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Abstract 

A substantial number of linear and nonlinear feature space transformation methods have been pro­
posed in recent years. Using the so-called 'kernel-idea' well-known linear techniques such as Princi­
pal Component Analysis ( P C A ) . Linear Discriminant Analysis ( L D A ) and Independent Component 
Analysis ( I C A ) can be non-linearized in a general way. The aim of this paper here is twofold. First, 
we describe [his general non-linearization technique for linear feature space transformation methods. 
Second, we derive formulas for the ubiquitous PCA technique and its kernel version, lirst proposed 
by S C H O L K O P F el al., using this general schema and we examine how this transformation affects the 
efficiency of several learning algorithms applied to the phoneme classification task. 

Keyword*: kernel methods, feature space transformation, Principal Component Analysis 

1. Introduction 

In an earlier paper [7 ] we compared the effects of the linear feature space transforma­
tion methods Principal Component Analysis (PCA), Linear Discriminant Analysis 
(LDA) and Independent Component Analysis (ICA) on a number of learning al­
gorithms. The algorithms compared were T i M B L (the IB I algorithm), C4.5 (ID3 
tree learning), OC1 (oblique tree learning). Artificial Neural Nets (ANN) , Gaussian 
Mixture Modelling ( G M M ) and Hidden Markov Modelling ( H M M ) . The domain 
of the comparison was phoneme classification using a certain segmental phoneme 
model, and each learner was tested with each trans formation in order to find the 
best combination. In addition, in that paper we experimented with several fea­
ture sets such as filter bank energies, mel-frequency cepstral coefficients (MFCC) 
and gravity centers. This paper extends our investigations into nonlinear methods. 
Namely, similar to S C H O L K O P F el al. [9] but in a different way we show how the 
well-known Principal Component Analysis (PCA) can be non-linearized using the 
so-called 'kernel-idea'. Besides presenting the 'kernel-idea' we also give formu­
las both for the original PCA and the kernel-PCA. In this paper we systematically 
examine how this nonlinear feature transformation affects the efficiency of several 
learning algorithms. As mentioned previously in our earlier study we experimented 
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with several feature sets and we found the best one to be the critical band log-energies 
and its derivatives. So now we only use this quite traditional technique to extract 
frame-based features from the speech signal. We also learned from our previous 
investigations that from the learning algorithms PCA [7] was the most suitable for 
G M M [1] and A N N [1]. Thus, in this paper we present classification results only 
for these two methods completed with the general purpose Support Vector Machine 
(SVM) and a H M M recognizer. 

The structure of the paper is as follows. First, we discuss linear feature space 
transformation methods and afterwards describe the way that can be used to obtain 
the kernel counterpart. Then we examine the technical points of the PCA derivation, 
followed by the derivation of kernel-PC A along the same line. The next section 
presents the applied learning algorithms which is followed by the experimental 
results. Then we round off this paper with a discussion of conclusions and further 
remarks. 

2. Linear Feature Space Transformation Methods with Kernels 

Before executing a learning algorithm additional vector space transformations can 
be applied on the features obtained. The role of using these methods is twofold. 
Firstly they may aid classification performance, and secondly they may also reduce 
the dimensionality of the data. This is due to the fact that these techniques gener­
ally search for a transformation which emphasizes certain important features and 
suppresses or even eliminates less desirable ones. 

Without loss of generality it wi l l be assumed that the original data set lies 
in R", and that there are s elements X i , . . . , x s in the training set and t elements 
y i , . . . , y t in the testing set. Any feature space transformation algorithm uses the 
training vectors as its input and forms a mapping Q : R" —> W" as its output 
where in most cases besides the mapping the dimension reduction (represented by 
m) is also determined by the algorithm itself. After appJying the mapping Q the 
transformed training and testing vectors are denoted by x j , . . . , x^ and y j , yt', 
respectively. 

2. /. Linear Feature Space Transformation Methods 

With linear feature space transformation methods we search for an optimal (in 
some cases orthogonal) linear transformation R" -# R'" (in < n) of the form 
xj = A T X j , i € {1 .?}, noting that the precise definition of optimality can vary 
from method to method. The column vectors a i , . . . , a m of the n x m matrix A are 
assumed to be normalized. 

Most of these algorithms can use an objective function r ( ) : R" R which 
serves as a measure for selecting one optimal direction (i.e. a new base vector). 
Although in many cases the optimal transformation originally was defined by a 
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function that measures the optimally of all the m directions together, in most 
cases it is possible to define the directions of the optimal transformations one after 
the other by employing the r measure for each direction separately. One quite 
heuristic approach is to look for unit vectors which form the stationary points of 
r ( ) . Intuitively, one might think if larger values of r ( ) indicate better directions and 
the chosen directions need to be independent in certain ways, choosing stationary 
points that have large values is a reasonable strategy. In spite of the fact that getting 
these points is difficult in some cases (PCA included) we can normally find an easier 
way of obtaining them using cigenanalysis. 

2.2. Linear Feature Space Transformation Methods with Kernels 

In this subsection the symbols Fi and jF denote real vector spaces that could be 
finite or infinite in dimension. We suppose a mapping O : jR? - * H, which is 
not necessarily linear, and a d im(H) that is either finite or infinite. Furthermore, 
let us assume there is a linear feature space transformation algorithm V with its 
input formed by training points X i x s of the vector space W. We recall that 
the output of the algorithm is a linear transformation R? —> R"\ where both the 
degree of the dimension reduction (represented by in) and the /( x m transformation 
matrix A are determined by the algorithm itself. We wil l denote the transformation 
matrix A which results from the training data by P{x\ x s ) . 

How can we obtain a non-linear feature space transformation method from V ? 

First, we need to transform the training vectors into a point set in Fi by a mapping 
<1> and the algorithm V is applied on these transformed points in Ft instead of the 
original ones in W . In this way employing the algorithm V on the input elements 
<t»(Xi> 0 ( % ) e % we can obtain a linear transformation ^ : Ft -* T. Since 
<t> is in general non-linear, the composite transformation *I> o <t> of <t> and U> wi l l 
not necessarily be linear either. Much like the above let us denote the matrix of the 
resulting linear mapping by P ( 0 ( X | ) ^(Xs)). The complexity of the linear 
methods is usually a non-linear function of the dimensionality of the input vectors 
and s. Thus i f dimCM) is much larger than n, the corresponding V algorithms in 
Ft may become unfeasible practically, so we need to replace the algorithm V by a 
new more suitable one (denote it by V). 

How can we replace V by V ? 

The algorithm V is replaced by an equivalent algorithm V for which the following 
property holds: 

Pi* XS) = P ' ( X 1

T X , Xi TXj x s

T x s ) , 
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for arbitrary X i , . . . , x s . 
This wi l l of course also hold in H too that 

®m% 

= P'(<&(Xi)T<I>(Xi) <P(Xi) T0(Xj), . . . . <t>(xJT<D(x s)), 

for arbitrary 4>(xi) ^(Xs). Hence the goal of a kernel method is to form an 
algorithm V' which is equivalent to V but its inputs are the dot products of the inputs 
of V. Here the complexity of V is usually a non-linear function of the complexity 
of the dot products in V, and s. 

How can we calculate dot products with low complexity using kernel functions? 

I f we have a low-complexity (perhaps linear) kernel function tc() : R" x R* —>• R 
for which * ( x ) T 0 ( y ) = /c(x,y), x , y e R", then <J>( X j ) T * ( X j ) can also be 
computed with fewer operations (for example 0{n)) even i f the dimensions of 
(t>(Xj) and O(Xj) are infinite. In practice, however, we normally tackle the problem 
in just the opposite way: given a K() : R" x W —> R functional as kernel, we look 
for a mapping <£> such that O ( x ) 1

 <t>(y) = *r(x, y) , x, y € R". There are several 
good publications about the proper choice of the kernel functions, and also about 
their theory in general [13]. 

The two most popular kernel functions are the following: 

A : i (x,y) = ( x T y + I ) " , peN, y 2 ( x , y ) = exp ^ ~ I | X ~ y l i j , r e R + . 

So, after choosing a kernel function the only thing remaining is to take the V version 
of the original algorithm (here the PCA), and replace the input elements X i T X i , 
. . . , Xj T Xj, . . . , x s

T x s with the elements tf(xi, x i ) , . . . , /c(Xj, X j ) , ' . . . , /c(x s, Xs). 
The algorithm that results from this substitution can carry out the transformations 
with a practically acceptable complexity even in infinite dimensional spaces. This 
transformation (together with a properly chosen kernel function) results in a non­
linear feature space transformation. In the following sections we briefly describe 
the original (linear) PCA method and afterwards present its kernel analogues via 
the transformation V —* V. 

3. Principal Component Analysis 

In this section a discussion of the PCA [5][2][ 12] and kcrnel-PCA [9] methods wil l 
be divided into three steps: 

Preprocessing Step Describes the preprocessing that might be required by the 
method. 
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Transformation Step Here we derive the algorithms themselves. 
Transformation of Test Vectors Here we discuss after having obtained a trans­
formation based on the training vectors, what kind of processing need to be 
applied on the test vectors. 

3.1. Principal Component Analysis 

As PCA behaves very sensitively when the magnitude of the components in the 
feature vector is significantly different, some preprocessing steps need to be per­
formed. First the data is standardized, the mean vector of the training data is the 
zero vector and the deviance of each component is 1. 

Preprocessing Step: 

I . Centering: We shift the original sample set Xi, x s with its mean fi, to 
obtain a set X ] , . . . , x s , with a mean of 0: 

X j = X j - (1. x s = x s — fl, fl 
L J-

( I ) 

//. Deviance Normalization1 : We multiply each component of the centered 
data vectors X i , . . . , x s by the deviance of the component: 

x i = : x s = 

\ x s

T e s /a , 

where 
1/2 

, J = I 

and e ; is the ith unit vector. 

Transformation Step: 

Normally in PCA 

r(a) = 
a T C a 

a T a 
a € r \ {0}. 

'This step may be omitted as well. 
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where C is the sample covariance matrix for the standardized data: 

C = - V i i i J . (4) 
s 

1=1 
Practically speaking. (3) defines r(a) as the variance of the {xi x s} n-dimensi-
onal point-set projected onto the vector a. Therefore this method prefers directions 
having a large variance. It can be shown that stationary points of (3) correspond 
to the right eigenvectors of the sample covariance matrix C where the eigenvalues 
form the corresponding function values. Thus it is worth defining PCA based on the 
stationary points where the function r ( ) has dominant values. I f we assume that the 
eigenpairsof Care(Ci, k\) (c„,l„) andA[ >...>>.„. then the transformation 
matrix A w i l l be \c\,..., c m ] , i.e. the eigenvectors with the largest m eigenvalues. 
Since the sample covariance matrix C is a symmetric positive semidefinite. the 
eigenvectors are orthogonal and the corresponding real eigenvalues are nonnegativc. 
After this orthogonal linear transformation the dimensionality of the data will be 
ffi. It is easy to check that the sample x[ = A T X j , / e 11 s} represented in 
the new orthogonal basis wi l l be uncorrelated, i.e. the covariance matrix C of x' is 
diagonal. The diagonal elements of C are the m dominant eigenvalues of C. 

In our experiments, m (the dimensionality of the transformed space) was 
chosen to be the smallest integer for which 

A, + . . . + A,,, 

A| + . . . + Xn 

> 0.99 (5) 

holds. Note that there are many other alternatives for finding a reasonable value of 
m. 

Transformation of Test Vectors: 

For an arbitrary test vector y: 

y' = A T y . 

where y denotes the preprocessed y. 

3.2. Formulas for Kernel-PCA 

Having chosen a proper K kernel function for which 

K(x.y) = <p(x)T<J>(y). x.y e R \ 

holds for a mapping <J> : H$" -* Fl, we now give the PCA transformation in Ft. 
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Preprocessing Step: 

I. Kernel Centering: We shift the data <t>(xi) with its mean / i * , 
to obtain a set 4 > ( x i ) , . . . . <t>(xs) with a mean of 0: 

1 s 

0<Xi) = < P ( x , ) - ^ * <J>(xs) = <t>(x s )- / t*, M ° = - y > ( X i > , (6) 

Transformation Step: 

We employed the following metric in % : 

r 6 ( a ) = a ^ \ ( 0 ) , (7) 
a 1 a 

where C* is the covariance matrix of the sample < i>(x i ) , . . . , 4>(x s): 

C* = - y O ( X i ) 0 ( X i ) T . (8) 

Much like the PCA approach we define the kernel-PCA based on the stationary 
points of (7) which are given as the eigenvectors of the symmetric positive semidef-
inite matrix C*. Because of the special form of C* we can suppose the following 
equation to hold during the study of the stationary points: 3 

a = (9) 

The following formulas give r*(a) as the function of a and /c(Xj, \- s) 

{ T C * a (S-i <*Mxs)J) C* (EL, « T i R * K * « 
r*(a) = 

(E;=, «/*(X,)T) (EL, « T K *« 
(10) 

2 Wc have to mention here that the 'Deviance Normalization' we have seen at P C A is practically 
impossible because, in the general case, we do not know the components of the vectors Ofxjin H. 

-1 Wc can arrive at this assumption in many other ways, e.g. wc can decompose an arbitrary vector 
a as a j + aj, where a j gives that component of a which falls in SPAN{<t>(X]) ^(Xs)) , while 
02 gives the component perpendicular to it. Then from the derivation of (7) wc see that a 2 T a 2 = 0 
for the stationary points. 
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where4 

K ! = (4>(x t ) T - y E L i * ( * i ) T ) ) (*<xk) - (7 E L , * ( * ) ) ) -
x k ) - (J E L . <*<*». *•> + xi))) + £ E L . E > = . ^ ) . 

( i i ) 

From differentiating (10) with respect to a we get that the stationary points are the 
solution vectors of the general eigenvalue problem j-K^K^or = A K * a , which in 

this case is obviously equivalent to the problem ^K*ct = ka. Furthermore, since 

/c(x,, x k ) = tf(xk, x () and 5 of T |K*o; = | a T a > 0. the matrix J K * is a symmetric 
positive semidefmite and thus its eigenvectors are orthogonal and the corresponding 

real eigenvalues are non-negative. Let the m positive dominant eigenvalues of -[K* 
be denoted by ki > ... > k,„ > 0 and the corresponding normalized eigenvectors 
be a ' am. Then the orthogonal matrix of the transformation we need can be 
calculated as below. 

fsk, 
1=1 

(12) 

where the factors 1 /%/sk are needed to keep the column vectors of A^, normalized. 

Transformation of Test Vectors: 

Lei y be an arbitrary test vector. After preprocessing <I>(y) we find that 3>(y) = 
0 ( y ) - 1 1 * . Then 

y' = A T * ( y ) = 

-iT 

(13) 

where 

d = d>{ X i ) <P(y) = K ( X j . y ) 

- £ (ir(xs. X j ) + *(Xj, y)) + - £ xj). (14) 

In our experience the strategy for obtaining a suitable m was identical to that in 
PCA (5). 

4 S C H O L K O P F C al. give K * in a malrix form using additional matrices. Our formula, however, 

turned out to be easier to code, and resulted in a more effective program. 
5 Here wc temporarily disregard the constraint a 0. 
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3.3. Summary 

Stated briefly the most important properties of the techniques discussed above are: 

PCA concentrates on those independent directions with the largest variances. 
Kernel-PCA is a non-linearized version of PCA where the non-linearization 
was carried out using the 'kernel idea*. In this method the original algorithm 
is executed in a transformed (probably infinite) feature space H\ the kernel 
function K gives implicit access to the elements of this space. 

4. Experimental Results 

The automatic speech recognition is a special pattern classification problem where 
one of the dimensions of the pattern is time. Speech signals show very specific 
dynamic variations along this axis, and thus require dedicated recognition tech­
niques. One approach is to segment the speech signal into its supposed building 
blocks {e.g. phonemes), recognize these separately and then combine the recog­
nition scores for the whole signal. Because of the difficulties of segmentation, 
however, hidden Markov modelling ( H M M ) became the dominant technology in­
stead, in which utterances are processed in small uniform chunks (called frames), 
and their time variability is handled via a neat probabilistic structure. Lately H M M 
has received a lot of bad press over its time modelling capabilities, and there have 
been efforts towards generalizations which work with phonetic segments rather than 
frames. We restrict our investigations here only to the phoneme classification task. 
Word level results and a description of the technique beyond the phoneme level are 
dealt with in a separate report. 

4.1. Evaluation Domain 

The feature space transformation and the classification techniques were compared 
using a relatively small 6 corpus which consists of several speakers pronouncing 
Hungarian numbers. More precisely, 20 speakers were used for training and 6 for 
testing, and 52 utterances were recorded from each person. The ratio of male and 
female talkers was 50%-50% in both the training and testing sets. The recordings 
were made using a cheap commercial microphone in a reasonably quiet environ­
ment, at a sample rate of 22050 Hz. The whole corpus was manually segmented and 
labeled. Since the corpus contained only numbers, we had occurrences of only 32 
phones, which is approximately two thirds of the Hungarian phoneme set. Since 
some of these labels represented only allophonic variations of the same phoneme 

6 Our reason for employing such a limited database was that we chose to work with Hungarian 
and no larger (segmented) corpus of Hungarian was available al the time of writing. However, one 
of our aims for the future will be to conduct additional tests on a larger database. 
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some labels were fused and so we actually only worked with a set of 28 labels. The 
number of occurrences of the different labels in the training set was between 40 and 
599. 

4.2. Segmental Features 

In the following we describe the feature extraction techniques which were used 
in our tests.7 Although there are many sophisticated segmental models offered 
in the literature (e.g. [3]), we employed a simple technique similar to that of 
the S U M M I T system [4], At the frame level the speech signals were represented 
by their critical-band log-energies, and the averages of the 24 critical-band log-
energies8 of the segment thirds (divided in a 1-2-1 ratio) were used as segmental 
features for phoneme classification. The advantage of this method is that it needs 
only trifling additional calculations following the computation of the frame-based 
features. Moreover, it returns the same number of segmental features independent 
of the segment length, which was a prerequisite for the classifiers used. 

We also made use of the variances of the features along the segments to 
fitter out candidates that contain boundaries inside them, and the derivatives of the 
features at the boundaries to remove candidates with improbable start and end-
points. These segmental features were calculated only on 4 wide frequency bands 
as this proved quite sufficient. 

A special segmental feature is the duration of the phoneme. We consider it 
especially important for languages like Hungarian where phonemic duration can 
play a discriminative role. As our preliminary experiments found duration to be very 
useful indeed, it was employed as a segmental feature in all our experiments. Thus, 
including duration. 77 features were used altogether to represent the segments. 

4.3. Learning Methods 

The statistical learning methods employed in classification problems are called ei­
ther discriminative or generative, depending on what they model. Discriminative 
models describe the common feature space of all the classes, and focus on discrim­
inating one class from another. They do this either by finding proper parameters 
for a set of separating surfaces of a given type (parametric modelling), or by repre­
senting the classes with elements and distance metrics (non-parametric modelling). 

7 T h e only exception was the H M M recognizer, which had its own features (see sec. 4.3 for 

details). 
s The signals were processed in 512-point frames (23.2 ms), where the frames overlapped by a 

factor of 3/4. A Fast Fourier transform was applied on the frames. After that critical band energies 
were approximated by the use of triangular-shaped weighting (unctions. 24 such filters were used to 
cover the frequency range from 0 to 11025 Hz, the bandwidth of each f] Iter being 1 bark. The energy 
values were then measured on a logarithmic scale. 
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In our paper artificial neural networks (ANN) and a support vector machine (SVM) 
represent the class of discriminative learners. 

According to Bayes' law, the conditional probability P(C\\) of a class C 
for a vector x can be obtained from the formula ^ ( C l x ) = P(x\C)P(C)/P(x). 
Thus, instead of modelling P(C\x) directly as discriminative models do, another 
possibility is to estimate the class-conditional probabilities P(x\C) for each class 
separately. This is the so-called generative modelling approach. And though it 
may seem a disadvantage that a priori probabilities P(C) also have to be estimated, 
this decomposition is actually very useful in speech recognition as 'acoustic' and 
language' models can then be handled separately. From the techniques studied 

in our paper H M M and Gaussian mixture models (GMM) belong to the class of 
generative learners. 

Hidden Markov modelling (HMM) is currently the dominant technology in 
speech recognition [8]. This is why in the tests the H M M was trained on its 'stan­
dard' features and not on those used in all the other experiments. The intention 
behind this was to have a reference point for the current state-of-the-art technology 
to judge things by. The hidden Markov models for the H M M experiments were 
trained using the FtexiVoice speech engine [11]. The system used a feature vector 
of 34 components, which consisted of 16 LPC-derived cepstrum coefficients plus 
the frame energy, and the first derivatives of these. The frame size was 30 ms while 
the step size was 10 ms. One model was assigned to each of the phonemes. The 
phoneme models were of the three-state strictly left-to-right type, that is each state 
had one self transition and one transition to the next state. In each case the obser­
vations were modelled using a mixture of four Gaussians with diagonal covariance 
matrices. The models were trained using the Viterbi training algorithm. 

Gaussian mixture modelling assumes that the class-conditional probability 
distribution P(x\C) can be well approximated by a distribution of the form 

where J\f(x, Mi. Q ) denotes the multidimensional normal distribution with mean 
/ i , and covariance matrix Q , k is the number of mixtures, and c, are non-negative 
weighting factors which sum to I . 

Unfortunately, there is no closed formula for the optimal parameters of the 
mixture model, so normally the expectation-maximization (EM) algorithm is used 
to find proper parameters, but it guarantees only a locally optimal solution. This 
iterative technique is very sensitive to initial parameter values, so we used it-means 
clustering [8] to find a good starting parameter set. Since A:-means clustering again 
guaranteed finding only a local optimum, we ran it 15 times with random parameters 
and used the one with the highest log-likelihood to initialize the EM algorithm. After 
experimenting the best value for the number of mixtures k was found to be 3. In all 
cases the covariance matrices were forced to be diagonal as training full matrices 
would have required much more training data (and computation time as well). 

k 
(15) 
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Artificial Neural Networks (ANN) [10] count now among the conventional 
pattern recognition tools, so we wi l l not describe them here. In the experiments 
we used the most common feed-forward multilayer perception network with the 
backpropagation learning rule. The number of neurons in the hidden layer was 
set to be three times the number of features (this value was chosen empirically 
based on preliminary experiments). The training was stopped when, for the last 20 
iterations, the decrease in the error between two consecutive iteration steps stayed 
below a given threshold. 

Support Vector Machine (SVM) With the classification task we also conducted 
tests with a promising new technique called Support Vector Machine. Rather than 
briefly describing this method for an overview we refer the interested reader to 
[13]. In all experiments with SVM a second-order polynomial kernel function was 
applied. 

4.4. Evaluation Method 

The learning methods which model the a posteriori probabilities P(C\\) return a 
probability value for each class C given a test vector x. The so-called Bayes's 
decision rule states [ 10] that the optimal way of converting these values to a class 
label is to choose the class with the maximum a posteriori probability. We used this 
rule to calculate the classification error for these techniques. 

Finally, some of the learning techniques ( H M M , G M M ) model the class-
conditional probabilities P{x\C). From this P(C|x) can be obtained by employing 
the Bayes decision rule and we have to choose the class for which P(x\C)P(C) 
is maximal. (/ J(x) is independent of C and so can be omitted.) Instead of doing 
this we did not multiply by the factor P(C) in the evaluation, since handling this 
probability traditionally belongs to the language model. Also, preliminary tests 
showed that multiplication with P{C) led only to marginal improvements, clearly 
because the relative frequencies of the phonemes were quite well balanced. 

4.5. Experiments 

The experiments were performed on seven feature sets. One of them was the original 
one containing the addressed 77 features, the others being the transformed versions 
using PCA and kernel-PCA with various kernel functions. In the experiments we 
used 5616 training and 1692 test examples. Throughout the kernel-PCA procedure 
we computed the matrix K * from all training examples and polynomial kernels with 
various exponents were used.9 Table I shows the recognition accuracies where the 

9 E a c h kemel-PCA algorithm ran for about X cpu hours using an Intel PlI-350Mhz computer with 
a 512Mb operative memory. 
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Table 1 Recognition accuracies for the phoneme classification. For comparison, HMM 
scored 90.66% . The maximum is typeset in bold. 

none PCA KPCA KPCA KPCA KPCA KPCA 
( x T y ) ( x T y ) l . 0 0 S ( x V 0 1 ( x T v ) l . 0 J ( x V - 1 

( * T y ) 1 5 

A N N 93.38 94.09 94.39 94.42 94.27 94.15 92.61 
S V M 94.11 94.24 94.75 94.83 94.22 93.71 87.83 
G M M 80.08 88.32 89.63 89.94 88.71 87.12 79.73 

columns represent the seven feature sets (transformed/not-transformed) while the 
rows correspond to the applied learning methods. 

4.6. Discussion 

When inspecting the results the first thing one notices is that the segmental discrim­
inative models ( A N N , SVM) significantly outperformed the results of the H M M 
and the segmental generative model 1 ' ( G M M ) . Considering A N N , G M M and SVM, 
the average classification results were 93.9%, 93.4% and 86.2%, respectively. SVM 
reached the best recognition accuracy which was 94.8%. On examining the effect 
of the PCA and kernel-PCA we found that kernel-PCAs with an exponent near to 
l(weak non-linearity) are more suitable to increase the recognition accuracies than 
the strongly non-linear ones. 1 2 Another thing we realized was that the efficiency 
of the recognition was mostly improved by the PCA and kernel-PCA in the case of 
G M M which is due to the diagonal form of the covariance matrix which was used 
to approximate the multidimensional normal distribution. 

Finally, we mention that the conclusions above were drawn from visual in­
spection of the results. For a rigorous justification of our impressions we also ran 
significance tests. More precisely, paired two-sided r-tests were applied at the 5% 
significance level. While these tests confirmed .that A N N and S V M were equally the 
best learning techniques then considering the feature space transformation methods 
kernel-PCA with the kernel function (x y ) 1 0 1 proved to be the best one. 

5. Conclusions 

As regards the PCA with kernels, we have to conclude that in general it is worth 
going on with experimenting this type of non-linearity. Our experiments obviously 

'^segmental model + discriminative learners 
1 1 segmental model + generative learners 
l 2 W e also did experiments with other kernels using various normalization methods, but we found 

that strong non-linearity was unsuitable for the classification technique. 
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show that kernel-PCAs with a weak non-linearity combined with A N N or SVM 
are competitive or even superior to the other state-of-the-art algorithms tested in 
this work. The described phoneme classification techniques can be well utilized by 
a segmental speech recognizer. Future research wil l focus on incorporating these 
techniques into our speech recognizer. Above all, we plan to do experiments with 
a kernelized version of Independent Component Analysis and Linear Discriminant 
Analysis. In this paper similar to [7] we have sought the best combination of certain 
classification methods and feature space transformation methods (i.e. the PCA 
and kernel-PCA with various parameters). Instead of selecting the most suitable 
combination in the future we plan to use or develop classification methods which 
implicitly imply an optimal non-linear feature space transformation. 
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