
PERIODICA POIYTECHNICA SCR. EL ENG. VOL. 44. NO. J. PP 29^)9 (2000)

TIME INDEPENDENT INVOCATION IN JAVA CMS1

Markus H O F * and Attila U L B E R T * *
'Computer Science Department

Johannes Kepler University
A^1040. FreistadterstralJe 315

Linz, Austria
e-mail: niarkLis.hof@eracom-tcch.com

** Department of General Computer Science
Etttvos LoriSnd University

H- l 117 Pazmany Pdter sdtany 1/D
Budapest, Hungary

e-mail: mormota@elte.hu

Received: 10 Nov. 2000

Abstract
Most object-oriented languages for distributed programming offer a limited number of invocation se­
mantics. At best, they support a default mode of synchronous remote invocation, plus some keywords
to express asynchronous messaging. The very few approaches that offer rich libraries of invocation
abstractions usually introduce significant overhead and do not support the composition of those ab­
stractions, however, one can never predict the need of the developer, especially in the fast developing
and changing mobile environments.

This paper describes a pragmatic approach for abstracting remote invocations in mobile en­
vironments and presents the time-independent invocation and Us formal description. Invocation
semantics, such as synchronous, transactional, or replicated, arc all considered first class citizens.
We completely separate the class definition from the invocation semantics of its methods and we
go a step further towards full polymorphism: the invocation of the same method can have different
semantics on two objects of the same class. The very same invocation on a given object may even
vary according to the client performing the invocation.
Keywords: distributed objects, middleware, abstractions, remote invocation, formal description tech­
niques.

Introduction
The current state of the art for communication paradigms in mobile computing is
not really fixed. There is still much discussion about the right way in which a
mobile client should interact with the rest of the world. Should we use events or an
RPC like mechanism? Should we implement total transparency or should or even
do we have to give the users some degrees of freedom? Seen on a more basic level:
Should we use synchronous or asynchronous communication mechanisms?

This research work was supported by Grant Nr. FKFP 0206/97

mailto:niarkLis.hof@eracom-tcch.com
mailto:mormota@elte.hu

30 M HOFanil A. UUihXT

In our opinion, one cannot decide on this issue right now. We think, that even
if we could decide, we should not do so, but offer a flexible and fast communication
mechanism that provides all the desired degrees of freedom.

Exactly the above mentioned freedom is offered by our composable message
semantics framework (CMS) [6] proposed in this paper. The basic communication
paradigm offered to the application programmer is the illusion of a dynamically
bound method invocation. However, behind the scenes, one has the possibility to
arbitrarily change the actual invocation semantic to the desired parameters. The
framework hides all these details from the programmer, who therefore can abstract
from these details and is able to concentrate on the functional aspects of his/her
application.

Wc implemented our CMS framework in two environments: Java [12] and
Oberon [18]. All examples and references in this paper relate to the Java imple­
mentation (JavaCMS). This platform allows programmers to 'play' with semantics
for message transmission. It allows arbitrary new semantics or the composition
of existing semantic actions into a new semantic, e.g. one could combine, asyn­
chronous invocation with an infinite retry mechanism and a semantic that ensures
some synchronization constraints. Every method of a remotely accessed object can
have its own especially tailored semantic. The framework allows even alias like
access to its objects, where every alias can have other associated semantics, i.e. one
can use different semantics depending on the client that accesses the object.

The main restrictions of the JavaCMS framework - in regard to mobile com­
puting - are the requirement for Java on both client-side and server-side, as well as
the fixation of the client to interact with the network through the method invoca­
tion paradigm. However, we deem these restrictions as minor. Mainly because the
method invocation paradigm does not serve as the true communication mechanism,
but as the interface metaphor that simplifies the design and the implementation of
client-side applications.

The paper is separated into several sections. Section I introduces the JavaCMS
system with the help of a generic example and lays a solid ground by defining a
formal background. Additionally, this section demonstrates some possible applica­
tions of the CMS framework as a platform for mobile computing. Section 2 presents
a possible formal specification of time-independent invocation. Section 3 explains
the implementation of Til . Finally. Section 4 and 5 show some measurements and
conclude the paper.

1. The JavaCMS System
In this section, we describe our basic framework JavaCMS using two different
approaches. First, we give an informal introduction with the help of an extended
example. Second, we show a small example to demonstrate the uses of JavaCMS
as a platform for mobile computing. Finally, we try to give a formal description of
the framework with the help of evolving algebras.

TIME INDEPENDENT INVOCATION IN JAVA CMS 31

l.l. Putting JavaCMS to Work

This section gives an overview of our library using the 'Dining Philosophers' prob­
lem [6] as an example. This problem is well suited to show the advantages of our
framework.

The message semantics of common object-oriented environments are fixed.
The system either enforces one fixed semantic, or allows the choice between a
small fixed set of semantics, each associated with some pre-defined keywords. Our
invocation abstractions offer an open way to create arbitrarily many new kinds of
semantics. For every method one can define the semantic that handles the invocation
of that method: this is done by creating an instance of the invocation class and
assigning it to the desired method. While doing so, two semantics must be supplied:
caller-side (client) and callee-side (server) invocation semantics (see Fig. I).

stub
c o d e
Ci!

caller —invocat ion

network

caller-side
invocation
semantic

skeleton
cal lee-s ide
invocation
semantic

receiver
(real

object)

Fig. 1 Layout of intercepted invocations
The chosen client-side semantic is executed on the host of the stub object

while the corresponding server-side semantic is executed on the host of the real
object. This distinction has two advantages. First, the programmer can decide,
individually for each part of the invocation semantic, where it should be executed,
i.e., on the client or on the server. Second, when several hosts have a stub of the same
server object, a client-based modification is executed only when the corresponding
stub object is invoked. A server side modification is executed whenever a method
is invoked on the real server object, i.e., regardless of the stub that initiated the
invocation.

To introduce our implementation of the dining philosophers (see Fig. 2) we
first present a straightforward RM1 implementation that ignores all synchronization
concerns and which is - of course - not correct.
Interface
i n t e r f a c e P h i l o s o p h e r extends Remote {

v o i d t h i n k () ,-
v o i d e a t () ;

}

32 M HOP and A U1.BERT

Fig. 2 Table layout for five philosophers

Server
c l a s s P h i l l m p l extends UnicastRemoteObject implements P h i l o s o p h e r {

s t a t i c Fork f o r k s [] - new F o r k [5] ;
i n t l e f t , r i g h t ; // index of l e f t and r i g h t f o r k
s t a t i c {

f o r (i n t i = 0 ; i < 5 ; i++) f o r k s [i) - new Fork () ;
)
P h i l l m p l () throws RemoteException { }

v o i d t h i n k {) (...)
v o i d e at () {

}

p u b l i c s t a t i c v o i d m a i n (S t r i n g a r g s []) throws E x c e p t i o n {
f o r (i n t i = 0 ; i < 5 ; i + +) {

P h i l l m p l p = new P h i l l m p l () ;
i f (i= = 4) {

p . l e f t = 0 ; p . r i g h t = 4 ;
} e l s e {

p . l e f t = i ; p . r i g h t = i + l ;
1
N a m i n g . b i n d (" P h i l o s o p h e r " + i , p) ;

}
)

}

TIME INDEPENDENT INVOCATION IN JAVA CMS 33

Client
p u b l i c c l a s s C l i e n t {

p u b l i c s t a t i c v o i d ma in { S t r i n g a r g s []) t h r o w s E x c e p t i o n {
P h i l o s o p h e r p = (P h i l o s o p h e r)
N a m i n g . l o o k u p ! " / / 1 2 7 . 0 . 0 . 1 / P h i l o s o p h e r " + n u m) ;
f o r { ; ;) [

p . t h i n k () ;
p - e a t O ;

}

1
)

To correct this faulty behavior we have to insert a synchronization code. The
straightforward approach is to protect the invocation of eat by declaring it as a
synchronized method. Unfortunately, it is not possible to use the synchronized key­
word for the declaration of eat, as it synchronizes on the receiver of the message eat.
However, we need to synchronize on the receiver's two forks. Therefore, we need
to use another kind of synchronization: synchronized blocks. Synchronized blocks
intermix application (functional) code with code responsible to guarantee synchro­
nization constraints (non-functional requirement) and requires us to redesign the
method eat.
v o i d e a t () {

synchronized (forksjleft]) {
synchronized (forkslright]) {

Stub
c o d e

caller

skeleton
lock
filter

Q receiver
(real

object)

Fig. 3 Semantic for eat using JavaCMS
Using our composable message semantics (CMS) we can avoid this mixture.

We use JavaCMS to modify the invocation semantic of the method eat (see Fig. 3).

34 M. HOF and A IUBF.RT

Server
p u b l i c c l a s s P h i l l m p l {

v o i d t h i n k () { . . .]
v o i d e a t () {

}

p u b l i c s t a t i c v o i d main (S t r i n g a r g s []) throws E x c e p t i o n {
Fork f o r k s [] = new F o r k [5] ;
i n t l e f t , r i g h t ; // i n d e x of l e f t and r i g h t f o r k
i n t i ;
f o r (i = 0 ; i < 5 ; i++)

f o r k s [i] - new Fork {) ,-
f o r (i = 0 ; i < 5 ; i++) (

P h i l l m p l p = new P h i l l m p l () ;
C l a s s l n f o c i - new C l a s s l n f o (p) ;
C a l l e e l n v o c a t i o n i n v = new D i r e c t l n v o c a t i o n () ;
i f (i ==4) {

l e f t = 0 ; r i g h t = 4 ;
) e l s e {

l e f t = i j r i g h t = i + l ;
)
i n v - new Synchronizedlnvocation{inv, f o r k s [l e f t)) ;
i n v = new Synchronizedlnvocationfinv, f o r k s [r i g h t]) ;
ci.getMethod("eat").setCallee I n v o c a t i o n (i n v) ;
R e m o t e . e x p o r t (" P h i l o s o p h e r " + i , p, c i) ;

}
}

I
Client
p u b l i c c l a s s C l i e n t {

p u b l i c s t a t i c v o i d main (S t r i n g a r g s []) throws E x c e p t i o n {
I n e t A d d r e s s s e r v e r = InetAddress.getByName("127.0.0.1");
i n t nunt = ...; // number o f d e s i r e d p h i l o s o p h e r
P h i l l m p l p = (P h i l l m p l) R e m o t e . g e t (s e r v e r , B P h i l o s o p h e r " + n u m) ;
f o r (; ;) {

p . t h i n k () ;
p .eat () ;

}

}

}
On the server, we first initialize the necessary forks, i.e. forks. Afterwards,

we use a loop to initialize our philosophers. The Clcisslnfo constructor returns a
Class object for the passed object instance. This Class object contains information
about all the object's methods (including inherited ones). In particular, it contains

VME INDEPENDENT INVOCATION IN JAVA CMS 35

the necessary information to change the invocation semantics. We assign the new
callee-side invocation semantic inv to the method eat; afterwards, we export the
philosopher using the assigned semantic information ci by calling Remote.export.

In inv we define the callee-side semantic to be used for the method cat of the
different philosophers. The semantic consist of two locking filters (Synchronized­
lnvocation) and the invocation abstraction Directlnvocation (see Fig. 3), which is
part of the CMS framework and actually invokes the method. A locking filter first
acquires its assigned resource (a fork in this example) and then passes the invoca­
tion on. The above example shows the separation of functional and non-functional
code. The code necessary for die synchronization is concentrated within the initial­
ization part. The actual application code stays as if there were no synchronization
constraints.

In all five passes through this loop we create new instances of the locking
filters with different associated objects (forks). This results in different semantics
of the eat method for different philosophers (see Fig. 4). All semantics use two
synchronization filters but synchronize on different objects.

caller

eat

eat

s tub
c o d e

s e m a n t i c s
supplied by

CMS. Remote

stub code
s e m a n t i c s

supplied by
CMS. Remote

fork[2]
skeleton

1 lock lock
filter —* filter

Direct
Invocation —• phil[2] <

fork[3]
skeleton

J lock lock
H filter filter

Direct
Invocation

fork[4]

Fig. 4 Semantics for eat of different philosophers
The synchronization filter itself is a Java class that extends the abstract server-

side filter class and overrides the method invoke. We introduced the filter for the
example but it can be used by other arbitrary applications that need to synchronize
on a specific object.
p u b l i c c l a s s S y n c h r o n i z e d l n v o c a t i o n e x t e n d s C a l l e e F i l t e r l n v o c a t i o n
i m p l e m e n t s j a v a . i o . S e r i a l i z a b l e {

p r i v a t e O b j e c t l o c k ;

36 M. HOFindA. UL8EXT

p u b l i c S y n c h r o n i z e d l n v o c a t i o n { C a l l e e l n v o c a t i o n i n v .
O b j e c t l o c k O b j) {

s u p e r (i n v) ; l o c k = l o c k O b j ;
)
p u b l i c CMSOutputStream inv o k e (Object o b j , i n t i d ,
CMSInputStream s} throws E x c e p t i o n {

s y n c h r o n i z e d (l o c k) {
r e t u r n s u p e r . i n v o k e (o b j , i d , s) ;

)
}

}

The above filter Synchronizedlnvocation demonstrates how a programmer can
add arbitrary new semantic actions by writing a new filter. The generic layout of
an invocation filter is shown in the following listing:
p u b l i c c l a s s M y F i l t e r extends C a l l e e l n v o c a t i o n F i l t e r {

p u b l i c CMSOutputStream inv o k e (Object o b j , i n t i d ,
CMSInputStream s) throws E x c e p t i o n {

CMSOutputStream r e s u l t ;
s o m e P r e p r o c e s s i n g (o b j , i d , s) ;
r e s u l t - s u p e r . i n v o k e (o b j , i d , s) ;
so m e P o s t p r o c e s s i n g (o b j , i d , s, r e s u l t) ;

r e t u r n r e s u l t ;
}

)
Invoke gets the receiver object obj, an identifier id that denotes the invoked

method and a stream $ that contains the marshaled parameters. As a return value, it
supplies the stream containing the marshaled result of the invocation. Before and
after the invocation is forwarded to the next abstraction, the filter can do its specific
work. With the help of metaprogramming facilities, it can even scan the parameter
stream and react to its contents.

In most applications it is not necessary to distinguish between callee-side and
caller-side filters and abstractions. However, if one has to access the invocation's
actual parameters the distinction is mandatory. The above example MyFilter is a
callee-side invocation filter as it receives a CMSInputStream as its parameter. The
skeleton code will read this stream in order to reconstruct the passed parameter.
Finally, the filter passes back a CMSOutputStream into which the skeleton wrote
the result value of the invocation. On the other side, a caller-side invocation filter
receives a CMSOutputStream that contains the actual parameters as written by the
stub and returns a CMSInputStream that can be read by the stub in order to recon­
struct the result value of the invocation. Therefore, we currently have two abstract
filter classes: CalleelnvocationFilter and CallerlnvocationFilter. This distinction
allows that the network layer starts to transmit the marshaled data before all param­
eters are completely marshaled. If one abandons this speed-up, it is sufficient to
have only one filter class: InvocationFilter.

TIME INDEPENDENT INVOCATION IN JAVA CMS 37

To write a new invocation abstraction, one has to decide whether a server or
client side abstraction is actually desired. Similar to a filter, this requires declaring
a new type that extends Invocation. The method invoke has to be overridden.
However, unlike with a filter, it is not possible for an abstraction to handle the
invocation with the help of a super call, i.e. it has to handle the invocation itself.
The actions to achieve this depend completely on the goal of the new abstraction. For
example, implementing delayed (time independent) invocation needs some kinds of
storage area where the invocation information (obj, id, s) is stored for later retrieval.
Additionally, it needs a mechanism that extracts invocations from this storage at a
suitable moment and starts the actual invocation.

New server-side abstractions are easier, because the actual invocation is han­
dled by our run-time system (Directlnvocation). It makes a synchronous method
invocation. One will probably not replace it with another abstraction. However,
decorating it with filters is possible and even desirable.

1.2. Using JavaCMS as a Platform for Mobile Computing

The JavaCMS system itself does not contain components supporting mobile com­
munication [8]. In mobile environment the system assumes the existence of a
communication facility like Mobile-IP [17, 16] or DHCP [2], with which the rout­
ing of network packets is guaranteed. However, because of its flexibility the system
enables the programmer to implement invocation semantics with which CMS-based
applications can collaborate in mobile environment.

Time-independent invocation (Til) could be one of the most important in­
vocation semantics in mobile environment. This semantics has been defined as
a new feature in CORBA Messaging Specification [14] by Object Management
Group (OMG), and will be a part of the CORBA3 specification. Although our
starting point was the OMG specification, our Til implementation does not follow
it closely. We have adopted the notion of time-independent invocation to our system
and implemented the most important features of the specification.

The following short example demonstrates the features and capabilities of Til
in JavaCMS. First of all, we wanted to facilitate the communication of periodically
unconnected mobile clients, thus we have implemented Til as a client-side semantics
(TI Invocation):

l o n g m a x R e t r y = 1 0 0 ; / / number o f r e t r i e s
l o n g r e t r y S l e e p = 1 0 0 0 ; / / i d l e t i m e
CB c b = new C B () ; / / c a l l b a c k o b j e c t f o r r e c e i v i n g r e s p o n s e s
TTInvocation tii = new Tilnvocation(maxRetry, retrySleep, cb);
c i . g e t M e t h o d (" m i ") . s e t C a l l e r l n v o c a t i o n (t i i) ;

In case of communication failure the semantics try to send the invocation
request later, but the number of successive retries can be limited if necessary. Be­
tween two retries the semantics idle a given period of time in milliseconds. These
two parameters must be supplied by the user as the first (maxRetry) and second

38 M: HOiFanrfA Vl.BERT

(retrySleep) parameter of the constructor. If the first parameter is set to zero, the
semantics do not limit the number of retries. The third parameter is optional. This
is a callback object which has to be given, if we want to be informed about the exe­
cution of the remote method, and we want to receive its return value. The callback
classes must implement the Call Back interface:
p u b l i c c l a s s CB implements CMS.Remote.CalIBack,
J a v a . i o . S e r i a l i z a b l e {

p u b l i c CB(| { }

p u b l i c v o i d cb(CMSInputStream i n) {
t r y {

System . o u t . p r i n t l n d n . r e a d l n t ()) ; / / unmarshal
t h e r e t u r n v a l u e (i n t)

} c a t c h (j a v a , i o . I O E x c e p t i o n ex) {)
1
p u b l i c v o i d e x c e p t i o n (E x c e p t i o n ex) { }

) ;
As soon as the system receives the response message of the remote method,

it calls the cb method of the callback object with CMSInputStream containing the
return value. In this method we can unmarshal the return value and make other
necessary computations. The system calls the method exception if it fails to deliver
the invocation request or receive the results.

The below client-side code-fragment demonstrates the use of remote methods
with TII semantics:
T T x; // t h e t e s t o b j e c t w i t h method public int mi(int);

x = (TT)Remote.get(adr, "TT"); // i m p o r t

try{
System.oul.println(x.mi(200));

) catch(CMS.CMSException e) {J
We can see, that invoking remote methods with TII semantics results

CMS.CMSException. This is because JavaCMS unmarshals response messages
inside the stub and the Til semantics leave it to the programmer. Thus, the seman­
tics return to the application right after the invocation request issued with a stream
containing no valid return values.

13. Description of JavaCMS using Evolving Algebras

We provide an abstract formal description of the basic parts of the JavaCMS frame­
work using evolving algebras. Since the discovery of evolving algebras in 1988
[4], it has become clear that it allows the development of powerful and elegant
specifications and descriptions of heterogeneous distributed systems.

TIME INDEPENDENT INVOCATION IN JAVA CMS 39

The 1 FACE, CLASS and OBJ sets contain the interfaces, classes and
objects of a stand-alone CMS system. Each class has an interface which is im­
plemented by the given class and each object is an instance of its class. The
if ace : CLASS -> 1 FACE function provides us with the interface of a class and
the class : OBJ -» CLASS function gives us the class of an object. The class
function must be updated whenever an object is constructed via the new(Class)
operator

extend OBJ by Obj with class(Obj) := Class endextend
or destroyed by the JVM

discard Obj from OBJ.
As our framework creates skeletons and stubs at run-time, it is possible to add
arbitrary new elements to the I FACE and CLASS sets. These newly created
classes (and interfaces) are generated using the meta-information of the exported
objects that is stored in special class information objects of the class Class!n foe
CLASS. The class information of a given object is obtained by the classjnfo :
OBJ -> CI function. These ci e CI c OBJ objects hold the client and server-
side invocation semantics that the user previously assigned to the given method.
The client and server-side invocation semantics of a method are stored in a mi €
Ml C OBJ method information object. One can get the client-side semantic
by the caller_sem : MI -> CSEM function, the server-side semantic by the
caliee_sem : MI -* SSEM function. The met hodJnfo : CI -* 2MI function
provides the set of method information holding the invocation semantics of all the
methods of its object.

TheCS£Atf c OBJ andSSEM c OBJ sets hold the client and server-side
invocation semantics. These objects are instances of the descendants of Caller In­
vocation,Calleel nvocation e CLASS classes.

Each stub class is determined by the class information (CI), its network
address (NADR) and the name (STR) of the corresponding remote object: stub :
CI x NADR x STR -> CLASS. The STR set is an infinite set which contains
all strings that conform with the Java class String.

Now, we can refine the definition of the interfaces by the method information
objects. An interface is a set of methods (or method signatures), and each interface
can be determined by the proper method set. This fact implies that ail / / € I FACE
interfaces are defined as a subset of Ml and / FACE consist of a proper subset of
MI.

As we have seen in the previous subsection, the Remote.get () method must
be used when we would like to obtain the reference of a remote object. As a matter
of fact, this method does not return a reference of the given object but generates a
stub class and returns a reference to an instance of this class.

In our formal model, objects communicate through messages. We model
these messages by introducing the external function event, which for some given
object returns the message it just received. We introduce the sW/object, which refers

40 M HOP and A. ULBEKT

the object that contains the described method, as well as the JVM object which
represents the Java Virtual Machine. Furthermore, we assume that event(object)
becomes undef, as soon as the object has read the current value.

Additionally, the formal model has to deal with different CMS systems, which
sometimes exchange messages. We model these inter-CMS communications by the
forward <event> to Obj and return <event> to Obj abstract updates. They update
the event function of the remote object Obj with the corresponding events. As
the remote system is identified by its network address, we had to introduce the
cms : ADR —• OBJ function, which yields the Sender object of the remote
system.
CMS.Remote.Remotc::get()

if event (self) = get(Adr, Name) from User
thenif cms(Adr) £ undef

then
forward resolve(Name) to cms(Adr)

if event(self) = resolved(Ci)
thenif Ci ^ undef

then
extend CLASS by Sc with

stub(Ci, Adr, Name) :~ Sc
extend OBJ by Stub with

class(Stub) := Sc
return Stub to User

endextend
endextend

As we presented in the previous subsection, remote objects must be exported
by the Remote.export() method. Whenever one exports an object, the system reg­
isters the object together with its class information. The ROB J c OBJ set holds
the exported objects, the INFO C CI holds their descriptor objects. As each ex­
ported object must have a unique name we can refer to the exported objects through
their name. The robj : STR ROB J and info : STR INFO injective
functions yield the object and the class information corresponding to a given name.
CMS.Remote.Remote::export()

if event(self) = export(Name, Obj, Ci) from User
then

extend ROBJ by Obj with
robj (Name) := Obj

endextend
extend INFO by Ci with

info(Name) := Ci
endextend
Whenever a client tries to obtain the reference of a remote object, it forwards

a resolve(Name) event to a CMS server object. This object represents the remote

TIME INDEPENDENT IN VOCATION IN JAVA CMS 41

CMS system to its clients. The server object resolves the name by the info and
robj functions and returns the result to the client object. The fetch : CI ->
[true, false] function determines whether the server has to fetch the object's fields,
or not.
CMS. Remote. Server: :run()

it event (self) = resolve(Name) from Client
thenif f etch(inf o(Name)) = true

then
return resolved(info(Name), robj(Name)) to Client

else
return resolved(inf'o(Name), undef) to Client

One usually constructs a new ci class information from another object. There­
fore, we have to extend the OBJ and CI sets and most of their functions. Each
method will have a default client and server-side invocation semantic:
StdInvocation and Direct Invocation.

new CMS.Invocation::ClassInfo()
if event(J V M) = new(C M S .1nvocation.Class Info(0 Obj)) from User
then

let Mi Set == iface(class(OObj))
extend OBJ by Obj with

class(Obj) := Class Info
extend CI by Ci with

class_info(Obj) := Ci
methodJnfo(Ci) := MiSet
endextend

endextend
Vmi G Mi Set : extend MI by mi with

caller_sem(mi) := Stdlnvocation
callee_sem(mi) := Directlnvocation

endextend
The setCallerInvocation() and setCalleelnvocation() methods simply

update the caller_sem and callee_sem function.
CMS.Invocation.MethodInfo::setCallerInvocation()

if event(self) = setCallerInvocation(Sem)from User
then

extend Ml by Mi with
caller_sem(Mi) := Sem

endextend
where

Mi = self

CMS.Invocation.Methodrnfo::setCalleeInvocation()

42 M. HOb mdA UUil-RT

if event (self) = setCallee I nvocat ion(Sem) from User
then

extend Ml by Mi with
callee_sem(Mi) := Setn

endextend
where

Mi = self

Even though JavaCMS is an object-oriented distributed objects system, our
formal description deals with only one component of an application that has col­
laborating distributed CMS-based components. Therefore, we have to extend the
above model to be able to describe the real distributed CMS system. Our extended
distributed model comes as a finite set of evolving algebra programs which have
separate sets and functions except the OBJ and NADR sets, which we need to
describe the inter-CMS communication. The separated algebras can be evaluated
concurrently, except when an inter-CMS communication occurs and synchroniza­
tion is needed.

The exact semantical definition of distributed evolving algebras is given in [5 j .

2. Specification of Invocation Semantics
In this section, we present a very simple description of various invocation semantics
based on propositional temporal logics [11, 13, 10]. We do not intend to give a
detailed description of the implemented semantics, but only try to introduce the
basic properties that one expects by definition. These properties describe only
the client-side invocation semantics. However, one could also give server-side
descriptions.

An abstract program is represented by its finite action set P, which contains the
operations of the given program. The execution order of these actions is restricted
by the detailed program model.1 The program P conforms to a specification, if the
formulas arc true to all possible2 a e (2*)** execution sequence.

The specifications below describe the effect of the semantics on the caller pro­
gram and determine their communication properties. Thus, the atomic propositions
are bound to the actions of a program and the basic communication steps. Let a
denote the execution sequence that represents a possible run of the P program. Ac­
cording to a , the p atomic proposition in ; £ {I..|or|J is true if, and only if p e a[j].
Generalizing this definition, we can get propositions about an arbitrary set of actions
S e p . The S3 proposition is true in j if, and only if 3s G S : s £ a[j\.

1 For example according to the sequential model, we can define a follower function which deter­
mines the ne\ l operation that is executed. This operation is determined by the last executed operation
and the state in ;i state-space.

"According to the detailed program model.
3We will abuse notation and use S c P sets both as an action set or a proposition.

TIME INDEPENDENT INVOCATION IN JAVA CMS 43

Further generalizations are needed if the program consists of more than one
thread of execution. We define a thread as a T c P subset of the program, which is
started and terminated by special actions. The actions of the iih (i e N) execution
of the T thread are denoted by 6 7} (i € T). The truth value of the atomic
proposition t-, € 7} is determined as in the case of non-indexed propositions.

In an a execution sequence the actions of the thread 7" must be started by
begin.T and closed by end.T actions. This implies that the first action that is
executed is begin.T and that the thread is terminated by end.T. A run of a thread
is initiated by a caller thread action.

V/ e N : ->Tjunless begin.T,

Vi eN:Q(end.Ti - * D-7}))
The Env_T set denotes the actions of the caller thread. This set contains the action
that initiates the execution of the T thread. The begin.T and end.T actions are
contained within the thread itself:

{begin.T, end.T] C T

In our model, invocation semantics are thread bound by synchronization and com­
munication properties. An invocation semantic S is initiated by the proper method
invocation action s.m where s is a remote object and m is one of its methods. The
s.m proposition is true in j G {l. . . |a |} «=4- s.m € a[j\.

D(s.m -> o3j G N : begin.Sj)

The threads we introduced are inherently asynchronous. The execution of a thread
does not influence the caller thread. It's very often necessary to synchronize the
execution of the caller and the thread.

V/ e N : 0(begin.Sj ~* (->Env_Sj unless end.5,))

In order to specify the communication-aspects of a semantic, we have to introduce
four communication actions. With these actions the communicating parties can send
and receive packets via the network. We leave the internal structure and behaviour
of the network unspecified,4 the only feature of the network we require is that it
must be packet-switched.

The req(j) action sends a packet with packet id j e N to the server object.
The req(j) proposition is an atomic proposition. The req proposition is true in
it G {l . . . |a |} <=> 3j G N : req(j). The conf action reads a packet from the
server object. The conf(j) (j G N) atomic proposition is true in k if, and only if

4Without these specifications we can't tell anything about the network properties. It can lose and
duplicate packets or change their order, but it could also guarantee safe communication.

44 M 1/Of-jmM. ULBERT

the result of the c o n / action in A' is a packet, which has packet id j . 5 The conf
proposition is true in k 3j € N : conf (j). The server object communicates
with the client with resp and ind actions. The definition of resp is similar to the
req action, the definition of ind is similar to the conf action.

The below formula specifies a strict best-effort non fault-tolerant communi­
cation. However, it requires performing a communication action (<)req,). It also
forbids retransmissions. The formula does not preclude the loss of confirmation
messages. On the contrary, it precludes the repetition of the receiving action (conf).

V/ e N : D(begin.Sj —*• §req,An(reqj -+ o(->req,unless end.Sj))A

AD(confi —> o(-*req, A —>confjunless end.Si)))

The standard synchronous semantic can be defined as a thread that synchro­
nizes with its environment (caller thread) and conforms to the above formula. The
standard asynchronous semantic does not synchronize with its caller thread, but
still conforms to the above formula.

Oneway communication could be defined as a request-only communication,
which does not include any confirmation. We can get a weaker specification, if we
do not require the appearance of request events and simply prohibit confirmations.

V/ e N : 0(begin.Sj -» Qreqt A O^conf)

We define the fault-tolerant push semantic as an asynchronous, multi-response
communication semantic. There must be a request message, which initiates an
infinite number of confirmations:

Vi € N ; D(begin.S, -> Bj e N : 0(req,(j) A DOconfU)))

Time Independent Invocation is an asynchronous fault-tolerant semantic. The fault-
tolerance implies, that there is a request-confirmation event pair with the same
network message identifier and that the semantic cannot terminate until the valid
confirmation action performs.

V / e N : D(begin.Si -> 3j € fi:0(reqi(j)AOconfi(j))A^end.Siuntil conf(j))

It is hard to satisfy this level of fault-tolerance, since the above specification expects
that the client will be able to connect to the server object sometimes in the future.
If the client will never be able to communicate to the server object, it will send
infinite numbers of request messages, and this could result undesired congestion of
the communication network and could exhaust processing resources. In the next
section we will discuss this and other issues.

^conf(j) G a\k] < = > the next packet we can read from the buffer of the network has a packet
id j . We can give a more precise and formal definition only, if we define the internal structure and
some behavioural aspects of the network.

TIME INDEPENDENT INVOCATION IN JAVA CMS AS

3. Implementation of Time Independent Invocation
3.1. Receive Models

The client application can receive responses provided by a two-way invocation
either by polling or through callbacks: '

Polling model: In this model, each asynchronous two-way invocation returns a
poller object. The client can use this object to check the status of the request
and obtain the value of the reply from the server. If the server hasn't returned
the reply yet, the client can elect to block awaiting its arrival or the client can
return to the calling thread and check on the poller later when convenient.

Callback model: In this model, the client passes an object reference for a call­
back object as a parameter, when it assigns the (client-side) semantics to the
method. When the server responds, the client system receives the response
and dispatches it to the appropriate method on the callback object so the client
can handle the reply.
In most cases, the callback model is more efficient than the polling model

because the client need not poll for results and this continuous polling can cost
certain amount of processing power.

It is easy to see that the callback and polling models are equivalent. The
callbacks can be implemented by using the appropriate pollers, and the pollers can
be implemented by using the appropriate callbacks.

3.2. Implementation Issues

The way one implements a new semantic considerably determines its flexibility
and performance. In addition, the implemented semantic should be reusable, as all
semantics are the building blocks of invocation abstractions/filters.

There are three ways for implementing a new semantic. According to the
stub-based approach, the stub itself implements the semantics. This approach re­
jects the principle of general stubs, i.e. we have to deal with specialized stubs that
are determined by one or more invocation semantics. Even though this approach
could result in fairly efficient and flexible stub-code, there are also a number of
drawbacks. First of all, the reusability of the semantic is quite restricted in invo­
cation abstractions: the stub-based semantic must be on the first place of the filter.
In the case of TII this restriction comes into conflict with the very essence of the
semantic, as its fault-tolerant behaviour should be guaranteed on the end of a filter.
Following this approach, we could face another problem. How do we implement
more than one semantics in a single stub? If we allow the user to specify multi-
semantics behaviour on the stub-code, we have to be able to compose the semantics
inside the stub.

46 M. HOP and A. ULBEUT

The abstraction-based approach leaves the stub-code untouched and imple­
ments the new semantic within a well-defined framework. However, even though
this framework could restrict the developer and may result in additional overhead,
the code is much more reusable than in the previous case.

The utility-based approach implements the semantic outside the given appli­
cation by an invocation proxy-server. According to this approach the applications
willing to invoke a remote method forward their requests to a persistent invocation
server, which performs the remote method call using the defined semantic and stores
its result (if any). In this case, the clients have to communicate with the invocation
server via a secondary invocation semantic. Although this approach leads to the
least efficient implementation and is the most complicated to setup, there is a great
advantage using persistent invocation proxy-servers: we can perform persistent re­
mote method invocations. Mobile clients can exploit this feature too, as they can be
shut down and can move to another point of the network without losing the result
of an invocation request.

We have applied the abstract ion-based approach, as it is easy to implement
and results in a highly reusable code. Moreover, the abstraction-based approach
does not exclude persistence inside an implemented semantic. Therefore, we can
extend the functionality of a semantic with this feature whenever it is necessary.

Finally, we had to decide which response model should be used. However, the
two models are equivalent, because of its efficiency, we have chosen the callback
model.

4. Performance Measurements
In this section we compare the performance of RMI (Remote Method Invocation)
and our JavaCMS system. Although our system has not been optimized, our pro­
totype enables us to draw interesting conclusions about the cost of our flexible
approach.

As our test environment, we used a Pentium 233 MMX computer with 64M
RAM running Dcbian GNU/Linux Potato (kernel version 2.2.14) and JDK-1.2. We
measured the execution time of 10000 invocations 10 times, and calculated the
average execution time. To have our measurements independent of the installed
network and the current load, the client and the server were running on the same
machine and communicated via the local TCP loop-back interface.

An instance of the following class R served as a remote object:
c l a s s R i m p l e m e n t s j a v a . i o . S e r i a l i z a b l e {

p u b l i c v o i d MOO t h r o w s CMSExcept ion {} ;
p u b l i c i n t M l { i n t i) t h r o w s CMSExcept ion { r e t u r n i ; }
p u b l i c Obj M2(Obj r) t h r o w s CMSExcept ion { r e t u r n r ;)

}

c l a s s Obj i m p l e m e n t s j a v a . i o . S e r i a l i z a b l e (l o n g 1; }

TIME INDEPENDENT INVOCATION IN JAVA CMS 47

We used three ways to communicate with the above server object: (1) Java
RMI, (2) CMS with the default caller-side synchronous and callee-side direct invo­
cation, (3) CMS with caller-side TII and callee-side direct invocation semantics.

5

4
eg n E 3

2
1
0

I RMI BCMS-default GCMS-TII

1
MO

4.734.79

2.83

Fig. 5 Comparison of RMI and JavaCMS
Our results show (see Fig. 5), that although our flexible approach results in

additional overhead, it took less time to invoke MO and MI with default CMS
semantics than with RMI. Invoking M2 via CMS took more time; however, RMI
was only 1 percent faster. The performance of TII is quite stable as the network
communication is done by a thread spawned by the semantics.6 Til proved to be
slower when we invoked MO or Ml, because the cost of thread-creation outweighed
the cost of network communication.

5. Conclusions
It is tempting to assume that all distributed interactions of a given application can
be performed using just one (synchronous remote) method invocation abstraction,
just like in a centralized system. In practice, this uniformity usually turns out to
be restricting and penalizing and the myth of 'distributed transparency is very
misleading. It is now relatively well accepted that the 'one size fits air principle
does not apply to the context of distributed object interactions, especially in mobile
environments, where in addition the communication paradigms are not fixed. Most
uniform approaches to object-oriented distributed programming have recently con­
sidered extensions to their original model in order to offer a more flexible choice
of interaction modes. For example, the OMG is in the process of standardizing a

"Further measurements show, that TII is even faster (relative to RMi anddefault-CMS) if we pass
larger parameters.

48 M HOI1 ami A VI.HERT

messaging service to complement the original CORBA model with various asyn­
chronous modes of interaction [14].

Several object-oriented languages offered, from scratch, various modes of
communication. Each is typically identified by a keyword and corresponds to a
well defined semantics. For example, the early ABCL language supported several
keywords to express various forms of asynchrony, e.g., one-way invocation, asyn­
chronous with future, etc [19]. Similarly, the KAROS language supported several
keywords to attach various degrees of atomicity with invocations, e.g.. nested trans­
action, independent transaction, etc. [3]. The major limitation of these approaches
is that one can never predict the need of the developer, and coming with a new form
of interaction means changing language.

We believe that the mode of distribution interaction should, like many other
programming aspects, be represented by an extensible class library [1 1] , and not be
hard coded in the language. In other words, we advocate an approach where invoca­
tion modes are prompted the rank of first class abstractions. However, this approach
emphasizes the importance of the exact (formal) specification of the programming
framework and the invocation abstractions. The developer must be aware, that an
extensible class library results not only in the freedom of development, but the
responsibility of strict and precise specification.

We illustrated our approach by building a distributed extension to the Java
language and we demonstrated it on a simple example. Moreover, we have given
a simplified formal description of our system using evolving algebras and demon­
strated the capabilities of JavaCMS extending it with Time-independent invocation,
what we have specified formally using temporal logics. The very same approach
could be applied to other languages and environments |7]. The actual requirements
are easily fulfilled. The basic requirements are: (1) Run-time access to a compiler:
(2) Dynamic code loading: and (3) Mcta information.

References
111 Olivet Management Group, The Common Object Request Broker: Architecture and Specifica­

tion, version 2 . 2 , February' 1 9 9 8 .
[2] D K O M S . R . (editor). Dynamic Host Configuration Protocol, Internet Engineering Task Force,

R F C 1 5 3 1 .
1 3] G U I - R R A O U I , R . - C A P O B I A N C H I , R . - L A N U S S E , A . - R O U X , P.. Nesting Actions through

Asynchronous Message Passing: the ACS Protocol, In Proceedings of the European Conference
on Object-Oriented Programming (ECOOP'92), Springer Verlag (LNCS 6 1 5) . 1 9 9 2 .

[4 | GURF.viCH. Y.. Logic and (he Challenge of Computer Science. In E . Borger, editor. Current
Trends in Theoretical Computer Science, pp. 1 - 5 7 . Computer Science Press, 1 9 8 8 .

[5 | G U R H V l C H , Y., Evolving Algebra 1 9 9 3 : Lipari Guide. In E . Borger, editor. Specification and
Validation Methods. Oxford University Press, 1 9 9 5 .

[6] H()l:, M.. Composable Message Semantics in Object-Oriented Programming Lmguagcs.
Trauner, ISBN 3 8 5 4 8 7 1 1 8 X. 1 9 9 9 .

[7] Hor-. M . - G U E R R A O l . t , R.. Abstracting Remote Invocations, 1 9 9 9 .
[8] JlNG, J . - (SUMl) H E L A L . A . - E L M A G A R M I D , A . , Client-Server Computing in Mobile Envi­

ronments. ACM Computing Surwys, 31, No. 2 , June 1 9 9 9 .

TIME INDEPENDENT IN VOCATION IN JAVA CMS

[9] K.OZMA, L . - R A C Z , E., A Specification Technique for Scheduling the Methods of Concurrent
Objects, Annates Univ. Set. Budapest., Sect. Camp. 17 (1998) pp. 253-268.

[10] K R O G E R , P. , Temporal Logic of Programs, Springer Verlag, Berlin Heidelberg, 1987.
[11] L E A , D . , Concurrent Programming in Java. Addison-Wesley, 1997.
[12] L l N D H O L M , L . - Y E L L I N , F., The Java Virtual Machine Specification (2"d Ed.) Addison-

Weslcy, April 1999.
fl 3] M A N N A . Z . - P N U E L L I . A. , The Modal Logic of Programs, LNCS 71, pp. 385-409 , 1979
[14] Object Management Group, CORBA Messaging Specification, OMG Document orbos/98-05-

05yesed. , May 1998.
[15] Object Management Group, The Common Object Request Broker: Architecture and Specifica­

tion, version: 2.2, February 1998.
[16] P E R K I N S , C , (editor), IP Mobility Support, Internet Engineering Task Force, Internet draft

draft-ietf-mobileip-16, April 22 1996.
[17] S C H I U T , B. N . - A D A M S , N . - W A N T , R . , Context-Aware Computing Applications, Proceed­

ings of the Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA. pp. 85¬
90, 1994.

[18] W l R T H , N.. The Programming Language Oberon, Software-Practice and Experience, 18, No. 7,
July 1988.

[19] Y O N E Z A W A , A . - T O K O R O , M., (editors). Object-Oriented Concurrent Programming, MIT
Press, 1987.

