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Abstract 

This paper is concerned with the saturation probability of aggregate traffic data arrival rate on a 
communication link. This performance metric, also referred to as tail distribution of aggregate traffic, 
is essential in traffic control and management algorithms of high speed networks including future 
QoS Internet. In this paper efficient closed-form upper bounds have been derived for the saturation 
probability when very few information is available on the aggregate traffic. The performance of these 
estimators is also performed via numerical examples. 
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1. Introduction 

The task of quantifying resource usage in broadband QoS guaranteed networks is 
closely related to the performance analysis of resource utilization. A basic prob
lem in performance analysis of networks with statistical multiplexing feature is to 
efficiently estimate or bound the overflow probability of aggregate traffic on a sin
gle link with buffer. The question can be asked how to increase the buffer or link 
capacity in order to decrease the overflow probability while keeping the queuing 
delay at a reasonable level [1] , . 

The performance of statistical multiplexing greatly depends on the multiplex
ing strategy. Probably, one of the most understood strategies is Rate Envelope Mul 
tiplexing (REM) [4] often referred to as bufferless statistical multiplexing [2, 13]. 
In this case the task is to ensure that the combined instantaneous arrival rate of mul
tiplexed traffic sources (under the continuous fluid assumption) does not exceed the 
link capacity C. For this the saturation probability of aggregate traffic arrival rate 
on a single link is an important performance parameter. This probability can be 
used e.g. for calculating the probability of time-congestion of resources, i.e. the 
fraction of time when the traffic offered to a transmission link exceeds the capacity 
of that link. Moreover, it is also useful for the estimation of the traffic congestion 
(traffic blocking) probability. In recently developed measurement based admission 
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control algorithms estimators for effective bandwidth [12) are often used which is 
also closely related to the overflow probability of aggregate traffic [2, 3, 5,6. 8, 13]. 

A general widely accepted and used method for overflow probability estima
tion of aggregate traffic is the Chernoff's bounding method for upper fail distribution 
of sums of random variables. Although the use of the Central Limit Theorem (CLT) 
can be applied to similar problems [9], for service level guarantees upper bounds 
are more appropriate. Moreover the CLT is efficient only in case of 'large' number 
of independent traffic sources. 

In this paper first we derive a new upper bound for the overflow probability 
of aggregate traffic which only requires the mean arrival rate of aggregate traffic, 
the individual peak rates and the number of traffic sources. Although the optimal 
solution of the new formula obtained cannot be drawn in closed form, we present 
simplification to resolve this difficulty, resulting, however, in weaker upper bounds. 
Even these bounds, by means of extensive numerical investigations, seem to be 
better than the well-known Hoeffding inequality which uses the same information 
on the traffic sources. 

The rest of the paper is organized as follows. In the next section first we 
enlighten the idea behind the Chernoff bounding method, then present the use of this 
method for computing overflow probability of aggregate traffic on a communication 
link. In subsequent sections we perform the derivation of our new bound and ils 
closed form approximations. The performance evaluation of these bounds arc also 
shown through numerical examples. 

2. Tail Estimates Via Basic Inequalities 

Let us start with the introduction of the Markov inequality. 

Lemma 1 Let X be a non-negative random variable. Then, for any C > 0, 

M 
P(X>C) < - , (1) 

where M = E[X], the expectation value ofX. 

A well-known upper bound for the tail distribution is Chernoff's bound, i.e. 
for C > M, 

E(esX) 
P(X>C) < inf — , (2) 

x.s>0 0 -

which comes from the Markov inequality i f we apply Lemma 1 for the random 
variable e"x with parameter esC. Now it can be clearly seen that Chernoff's idea 
was to compute the moment generation function E(exX ) and optimizing the formula 
above with respect to s. Although this approach has turned out to provide good 
estimates for several problems, in many cases the exact distribution of X is not 
known, hence the formula in the equation above should be approximated. 
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2. I . Two Essential Theorems Providing Bounds for the Sum of Random Variables 

In this subsection we present fundamental results on bounding the tail disuibu-
tion of sum of bounded and independent random variables using only reasonable 
information on them. 

Theorem 2 (Hoeffding [10]) Let X\,..., X„ be independent random variables 
with unit peaks, i.e. 0 < X* < 1 for each k. Let S — £ t X*, X = ^ X^, 
M = Xk\ p = E[X] andq = 1 - p, that is S = nX and C = n{p + t). 
Then for 0 < t < q. 

(3) 

or equivalently 
/M\C/n - M\"-c 

To achieve this result it is enough to realize that substituting the original random 
variables Xk with Bernoulli distributed ones having the same mean values maxi
mizes the left-hand side of (3), i.e. the tail probability. 

Note that the optimal parameter s* in the transformed formula comes out to 
be 

, C(n-M) 

M (n - C) 
For detailed proof see [JO]. 

The subsequent inequality is concerned with Xk random variables having 
different upper bounds, i.e. 0 < Xk < pk. A reformulated version of the original 
inequality states 

Theorem 3 (Hoeffding 2 [10})* 

P ( 5 > C ) < e x p ( - 2 ^ ^ ) . (7) 

Remarks: This latter bound cannot be reduced to the first Hoeffding inequality 
when pk = 1, Vk. It is due to the different approximation technique used in the 
derivations. It can also be shown that for this case the first Hoeffding bound is never 
worse than the second one. 

'The original inequality was formulated as 

( C - M)2 

P ( 5 > C ) < c x p ( - 2 - ) , (6) 

where for the random variables ok < < by holds. 
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At this state, the obvious question arises how to develop an upper bound for 
the case of different p*\s which can be the real counterpart of the first Hoeffding 
inequality in the sense that it would give back this bound for the case pk = 1, V t . 
In the next section we derive this bound for random variables with different peaks, 
and also closed-form approximations are performed. 

3. Improved Resource Utilization Formulae 

3.1. Modeling Principles 

Let us suppose that a multiservice communication network serves N users belonging 
to one and only one of J different sets of type, that is J service class is required to 
be defined, each of them having n\, n2 nj users, so that 

j 

j=\ 

The only traffic descriptor of a service class is the maximum instantaneous data 
arrival rate (peak rate). Each source in a service class has identical peak rates. 

We model the generation of information of traffic sources in the service classes 
by stationary stochastic processes X[\(t) (t),..., Xj\(t) Xjnj(t), 
where X , ; ( / ) denotes the instantaneous arrival rate of the /th traffic source of type 
j at time /. We also assume that the arrival rate X , , ( / ) varies between 0 and p; the 
peak rate of the traffic sources in class j , i.e. 0 < Xy,{t) < ps, Vf, j . The sources 
are regarded as independent random variables for Vr. 

Let S(t) = Y,Jj=\E/=i xj-(0 a n d M ( 0 = E[S(t)] where E[ . | denotes the 
expectation value operator. Due to stationarity we can neglect the time dependency, 
so the tail distribution of the aggregate traffic can simply be P(S > C). 

3.2. Improved Bound for Guaranteeing Link Saturation Probability 

The following contribution introduces a new formula that can be used for bounding 
the tail probability of the link saturation of (bufferless) statistically multiplexed 
traffic: 

Theorem 4 LetXuij = I J;i = 1 nj) be independent (not necessarily 
identically distributed) random variables where 0 < Xy, < ps then 

)n (^ r ) " ' '* P(S >C)<e 
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where s* is the solution of the following equation, 

J N"TJ n n2 e'F' 

Proof Let us follow the same line of the derivation as in (3). The starting 
point is again the Chernoff formula: 

P(S >C)< E[e°ZU tiii xJ']e~xC. 

Due to independence we obtain 

J ") 

P(S>C)<Y\Y\ E[esXji]e~*C-
j=\ i=\ 

The exponential function is strictly convex, thus, the expectation value of the random 
variables esX'' can be bounded as 

E(eiX'i)<\+mji , 
Pj 

where my, is the mean value of Xjj. 
In this way, the tail distribution of the sum of the random variables can be 

bounded above by 

p(s>o < nn('+mJi^—~y~xc- o n 
M l M w 

The product on the right-hand side can be reformulated as 

; = 1 r j j=\i=\ 

The second product can be further approximated by 

j=\ i=l 

because of the relation between geometric and arithmetic mean of non-negative real 
numbers. Now an upper bound of the tail distribution can be expressed as 

. . . ' p ( s > _ C ) <e--c(p^cf n ( ^ r 
= 7 ( j , C , A f . n , p ) . (14) 
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where n is the vector of H / S and p comprises the peak rates. 
In addition, we have to determine the optimal s, which minimizes the right-

hand side, of (14), in other words, which gives the lowest upper bound. Unfortu
nately, a closed form expression for the optimal $ cannot be derived, however, an 
essentially non-algebraic equation can be fonnulated, of which solution serves as 
the optimal s. The upper bound in (14) is minimized i f its logarithm is minimized, 
that is, the optimal s should minimize the function 

^ . ' l l U . f ^ ' ' } sC. OS) 

Taking the derivative of this with respect to A- we get 

' NTJ n n1 f"'J 

The solution of (16) gives the optimal s*. • 
Remarks: The optimal parameter.?" can be numerically computed in a straight

forward manner using any standard root-finding algorithm. Note, that the equation 
above contains only the aggregate mean M, meaning that there is no need to know 
the mean values of the random variables (i.e. the mean arrival rates of the traffic 
flows). 

The upper bound presented in Theorem 4 can be considered as the real coun
terpart of the first Hoeffding inequality (3), because in the case of identical upper 
bounds (peak rates), i.e. pj — 1. V / , we get back this inequality. Also, in this case 
the optimal .v* from equation (16) will be .v* = log which is the same as 
the optimal s obtained in the derivation of the first Hoeffding bound (3). 

According to the results in [10] it is also true that the upper estimation in 
Theorem 4 is the best possible one with the given assumptions, namely, the Chernoff 
bound is bounded above using only the number of flows, the peak rates of the flows 
and the aggregate mean rate as the available information on the traffic. 

3.3. Closed Form Approximations 

Although the numerical evaluation of the upper bound in (9) can be straightforward, 
often a closed form expression can be more useful and expressive, even i f it is not 
optimal with respect to the transformation parameter s. The problem with the result 
in (9) is that although the optimal parameter s" can be numerically computed, the 
optimization may be a time consuming process and can hardly be accomplished in 
real time. 

In the following, we present two ways of how to find suboptimal but closed 
form formulae for.? which can be substituted into (9) obtaining closed form expres
sions for the improved bound. 
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One method is as follows: 
First, we take the first three terms in the Taylor series expansion of the fraction 
Pj/(esp> - 1) with respect to s at s = 0. Next putting them into the logarithm in 
(15), then taking the first two terms of the Taylor series expansion of the received 
formula in the same way, we get 

sM + (~P2 (M -~P) )S2 - sC, 

where M = £ ' = l E / i i P = £ ; = i nJPh p* = LU nJPi' 
The expression above should be minimized in order to obtain a sub-optimal 

value for s. Thus we get 

Now we can express an upper bound for the tail distribution, which does not contain 
the transformation parameter s. Hence, substituting into (9), we finally obtain 

P(S > C) < r ( 5 f , C , M , n , p ) = 

(17) 

ft 
Our second suggestion for a suboptimal s has the same fonn as the optimal 

parameter (5) obtained at the first Hoeffding inequality. Substituting each peak 
rate with the arithmetic mean of the peak rate of all the sources, that is p - pj = 

jj *r,Jj = \ njPj>Vj' w e obtain the optimization parameter: 

# 1 C(Np-M) 
s = — log 

p & M(Np-C) 
(18) 

Taking into account that (2) is true for V.v we may apply (18) for (9) achieving a 
new closed form bound, the performance of which, however, should be investigated 
carefully. Apparently, we may use other types of means as well, e.g. i f 

P = 

we get 

\ I - I 

N_ C(P-M) 

P2 °gM(P-C) 
(19) 
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or in general 

each of which would equally be applicable, however, through extensive numerical 
investigation the use of s% seems to show the best properties. This choice still 
satisfies the requirement that should remain positive since neither M nor C can 
exceed the sum of the peak rates. Another important property of sj is, that as 
opposed to s\, it becomes the original optimal value of s i f all the peak rates are 
equal to each other. From this we can expect that i f the deviation of the peak rates 
is small, this latter solution gives better results than (17). 

In the next section we compare the new bounds derived from (9), (17) and 
(19) to each other and to the second Hoeffding bound (7), numerically. 

4. Comparison with Numerical Examples 

The comparison is made between the negative exponents of the bounds derived 
from (9), (17) and (19). This means that the behavior of the difference functions 

D i f f W i J , (C) = - log T(s\ C, M, n, p) + log T(fi, C, M, n, p). (21) 

D i f f ^ ( C ) = - log T(s\ C, M, n, p) + log T(s^ C, M, n, p), (22) 

D i f f v i . , 2 ( 0 - - log T(sl C, M, n, p) + log T(s*, C, M, n, p), (23) 

and 
2(C - M)2 

D i f f V U L W 2 ( C ) = - log T(sl C. M, n. p) - —j (24) 

are to be analyzed, where 

log T(s, C, M. n,p) = N log f ' N * '~ l ) + 

+ L U " j [ ° z e - i r - s C - ™ 

From our large number of numerical examples hereafter we show four different 
cases to represent the results. Table 1 shows the most important parameters of the 
different traffic situations, which are the number of service classes J, the vector of 
the number of the sources in the service classes n, the vector of the peak rates p, 
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Table I The parameter sets of different traffic situations 
a. b. c. d. 

J 2 5 10 10 
n (10,1) (10,8,6,5,6) (4,5,4,5,4,5,4,5,4,5) (15,12,12,5,6,6,4,10,3,6) 
P (1-10) (1,2,4,8,10) (1,2,3,4,5,6,7,8,9,10) (1,2,3.4,5,10,11,20,24,25) 
P 20 150 195 651 
M 8 80 60 100 
Df 0.13 0.023 0.014 0.013 
M/P 0.4 0.53 0.31 0.15 

the sum of the peak rates P, the aggregate mean arrival rate Mt and a normalized 
deviation like parameter DP for comparison purposes defined as: 

The mean to peak ratio M/P is also noted which may give an outline about the 
total traffic activity in the different cases. 

Fig. 1, Fig. 2 and Fig. 3 show the functions D i f f W i J | , D i f f , v t 2 and Diff v | s 2 with 
respect to the capacity C. To better understand the meaning of the curves let us take, 
forexample, the third plot of the first comparison\nFig. I . A t C = 120, it shows that 
the difference of the negative exponents of the probability counted with the optimal 
method and that of counted with (17) is about 0.024, which means that (17) gives 
e 0 0 2 4 ( ^ 1.024) limes larger (i.e. worse) upper bound than the optimal technique 
does. The difference between the optimal and the other two methods in Fig, J and 
Fig. 2 gives us a general overview about the accuracy of using the suboptimai s* 
and j j instead of .9*. Note that in Fig. 2 in most of the cases the difference Diff„ v 2 

remains under 0.5, which appears to be a negligible error, considering that these 
bounds have around the middle of the interval [ M , P] a value of 0.01 with a slope 
of about —10 as capacity increases, resulting in a waste of less than 0 .1% of the 
total capacity. 

Investigating the relation between the two suboptimai methods we can first 
draw the conclusion that the one using £J gets worse as Dp increases (as we would 
expect), while the other one shows little dependence on it. However, considering the 
above mentioned facts, this often small deviation of about 0.5 has little significance, 
On the other hand, the effect of the change of the value M/P has considerable im
pact. While the formula using j j becomes more precise as M/P decreases, the one 
with s* shows strong degradation. Note that this tendency remains overshadowed 
due to the high deviations (DP & 0.02) with respect to the number of sources in 
our discussed traffic situations. 

Finally, we present comparisons between our first closed-form formula using 
(17) and the second Hoeffding inequality (7) via the difference function Diff,.| ,, f l 2. 
Fig. 4 illustrates strict increase in the difference with increasing capacity C. It means 

DP = -

\ 
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a.: M = 8, P = 20 

100 120 no 
C a p a c i t y 

0.15 

0.121 

0.1 

0.014 

0.05 

O.02^> 

110 120 

C a p a c i t y 

b.: M — 80, P ~ 150 

300 /LOG 500 

C a p a c i t y 

c. M = 60, P = 195 d. M = 100, P = 651 

fig. / The difference function U\Hos\(C) 

Fig. 2 The difference function Diff W , . V 2(C) 
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C a p a c i t y C a p a c i t y 

a.: M = 8, P = 20 b.: M = 80, P = 150 

C a p a c i t y C a p a c i t y 

c. M = 60, P = 195 d. M = 100, P = 651 

Fig. 3 The difference function D i f f j i . ^ C ) 

that our first closed-form upper bound seems to be always better (which is also 
experienced in large numbers of numerical examples) than the second Hoeffding 
inequality. 

To sum up the results of our comparisons it can be stated that among the 
approximation techniques presented in this paper, the method using (17) seems to 
be the most appropriate one, for practical cases. 

5. Conclusions 

In this paper we have developed a new upper bound for tail distribution of aggregate 
traffic using the well-known Chemoff bounding technique. This bound uses the 
aggregate mean arrival rate, the number of sources and the individual peak rates. 
This estimation can be considered as a generalized version of the Hoeffding bound 
assuming identical and normalized peak rates of traffic sources, because that can 
be obtained as a special case. This new upper bound is the best possible one 
assuming the condition that we apply the Chernoff bounding method using the 
given information (aggregate mean rate, peak rates, number of random variables) 
on the random variables. Due to the fact that our newly developed bound cannot 
be expressed in closed form, we have also presented weaker but closed form upper 
bounds for the tail distribution of aggregate traffic. Several numerical examples 
have also shown that one of the closed-form bounds is the most appropriate one for 
practical use. 
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Capai: t t y c a p a c i cy 

a.: M = 8, P = 20 b.: Af = 80, P = 150 

c. M = 60, P = 195 d. M = 100, P = 651 

Fig. 4 The difference function D i f f V | , / 1 0 2 ( C ) 
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