MOLECULAR COMPUTING WITH TEST TUBE SYSTEMS
Abstract
In this paper a survey of various different theoretical models of test tube systems is given. In test tube systems specific operations are applied to the objects in their components (test tubes) in a distributed and parallel manner; the results of these computations are redistributed according to a given output/input relation using specific filters. A general theoretical framework for test tube systems is presented which is not only a theoretical basis of systems used for practical applications, but also covers the theoretical models of test tube systems based on the splicing operation as well as of test tube systems based on the operations of cutting and recombination. For test tube systems based on the operations of cutting and recombination we show that in one test tube from a finite set of axioms and with a finite set of cutting and recombination rules only regular languages can evolve.