. The process of deciding which match to take is usually con­
trolled by some heuristics. This topic has been extensively studied and is beyond 
the scope of this paper.3 

1.2. Coding 

After parsing, coding takes place. We want to achieve as good compression as pos­
sible so we must take the probability distributions of the distance, length and literal 
values into account and employ some sort of source coding. The above mentioned 
compression programs use Huffman coding in a semi-static manner: first they make 
frequency counts, then build the appropriate code for that distribution. This method 
usually gives quite good coding efficiency, although it has some drawbacks. First, 
one has to process the data twice and second, one must transmit the codetables, 
too. 4 I f there are limitations in processing power and memory on the decompressor 
side (which is the assumption of the present investigation) one has to look for other 
kinds of codes. 

The flat binary code works fine of course, but we can do better than that. We 
can benefit from the general observation that for the distance and length values 
the smaller values tend to be more frequent and the larger values seem to occur 
less frequently. For the literal values we cannot state anything similar, because the 
distribution depends more on the kind of data being compressed. Because of that, 
from this point we focus on the encoding of the distance and length values only. 

The general observation of the distributions of the distance and length values 
leads to the conclusion that the distributions have an overall exponentially decaying 
tendency. Of course, this is just a rough estimate, there could be serious deviations 
for some kind of files5, but for the majority of cases, it is good enough. There are 
codes already that might be used for coding values with this kind of distribution, I 
wi l l discuss them in more detail after the decompression part. 

1.3. LZ77 Decompression 

The decompression is much simpler and faster than the compression, because no 
string matching is required (which is usually the most time consuming part of the 
compression). After decoding a literal character there is just a memory write; after 
decoding a <distance, length> pair there is just a memcpy{). 

The speed of the decompression is mainly determined by the speed of the 
decoder. Here we can see the asymmetric property of the LZ77 algorithm from the 

3 For the ones who are interested in how the parsing is made in practice 1 suggest starting with [31 
and [4], about the heuristics one might read in [5] and [6| and find further references. 

4 ln practice this is usually just a marginal overhead, although for small lilcs it may become 
significant. 

5See more about this later; the kennedy.xls file from the Canterbury Corpus is a nice example. 
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compression-decompression point of view. I f the coder is reasonably fast6, then 
decompression wil l be significantly faster than compression. 

2. Simple Codes Already Known 

There are already simple codes proposed by several people for assumed distribu­
tions. The common in these codes is that they consist of two parts: first a unary 
code, then a binary 7 code whose length is fixed or dependent on the value decoded 
from the unary part. 

Some of the following codes originally started coding numbers with one 
instead of zero. For me starting from zero is more logical since things usually start 
from zero when one works with computers. Because of that I made all the codes 
start from zero. 

2. / . Unary Code 

This code is the simplest of all. To encode the number i > 0 one has to emit i 
ones and a zero bit at the end. Since we know from [7] that there is a relationship 
between the ideal coded length and the probability 

U = - log2 Pi 
we can calculate the probability distribution for which the code is optimal: 

li = i + l, 

I 

As it can be seen the distribution is exponentially decaying, though the decay is far 
too drastic for our current purpose. 

2.2. Binary Code 

Of course this code is known by everyone. To encode a number 0 < i < 2 V we 
use /V bits. The implied probability distribution is 

U = N, 
1 

ft = 2*' 

'faster than ihc parser 
The 8 code is an exception. 
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i.e. uniform. 
A l l the following codes have the common property that their implied proba­

bility distributions lie between the binary exponential decay of the unary code and 
the uniform distribution of the binary code. 

2.3. Elias y and 8 Codes 

These codes were first described in [8]. The y code consists of a unary and a binary 
part. The length of the binary part depends on the unary value. Let the unary value 
be u then the length of the binary part is lbi„ = u bits. According to [9] the implied 
probability distribution is 

1 
P i ~ 2 ( 1 + 1 ? ' 

The 8 code is similar, but there we have y code instead of the unary code. This 
way the codes grow less rapidly which corresponds to a less drastic decay in the 
distribution. The implied probability distribution is 

1 
P i ~ 2(/ + l ) ( l o g 2 ( i + l ) )2 ' 

2.4. Golomb and Rice Codes 

These codes still consist of a unary and a binary part, yet they have an additional 
integer parameter, b. Coding the value i is done in two steps according to [10]. 
First, write the quotient q = [i/b] with unary code, then the remainder i - qb on 
either (Jog2 b\ or f log 2 b] bits coded in binary. The codelength corresponding to 
the value i can be approximated from above with 

k b - \ + q + \ \ Q g 2 b \ t 

thus the probability distribution is 

1 
2i+9+fiog2fe]' 

I 

Rice codes have a restriction on parameter b to be an integer power of two: b = 
2", a € Z + . 
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2.5. Start-Step-Stop Codes 

Again, a unary and a binary part build the code, where the length of the binary part 
is given as //„•„ = start + step • u where u is the unary coded value. The stop 
parameter makes it possible to omit the zero from the end of the unary code for the 
greatest values. This code was proposed in [4] and as it can be seen, it uses three 
integer parameters. 

3. The New Parametrized Codes 

Let us suppose that there are restrictions on the decompressor side in computing 
power and available memory. In this case the compression ratio can be enhanced in 
two ways. First, using a more sophisticated parser algorithm, since this increases 
the compressor complexity only and the decompression remains as fast as it was. 
Second, employing more effective codes in the coder. We wil l deal with this second 
means of enhancement in the rest of this paper. 

Since we want to keep the complexity at a minimum, we omit arithmetic 
coding and also omit Huffman coding. We want codes that keep the simplicity 
of the above mentioned ones while they can approximate the actual probability 
distribution more precisely. 

Generalizing the idea of the previously mentioned codes the code still consists 
of a unary and a binary part, yet the length of the binary part is an arbitrary function 
of the unary value 

kin = f m 

Let us assume that the probability distribution is exponentially decaying, from this 
we can calculate the ideal coded length: 

Pi =ax-QI, i > 0, 

/, = - i o g 2 f l . r a / , 

/, = - ( l o g 2 « - (Wlog 2 j 0 , 
/, = ai log 2 .r - log 2 a , 

where a is chosen so that the distribution is normalized, .v > 1 is the base of the 
exponent and a > 0 controls the rate of the decay. After substituting the constant 
expressions with capital letters we have 

/, = X/ - M . 

where 
X — a log 2 x, 

A = - l o g 2 a . 

thus the ideal coded length is a linear function of the value i to be coded. 
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The ideal coded length is usually not integer, yet we have to deal with integer 
number of bits. Anyway, we know that the length should be a linear function so we 
choose / ( H ) to be 

/ ( H ) = [ru + b\, 

where r and b are nonnegative real numbers. The total number of bits needed then 
is 

/ == [ t +u + ru + b\, 

/ = [«(!+r) + 0+DJ. 

This is a linear function of u (inside the [ J), just as we wanted it to be. 
We want integer parameters, because dealing with real (in practice: rational) 

numbers is slower. Thus we write 

P 
— H 
Q J 

+ B. 

where B, P and Q are integer parameters, (B, P > 0 and Q > 1). 
We introduce a fourth parameter C to have control over the point where the 

rounding jumps to the next integer value. The final form of / ( i / ) is then 

The total number of bits needed is 

Pu + C 

Q 
+ B. 

I = 1 + u + 
Pit + C 

Q 
+ B. 

As it can be seen the code can be described with four parameters <B, C, P, Q>. 
These parameters have to be optimized for the actual distribution, so we use the 
codes in a semi-static manner. This is not a problem, since it is done in the com­
pressor, and the decompressor wi l l need only the parameters, whose transmission 
is just a very small overhead.8 

The only thing that remains is to find the connection between / and u. We have 
seen that /, should be a linear function of i for an exponential distribution. But what 
we have now (neglecting the [ j ) is a linear function of u. I f the correspondence 
between i and u is linear, then / wi l l be a linear function of i also. Unfortunately 
that is not always the case depending on the parameters. 

The relationship between u and i is 

j=0 

^One byte is usually enough for a parameter, so the overhead totals 4 bytes. 
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and it is the smallest number for which the inequality holds. It is clear that the 
it = g(/) function wil l only be linear i f f(j) is constant, and usually this is not the 
case. 

Is it a real problem? Because of rounding, the relationship cannot be entirely 
linear anyway and the actual distributions are not exactly exponential either. As we 
wil l see from the test results the code performs quite well on real-world files. 

Interestingly, a few of the above mentioned simple codes can be achieved 
with certain parameters: 

• <0.0,0,1> is the unary code 
• <0,0,1,I> is the gamma code 
• <B,0,P, 1> is the start-step-stop code with start = B, step = P and stop = 

oo 
• <B,0,(),l> is the Rice code with parameter 2B 

It is clear that the proposed new code can perform better (or at least equally) 
than these codes because it can exploit all the freedom offered by its parameters. 

4. Empirical results 

4.I. Practical Considerations 

For practical reasons I have made three variants of the code using two, three and all 
four parameters: 

/{«)= Pu + B, 

u 4- € 
f(u) = 

/ ( « ) = 

L Q J 
Pu + C 

Q 
+ B. 

These wi l l be referenced later as C2, C3 and C4 codes. Of course, the C4 code wil l 
always be the best (or at least equal), followed either by the C2 code or the C3 code 
depending on the rate of the decay of the actual distribution. 

4.2. Optimizing the Parameters 

As I have said before, the codes should be used in a semi-static manner, because 
parameters must be optimized for the actual distribution. I made exhaustive search 
with some heuristics based on the meaning of the parameters to find the optimum. 
There might be a more effective optimization algorithm for that purpose, but this is 
beyond the scope of the current investigation.9 

yThe optimization is not easy, because we do not have the function in analytical form, thus it is 
not differentiate, it is multivariate and we have to deal with integer numbers. 
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• Parameter B: I thought first that the codelength based on pQ was a good 
estimate 1 0, but the tests showed that it was not usually the case. Because of 
that, B goes from 0 to a user defined maximum. 1 1 

• Parameter C: Goes from 0 to Q - 1 since above that the effect is the same 
as increasing B. 

• Parameter P and Q: P goes from 0 to a user defined maximum. 1 2 Q goes 
from 1 to the same maximum as P. That maximum value affects in how fine 
granule can be the slope of altered. The finer the granule, the better the 
approximation, but this requires more loops in the optimizer, thus slows the 
process down. 

4.3. The Coding Scheme Used 

The coding scheme used in the tests was rather simple. The actual codes for the 
length and distance values differed only, everything else was the same to have fair 
comparisons. The scheme was the following: 

• 1 bit decision 
• 8 bits literal 
• y/5/Huffman/C2/C3/C4 coded length 
• binary coded the 7 lowest bits of the distance 
• y/6/Huffman/C2/C3/C4 coded the remaining upper bits of the distance 

4.4. Results on the Test Files 

The tests run on a PC with Pentium-233MMX processor under linux. A l l the coders 
and other modules were written by myself; they are not optimized (yet) for speed, 
rather they help to build compression programs fast to test new ideas. 

Two compression test suites were used: the Calgary Corpus and the Can­
terbury Corpus as they are widely used for compression benchmarks. 

In Figs. 2 and 3 the compression ratios are shown in percentage. The ratio is 
computed as 

compressed size 
ratio = 100% 

original size 

so the smaller the number, the better the compression. The meaning of the columns 
is: 

• ent theoretical ratio based on the entropy 

, 0 For i- = 0 we have / 0 = 1 + 0 + /(0) = 1 + 5. 
' 'which is a small number since we suppose thai the firsi values are the most frequent ones. 1 have 

used 6 in the tests. 
, 2 I have used 16 for that in the tests. 
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• huf Huffman coded ratio including the codetables13 

• yy, 88, y8 and by the first Greek letter tells what code was used for the 
length encoding and the second corresponds to the code used for encoding 
the high bits of the distance 

• C2, C3 and C4 C2, C3 and C4 coded ratios 

In Figs. 4 and 5 one can see the ratios against the Huffman coded sizes. The 
ratio is computed as 

Huffman coded size 
ratio = 100% • 

compressed size 

so the greater the number, the better the coding efficiency. In some cases the new 
codes outperform the Huffman codes (where the ratios are over 100%). 1 4 

filename ent huf 77 86 7t5 S-y c2 c.3 c4 

bib 32.25 32.64 37.27 36.86 36.23 37.90 32.99 32.84 32.82 
bookl 41.63 41.83 51.57 49.77 49.09 52.26 43.05 43.05 42.97 
bonk2 33.92 34.12 40.52 39.57 38.89 41.19 34.95 34.92 34.87 

geo 69.69 70.21 81.39 82.04 79.37 84.06 73.70 73.49 73.25 
news 36.92 37.23 43.06 42.01 41.31 43.77 38.32 38.14 37.99 
ob j l 48.28 48.96 49.51 50.43 49.C9 50.26 49.42 49.22 49.04 
obj2 33.17 33.54 35.85 35.78 35.18 36.46 34.28 34.33 33.99 

paper 1 36.57 36.96 40.80 41.01 40.26 41.55 37.43 37.32 37.31 
paper 2 37.97 38.37 43.91 43.77 42.98 44.70 38.96 38.77 38.77 
paper3 41.24 41.69 46.67 46.86 45.95 47.57 42.21 42.06 42.06 
paper4 44.46 45.09 47.42 48.79 47.74 48.48 45.34 45.21 45.14 
paper5 44.23 44.93 46.58 48.04 47.01 47.60 45.08 44.92 44.88 
paperG 36.80' 37.29 40.17 40.73 39.93 40.96 37.63 37.57 37.50 

pie 11.66 11.87 13.32 13.04 12.90 13.46 12.29 12.38 12.22 
proge 35.41 35.86 38.44 38.94 38.20 39.18 36.30 36.26 36.13 
progl 23.76 24.18 26.06 26.29 25.86 26.49 24.59 24.43 24.30 

progp 23.51 24.01 25.39 25.77 25.28 25.89 24.35 24.19 24.09 
f.rans 20.90 21.34 22.89 22.88 22.56 23.20 21.59 21.54 21.46 

total 33.31 33.60 39.16 38.43 37.79 39.81 34.48 34.44 34.32 

Fig. 2 Compression ratios of Calgary Corpus [%] 

Finally the times needed for the compression are presented in Figs. 6 and 7. 
The values are in seconds and were measured with the unix times() function. The 
letters O, C and D mean optimization, coding and decoding, respectively.15 As it 

1 3 Canonical Huffman codes were used and the codetables were stored compressed similarly as in 
gzip; see [3] for details. 

1 4This is possible only because the codetable is included in the Huffman ratio. Anyway, real-life 
applications require the codetable too, so this is a fair comparison; nevertheless, the code parameters 
are also included into the ratios for the new codes. 

l 5 For Huffman codes optimization should be read as code construction. 
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filename cnt huf 77 55 7<S 6f c2 c3 c4 

aliee29.txt 37.09 37.43 43.93 43.30 42.58 44.65 38.04 37.97 37.95 
asyoulik.txt 41.09 41.52 48.59 47.85 47.12 49.32 42.46 42.35 42.33 

cp.html 34.94 35.50 37.32 37.86 37.19 38.00 35.79 35.60 35.57 
fields.c 29.08 29.79 30.57 31.50 30.92 31.15 29.73 29.57 29.56 

grammar, lsp 35.13 36.26 36.25 37.50 36.78 36.97 35.98 35.69 35.64 
kennedy.xls 19.61 20.27 31.77 32.41 31.48 32.71 28.02 28.02 28.01 

Icetl0.txt 34.21 34.47 41.11 40.15 39.48 41.78 35.17 35.11 35.07 
plrabnl2.txt 41.92 42.21 51.86 50.15 49.53 52.48 43.46 43.42 43.37 

pttS 11.66 11.87 13.32 13.04 12.90 13.46 12.29 12.38 12.22 
sum 34.26 34.73 36.07 36.78 36.03 36.82 35.38 35.41 35.10 

xargs.l 43.80 44.83 45.06 46.84 45.87 46.03 44.69 44.23 44.23 
total 26.53 26.95 34.80 34.50 33.83 35.47 30.28 30.26 30.21 

Fig. 3 Compression ratios of Canterbury Corpus [%] 

filename 77 55 7<5 £7 c2 c3 c4 

bib 87.57 88.54 90.09 86.10 98.94 99.38 99.44 
bookl 81.11 84.04 85.21 80.04 97.16 97.16 97.34 
book2 84.21 86.23 87.73 82.83 97.63 97.72 97.84 

goo 86.27 85.58 88.46 83.53 95.27 95.54 95.86 
news 86.45 88.61 90.12 85.07 97.15 97.60 98.00 
objl 98.87 97.08 98.53 97.41 99.05 99.47 99.83 
obj2 93.56 93.75 95.35 92.02 97.84 97.70 98.G8 

paper 1 90.60 90.13 91.81 88.96 98.76 99.06 99.09 
paper2 87.39 87.66 89.28 85.83 98.48 98.97 98.97 
paper3 89.32 88.96 90.71 87.62 98.76 99.11 99.11 
paper4 95.07 92.40 94.44 93.01 99.44 99.73 99.87 
paper5 96.46 93.54 95.57 94.39 99.68 100.02 100.11 
papcr6 92.84 91.56 93.38 91.04 99.10 99.25 99.44 

pic 89.15 91.04 92.02 88.23 96.59 95.92 97.18 
progc 93.31 92.09 93.90 91.53 98.80 98.92 99.26 
progl 92.78 91.97 93.50 91.27 98.35 98.99 99.49 

piogp 94.53 93.15 94.97 92.73 98.59 99.23 99.65 
trans 93.23 93.27 94.57 91.96 98.83 99.08 99.43 

total 85.80 87.41 88.91 84.40 97.44 97.56 97.89 

Fig. 4 Ratios to Huffman coded size of Calgary Corpus [%] 

turns out, the new codes perform well at decompression. I must admit (again) that 
no special optimization was made in the coders, but this is hopefully a fair ground 
for comparison between them. 

The totals for the Canterbury Corpus are somewhat weaker than I expected. 
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filename 77 85 76 5-y e2 c3 c4 

ali c.e29.txt 85.21 86.45 87.92 83.83 98.39 98.60 98.63 
asyoulik.txt 85.44 86.77 88.11 84.19 97.79 98.03 98.09 

cp.html 95.12 93.77 95.47 93.43 99.20 99.72 99.81 
fields, c 97.44 94.58 96.33 95.64 100.21 100.74 100.79 

grammar, lsp 100.U3 96.71 98.59 98.09 100.77 101.62 101.74 
kennedy.xls 63.78 62.52 64.38 61.96 72.32 72.32 72.34 

lcetl0.txt 83.86 85.86 87.31 82.52 98.02 98.20 98.29 
phabnl2.txt 81.40 84.17 85.22 80.43 97.12 97.22 97.31 

ptt,5 89.15 91.04 92.02 88.23 96.59 95.92 97.18 
sum 96.28 94.42 96.39 94.31 98.17 98.08 98.95 

xargs.l 99.48 95.72 97.74 97.39 100.31 101.36 101.36 

total 77.46 78.13 79.67 76.00 89.02 89.06 89.21 

Fig. 5 Ratios to Huffman coded size of Canterbury Corpus [%] 

As it turned out, the file kennedy.xls16 was responsible for this. It has extremely 
odd distribution for both the lengths and the distances, thus the new code performs 
poorly. 

4.5. Some Probability Distributions 

Here I present some probability distributions of a few files from the two corpora. The 
figures differ mainly in how well the distribution follows (or omits) the supposed 
exponential decay. The x-axis should be labeled as the length or distance value 
while the y-axis should read probability. 

Figs. 8 to U show the length distributions of the files objl, sum, alice29.txt 
and kennedy.xls, respectively. The distribution gets stranger and stranger: objl has 
a nice decay while kennedy.xls is very-very extreme: just a few length values are 
present, the maximal probability is well over 0.5 and the corresponding length is 12! 

Figs. 12 to 15 are the distance distributions of the files plrabnl2.txt, paper4, 
sum and kennedy.xls. The same is true here as with the lengths : the distribution 
gets more and more extreme. Again, kennedy.xls is most deviant with only a few 
values present, with high probabilities and big gaps between the values. 

which is over 1M and takes more than the third of the whole corpus in size. 
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5. Possible Future Work 

Another possible application of the codes could be the index compression for full-
text databases. The gaps between the indices seem to have a similar decaying 
distribution as discussed here. The ones interested may find an excellent discussion 
of index compression in [9]. 

It might be worth trying to restrict the parameters P and Q to be integer 
powers of two. In that case the multiplication and division can be performed by bit 
shift operations, thus the codes could be used effectively on even 8 bit micropro­
cessors/controllers.17 

A stop parameter could be introduced similarly as with the start-step-stop 
code. This would save one bit from the unary code for the largest encoded values, 
but since these values are the most rare ones, the savings might be just marginal. 

As seen from the sample distributions, there are cases where the exponential 
decay holds just partly or not at all. For these a different kind of / ( w ) should be 
chosen. 

6. Conclusions 

I have presented a new family of codes that are parametrized by a few integers. 
The codes performed quite well on the test files, nearly as good as Huffman coding. 
The advantages of these codes are fast decoding and little memory requirements, 
the disadvantage is that the parameters have to be optimized and this increases the 
time needed for compression. 
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Of course, this will sacrifice some of the efficiency of the code. 
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