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Abstract
This paper presents a novel algorithm for modeling photovol-
taic based distributed generators for the purpose of optimal 
planning of unbalanced distribution networks. The proposed 
algorithm utilizes sequential Monte Carlo method in order 
to accurately consider the stochastic nature of photovoltaic 
based distributed generators. An efficient algorithm based on 
Firefly optimization method is proposed for optimal placement 
of photovoltaic based distributed generators in unbalanced 
distribution network. The proposed optimization algorithm 
aims to minimize the annual energy loss by determining the 
optimal locations of photovoltaic distributed generators. The 
proposed algorithms are implemented in MATLAB environ-
ment and tested on the IEEE 37-node feeder. Several case stud-
ies are conducted to prove the effectiveness of the proposed 
algorithms. The results obtained are presented and discussed.
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1 Introduction
Photovoltaic (PV) based power stations are  good choice for 

replacement of the traditional electrical energy generation as it 
is infinite and less pollutant source of energy. However, due to 
its stochastic nature, PV increases the network uncertainties. 
The PV power is difficult to be accurately simulated because 
it is strongly correlated to the climate, ambient temperature, 
season, time and geography [1]. Thus, a probabilistic model of 
the PV power is needed in order to simulate the actual behavior 
of these stations. 

Models that considers the stochastic nature of the PV 
power can be classified into two categories; analytical meth-
ods [2-6] and Monte Carlo based techniques [7-10]. Authors 
in [2] Presented a modeling method that based on dividing the 
solar irradiance into states; finding the average solar irradi-
ance and consequently the most likely power of each hour of 
the day after consecutive mathematical equations based on the 
photovoltaic module. In [3] the stochastic nature of the pho-
tovoltaic was handled by offering unsymmetrical two point 
estimation method and it was compared by symmetrical two 
point estimation method, Gram-Charlier and Latin Hypercube 
method. The authors in [4] presents a methodology to model 
PV based power stations for reliability studies by combining 
Markov Chain and Monte Carlo method for the generation of a 
multistate PV model based on the transition probability matrix. 
Reference [6] presents a chronological probability model of 
photovoltaic (PV) generation on the basis of conditional prob-
ability and nonparametric kernel density estimation. Reference 
[7] described an approach based on Monte Carlo Method to 
evaluate the uncertainty of the passive parameters of double 
diode photovoltaic cell using manufacturer’s data for the pan-
els, measured environmental parameters and semi empirical 
equations. The authors in [8] presents a Monte Carlo based 
strategy for modeling PV power generators considering their 
dependency with other renewable sources. In [9] a method 
based on the pseudo-sequential Monte Carlo simulation tech-
nique had been proposed to evaluate the reserve deployment 
and customers’ nodal reliability with high PV power pen-
etration. In [10] a Monte Carlo based model which presents 
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market- based optimal power flow (OPF) with different combi-
nation of generation and load demand.

Optimal planning of PV based distributed generators (DG) 
in distribution a network is an important task in order to gain 
maximum benefits. Several studies were performed for optimal 
planning of renewable sources [11-14]. An optimal power flow 
was solved using non-linear programming in [11] for optimal 
allocation of renewable distributed generation. Authors in [12] 
proposed a mixed integer nonlinear programming method for 
optimal allocation of wind DG unit. A continuous stochastic 
optimal allocation of wind power considering load uncertainty 
was presented in [14].

2 Modelling strategy
The flowchart of the proposed algorithm used for modeling 

PV power is summarized in Fig. 1. The modeling strategy is 
divided into historical data processing followed by solar irradi-
ance simulation using proper cumulative distribution function, 
and then the calculation of the simulated PV powers is per-
formed. Finally, Monte Carlo convergence is applied to obtain 
the most likelihood values of PV powers at each hour. The pro-
posed strategy is discussed in the following subsections.

Obtain Weibull, Beta and Normal 

CDFs for each hour

Select the most appropriate CDF for the grouped 

data (i.e. achieve min RMSE)

h=1

Generate uniform random vector of 

100,000 samples uniformly distributed 

between [0,1]

Use inverse CDF to find the simulated solar 

irradiance corresponding to each element of the 

generated random vector (i.e. 100,000 elements)

Calculate the simulated PV power using (2)-(6)

h=96 ?

h= h+1

Display 

results

Exit

Yes

NO

Read available historical data 

and divide it into four seasons 

and each season into 24 hours

Calculate the most likelihood values for PV 

output power for the 96 hours using (7)

Fig. 1 Modelling strategy

2.1 Historical Data Processing
Three years of historical data between the years 2001-2003 

at different locations of the same site are used in this study. Six 
readings of the solar irradiance and ambient temperature were 
taken at each hour during the three years. The available data 
is seasonally divided (i.e. each season data is separated). The 
data representing each season is further subdivided into 24-h 
segments (time segments), each referring to a particular hourly 
interval for the entire season. Thus, there are 96 time segments 
for the year (24 for each season). Considering a month to be 30 
days, each time segment then has 1620 irradiance (3 years × 30 
days per month × 3 month per season × 6 readings per hour). 

2.2 Solar irradiance modelling
Depending on the 1620 solar irradiance collected to repre-

sent solar irradiance in each hour, different cumulative distri-
bution are tested to evaluate the most appropriate cumulative 
distribution function (CDF) to fit the random phenomenon 
of the irradiance data. Three types of the most famous prob-
ability functions (Weibull, Beta, and Normal) are constructed 
based on the given data (each hour of the four seasons have 
its own CDF). A comparison based on the percentage error of 
solar irradiance of each cumulative distribution function to the 
actual data is calculated, The root-mean-square error (RMSE) 
between the actual CDF and simulated CDF is used for estima-
tion of the most appropriate simulated CDF to the actual data. 
RMSE is calculated for each type of CDF using (1)

RMSE = −( )
==
∑∑1
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Where  CDFact
h j,

 , CDFsim
h j,  are the value of actual CDF and 

simulated CDF respectively at hour  h  and data  j , Nd  is the 
total number of data in each hour (i.e. 1620 data) and  Nh  is the 
total number of hours (i.e. 96 hours). 

The RMSE is calculated for all random variables (i.e. solar 
irradiance) for each type of CDF (i.e. Beta or Weibull or 
Gaussian). The type of CDF that achieves the minimum RMSE 
is selected to simulate the solar irradiance.

2.3 Simulated random variables of solar irradiance
A uniformly distributed random number vector of 100,000 

values bounded between 0 and 1 is generated. At each random 
number the corresponding solar irradiance random variable 
is obtained from the CDF (i.e. the inverse CDF is obtained at 
each random number). For each of the obtained 96 CDF, a vec-
tor of 100,000 random variables is calculated representing the 
simulated solar irradiance at each hour at each season. (i.e. 96 
simulated random variables vectors are calculated each contain 
100,000 random variables).

(1)
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2.4 Calculation of the simulated PV power
The output power of the PV array is dependent on the solar 

irradiance and ambient temperature of the site as well as the 
characteristics of the module itself. At each value of the calcu-
lated random variables the corresponding PV power is calcu-
lated using Eqs. (2)-(6) 
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
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I S I K Ta sc i c= + −( ) 25
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Where:  Tc  is cell temperature °C,  Ta  is average hourly ambi-
ent temperature °C,  Sa  is simulated solar irradiance kW/m²,  
NOT  is nominal operating temperature of cell °C,  I  is module 
current (A),  Isc  is short circuit current (A),  Ki  is current tem-
perature coefficient A/°C,  V  is module voltage (V),  Voc  is 
open-circuit voltage (V),  Kv  is voltage temperature coefficient 
(V/°C),  FF  is fill factor,  VMPP  is voltage at maximum power 
point (v),  IMPP  is current at maximum power point (A),  Ps  is 
simulated output power of the PV module, and  N  is the num-
ber of modules per array.

2.5 Monte Carlo simulations convergence
The most likelihood value of the obtained 100,000 random 

powers at each hour is achieved by running Monte Carlo simu-
lation. The dynamic average is calculated using Monte Carlo 
convergence Eq. (7). For the very high number of simulations 
(i.e. 100,000) the Monte Carlo convergence is guaranteed. 
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Where  Pave  is the most likelihood value of the PV power calcu-
lated at each hour at each season,  Ps  is the PV power random 
variable and NS is the total number of simulations (100,000).

3 Problem Statement
The optimization problem under study can be stated as follows:

3.1 Objective Function
The optimization problem under study aims to determine 

exactly the optimal PV based distributed generators loca-
tions for the sake of minimizing the distribution feeder annual 
energy loss. Since each time segment represents 90 h (30 days 
per month 3 months per season), the objective function can be 
described as follows using (8)

Minimize the annual energy losses = ×
=
∑Ploss h
h

,
90

1

96

Where  Ploss,h  is the power loss at each hour  h  for the 96 hours 
under study (4 seasons × 24 hours per season)

3.1.1 Technical Constraints 
• Voltage limits: voltage at each bus should be within a 

permissible range usually:

0.95 p.u.  ≤  V  ≤  1.05 p.u.

• Lines thermal limit (line Ampacity): it represents the maxi-
mum current that the line can withstand at certain DG pen-
etration, exceeding this value leads to melting of the line.

Iflow  ≤  IThermal

• Substation limit: this constraint represents the maximum 
apparent power that the substation can provide.

Ssubstation, flow  ≤  Ssubstation, max

• Power balance: the sum of input power should be equal 
to the sum of output active power in addition to the active 
power loss. The input power may include the DG active 
power and the active power supplied by the utility. The 
active output power is the sum of loads active power.

P P P Psubstaion DG loads loss+ = +∑ ∑

3.1.2 Assumptions
To formulate an accurate planning strategy that determines 

the optimal location of PV based DG units, the following 
assumptions are made.

• All the renewable DG units are working at a unity power 
factor. 

• All buses in the system under study are subjected to the 
same meteorological conditions.

• The energy can be supplied to the substation if the sum 
of the renewable DGs power exceeds the system demand.

4 Methodology
The firefly optimization algorithm is inspired from the natu-

ral behavior of the fireflies; a firefly of the maximum brightness 
has the largest ability to attract other fireflies. The brightness 
of a firefly is affected or determined by the landscape of the 
objective function. For a maximization problem, the brightness 
can simply be proportional to the value of the objective func-
tion [15], whilst for a minimization problem; the brightness is 
inversely proportional to the value of the objective function.

The optimization algorithm is summarized in Fig. 2 and 
described in the following steps:
Step (1): Generate a set of random fireflies bounded inside cer-
tain preset region. Each firefly has one dimension represents 
the PV DG location. 

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(11)

(10)

(12)
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Step (2): Calculate the annual energy losses corresponding to all 
initial DG locations and the seasonal hourly power schedule of 
the PV DG by performing unbalanced load flow for the 96 hours.
Step (3): Evaluate the brightness of each firefly based on the 
type of the objective function (i.e. the brightest firefly is that 
achieve minimum energy loss).
Step (4): Calculate the distances between all fireflies and the 
brightest one, the distance between two fireflies i, j (rij) for the 
current optimization problem can be calculated as follow:

r Loc Locij i j= −( )2

Where  loci  and  locj  are the DG location of fireflies i, j 
respectively. 
Step (5): Move the less attraction (brightness) firefly i towards 
the more attractive firefly j by using the following equation:

Loc Loc r Loc Loc randi i ij j i= + −( ) × −( ) + −





β γ α

0

2 1

2
exp

Where the first term is the current firefly position, the second 
term is used to update the firefly position based on the bright-
ness of the fireflies and the third term is used to randomize 
the movement of firefly. β0 is the initial attractiveness, γ is the 
absorption coefficient, the values of these parameters are ac-
curately tuned to solve the optimization problem efficiently. α 
is a randomization parameter that decrease at each iteration by 
Eq. (15) and rand is a random number generator uniformly dis-
tributed between [0,1].
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Step (6): Evaluate the brightness of the fireflies at the updated 
positions by calculating the objective function.
Step (7): Repeat steps (3)-(5) until reach the maximum number 
of iterations (kmax).

5 Test cases and results
5.1 Model of PV based DGs

The modeling procedure presented in section II is applied to 
the 3 years solar irradiance data. The continuous Beta, Weibull  
and Gaussian CDFs functions are compared to the discrete 
actual CDF obtained using numerical integration of the real 
data PDF; different CDFs at different seasons and different 
selected hours are compared to the actual CDFs and the RMSE 
is calculated for each season and presented in Table 1. It is obvi-
ous from the table that the Beta CDF is the most appropriate 
CDF to simulate the random behavior of the solar irradiance. 
Figure 2 shows a sample of graphical comparison between the 
actual data, Beta, Weibull, and Normal distributions, it can 
be clearly concluded from the shown figure that Beta distri-
bution is the most fitting distribution to the actual data which 
emphasizes the results obtained from the RMSE calculations.

The advantage of the beta distribution over the actual data CDF 
is that beta distribution is invertible, so that, the simulated solar 
irradiance could be obtained correspondingly to any random 
number uniformly distributed between [0, 1].

Table 1 RMSE for different seasons

Season Summer Winter Fall Spring

Beta 0.033364 0.092075 0.075747 0.056225

Weibull 0.055025 0.194151 0.196547 0.146322

Gaussian 0.058844 0.193642 0.194813 0.148391

Fig. 2 Comparison of simulated and actual CDF at 09:00 A.M., summer

Fig. 3 MC simulations convergence at 12:00 A.M, summer season

The hourly 100,000 Monte Carlo simulations for the ran-
dom PV power are then obtained using the aforementioned 
uniformly random number generator and the inverse Beta 
distributions. Table 2 presents the values of the constants and 

(13)

(14)

(15)



251A Novel Probabilistic Technique for Optimal Allocation of Photovoltaic ... 2016 60 4

parameters required to calculate the PV output power. The con-
verged Monte Carlo results of the PV power of one module 
for the 96 hours are presented in Table 3. In order to validate 
the proposed modeling strategy, the converged values of Monte 
Carlo simulations at all hours are compared to the average val-
ues of the PV powers obtained using the actual solar irradiance. 
Figure 3 shows the converged value of Monte Carlo simulations 
at a sample hour and Fig. 4 shows the average power obtained 
using actual solar irradiances at the same hour. The comparison 
shows that the converged value of Monte Carlo simulations is 
close to the average obtained using the actual data with the 
preference of Monte Carlo simulations as the huge number of 
simulations used guarantees the convergence (i.e. reaching the 
most likelihood value) unlike the small number of actual data 
which emphasizes the importance of Monte Carlo method.

Table 2 Characteristics of the PV module

Module characteristics Features Module characteristics Features

Watt peak (W) 53
Current at maximum 
power (A)

3.05 A

Open circuit voltage (V) 21.7
Voltage temperature 
Coefficient (mV/°C)

88

Short circuit current (A) 3.4
Current temperature 
Coefficient (A/°C)

1.5

Voltage at maximum 
power (V)

17.4
Nominal cell operating 
temperature (°C)

43

Fig. 4 Average of the actual data at 12:00 am, summer season

5.2 Optimal Planning of PV based DGs for Energy 
Losses Minimization

The proposed algorithm is implemented in MATLAB envi-
ronment and tested on the IEEE 37-node feeder presented in 
Fig. 6 to minimize the distribution system annual energy losses 
through the optimal allocation of the photovoltaic DG.

Six test cases are made; two test cases for the base cases 
where no DG is connected with different load profiles, four 
test cases for optimal allocation of PV based DG with differ-
ent number of PV modules and different load profiles. The test 
cases are summarized as follow:

• Test case # 1: the base case where no DG is connected 
with peak load profile. 

• Test case # 2: no DG is connected with variable load pro-
file (i.e. peak load scaled by load scaling factor).

• Test case # 3: only one photovoltaic DG of capacity 
795kW capacity (15,000 modules) with peak load profile. 

• Test case # 4: only one photovoltaic DG of capacity 
795kW capacity (15,000 modules) with variable load 
profile. 

• Test case #5: only one photovoltaic DG of 1590kW ca-
pacity (30000 modules) with peak load profile.

• Test case #6: only one photovoltaic DG of 1590kW ca-
pacity (30000 modules) with variable load profile.

Table 3 PV module converged simulated power 

Seasons PV output power (W)

Hours Winter Spring Summer Fall

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0.0051 2.0309 1.5457 0.0150

7 1.0102 10.3993 9.1009
3.4395

8 7.7385 19.2869 17.7126 10.7027

9 14.8381 26.9237 25.1966 17.2147

10 20.3485 32.4399 30.6294 21.929

11 24.7366 35.6412 34.2144 24.3809

12 26.3658 37.3814 36.509 25.1659

13 25.1997 37.3374 35.9115 24.1829

14 23.1347 33.9647 32.7959 21.012

15 19.2044 28.3968 27.7954 15.2652

16 12.3300 20.5054 20.4046 8.0518

17 4.6891 11.0148 11.2052 1.7354

18 0.3344 2.9472 3.2555 0.0346

19 0 0.0807 0.0901 0

20 0 0 0 0

21 0 0 0 0

22 0 0 0 0

23 0 0 0 0

24 0 0 0 0
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Fig. 5 Load scaling factor [2]

Fig. 6 Renumbered IEEE 37- node feeder

1) Test cases # 1 and # 2
The annual energy losses for the base case where no DG is 

connected is obtained by running the unbalanced load flow for 
the 96 hours and calculating the power loss for each hour, then 
the annual energy loss is calculated using (8). The load profile 
for the second test case is presented in Fig. 6. Table 4 summa-
rizes the results of the two test cases.
2) Test cases # 3, #4, # 5 and # 6

In this sub section, the optimal locations of PV based DG 
with 15000 modules (i.e. rated power of 795 KW) with two 
different loading profiles (peak load profile and the aforemen-
tioned load scaling factor) are determined. Also, the same cases 
are repeated with PV based DG with 30000 modules (i.e. rated 
power of 1590 KW). The optimal location of the PV DG and 
the corresponding annual energy losses for the four test cases 
are presented in Table 5 and the annual energy losses when PV 
DG is connected at the optimal location for the four test cases 

are presented in Fig. 7. It can be concluded that a significant 
reduction of power losses occurs when PV DG is connected 
to the distribution networks at the optimal location. It is clear 
from the figures that no reduction occurs at the night time as the 
PV DG output power is null.

Table 4 Results for test cases #1 and #2

Annual energy loss, test case #1 540.967 MWh

Annual energy loss, test case #2 229.1088 MWh

Table 5 Results for test cases # 3-6

Test case 
#3

Test case 
#4

Test case 
#5

Test case 
#6

Optimal location 33 32 32 28

Annual energy 
losses (MWh)

477.990 175.491 445.131 161.721

Fig. 7 Power losses for test cases 3-6

6 Conclusions
A novel algorithm for modelling the PV based DGs con-

sidering their stochastic nature is presented in this paper. The 
proposed algorithm is based on Monte Carlo method and used 
to determine a probabilistic hourly/seasonal model for PV DG. 
Moreover, a Firefly based algorithm is proposed for accurate 
determination of the optimal locations of the PV based DGs 
connected to unbalanced distribution network in order to mini-
mize the annual energy losses. The main contributions of the 
proposed algorithms are that the modelling algorithm considers 
the stochastic nature of the PV DGs. Thus, the proposed mod-
els accurately simulate their behaviour, the rationale behind 
the proposed model is to include the probabilistic model into a 
deterministic optimization problem which simplifies the solu-
tion of the optimization problem and the firefly algorithm pre-
cisely determines the optimal allocation of the PV DG without 
violating the system constraints.



253A Novel Probabilistic Technique for Optimal Allocation of Photovoltaic ... 2016 60 4

References
[1] Ruiz-Rodriguez , F. J., Hernandez, J. C., Jurado, F. "Probabilistic load 

flow for radial distribution networks with photovoltaic generators." IET 
Renewable Power Generation. 6(2), pp. 110–121. 2012. 

 DOI: 10.1049/iet-rpg.2010.0180
[2] Atwa, Y. M., El-Saadany, E. F., Salama, M. M. A., Seethapathy, R. èOp-

timal Renewable Resources Mix for Distribution System Energy Loss 
Minimization." IEEE Transactions of Power Systems. 25(1), pp. 360- 
370. 2010. DOI: 10.1109/TPWRS.2009.2030276

[3] Soroudi, A., Aien, M., Ehsan, M. "A Probabilistic Modeling of Photo-
voltaic Modules and Wind Power Generation Impact On Distribution 
Network" IEEE System Journal. 6(2), pp. 254-259. 2012.

 DOI: 10.1109/JSYST.2011.2162994
[4] Sayed, R., Hegazy, J. G., Mostafa, M. A. "Modeling of photovoltaic 

based power stations for reliability studies using Markov Chains." In: 
2013 International Conference on Renewable Energy Research and Ap-
plications, Madrid, Spain, Oct. 20-23, 2013, pp. 667-673.

 DOI: 10.1109/ICRERA.2013.6749838
[5] Eason, G., Noble, B., Sneddon, I. N. "On certain integrals of Lipschitz-

Hankel type involving products of Bessel functions." Philosophical 
Transactions of the Royal Society of London. Series A, Mathematical 
and Physical Sciences. 247(935), pp. 529-551. 1955.

 DOI: 10.1098/rsta.1955.0005
[6] Ren, Z., Yan, W., Zhao, X., Li, W., Yu, J. "Chronological probability 

model of photovoltaic generation." IEEE Transactions on Power Sys-
tems. 29(3), pp. 1077-1088. 2014. DOI: 10.1109/TPWRS.2013.2293173

[7] Attivissimo, F., Di Nisio, A., Savino, M., Spadavecchia, M. "Uncertaina-
ity Analysis in Photovoltaic Cell Parameter Estimation." IEEE Transac-
tions on Instrumentation and Measurement. 61(5), pp.1334-1342. 2012.
DOI: 10.1109/TIM.2012.2183429

[8] Abdelaziz, A. Y., Hegazy, Y. G., El-Khattam, W., Othman, M. M. "Optimal
 allocation of stochastically dependent renewable energy based distrib-

uted generators in unbalanced distribution networks." Electric Power 
System Research. 119, pp. 34-44, 2015. DOI: 10.1016/j.epsr.2014.09.005

[9] Zhao, Q., Wang, P., Goel, L., Ding, Y. "Evaluation of nodal reliability 
risk ina deregulated power system with photovoltaic power penetration." 
IET Generation, Transmission & Distribution. 8(3)., pp.421-430. 2014. 
DOI: 10.1049/iet-gtd.2013.0340

[10] Siano, P., Mokryani, G. "Probabilistic Assessment of Impact of Wind 
Energy Integration Into Distribution Networks." IEEE Transactions on 
Power Systems. 28(4), pp. 4209-4217. 2013.

 DOI: 10.1109/TPWRS.2013.2270378
[11] Ochoa, L. F., Harrison, G. P. "Minimizing energy losses: Optimal ac-

commodation and smart operation of renewable distributed generation." 
IEEE Transactions on Power Systems. 26(1), pp. 198-205. 2011.

 DOI: 10.1109/TPWRS.2010.2049036
[12] Atwa, Y. M., El Saadany, E. F. "Probabilistic approach for optimal al-

location of wind-based distribution generation in distribution systems." 
IET Renewable Power Generation. 5(1), pp. 79-88. 2009. 

 DOI: 10.1049/iet-rpg.2009.0011
[13] Wang, C., Nahrir, M. H. "Analytical approaches for optimal placement 

of distributed generation sources in power systems." IEEE Transactions 
on Power Systems. 19(4), pp. 2068-2076. 2004.

 DOI: 10.1109/TPWRS.2004.836189
[14] Novoa, C., Jin, T. "Reliability centered planning for distributed genera-

tion considering wind power volatility." Electric Power Systems. 81(8), 
pp. 1654-1661. 2011. DOI: 10.1016/j.epsr.2011.04.004

[15] Yang, X.-S. "Firefly algorithms for multimodal optimization." In: Sto-
chastic Algorithms: Foundation and Applications. Vol. 5792, pp. 169–
178, 2009. DOI: 10.1007/978-3-642-04944-6_14

http://dx.doi.org/10.1049/iet-rpg.2010.0180
http://dx.doi.org/10.1109/TPWRS.2009.2030276
http://dx.doi.org/10.1109/JSYST.2011.2162994
http://dx.doi.org/10.1109/ICRERA.2013.6749838
http://dx.doi.org/10.1098/rsta.1955.0005
http://dx.doi.org/10.1109/TPWRS.2013.2293173
http://dx.doi.org/10.1109/TIM.2012.2183429
http://dx.doi.org/10.1016/j.epsr.2014.09.005
http://dx.doi.org/10.1049/iet-gtd.2013.0340
http://dx.doi.org/10.1109/TPWRS.2013.2270378
http://dx.doi.org/10.1109/TPWRS.2010.2049036
http://dx.doi.org/10.1049/iet-rpg.2009.0011
http://dx.doi.org/10.1109/TPWRS.2004.836189
http://dx.doi.org/10.1016/j.epsr.2011.04.004
http://dx.doi.org/10.1007/978-3-642-04944-6_14

	1 Introduction
	2 Modelling strategy
	2.1 Historical Data Processing
	2.2 Solar irradiance modelling
	2.3 Simulated random variables of solar irradiance
	2.4 Calculation of the simulated PV power
	2.5 Monte Carlo simulations convergence

	3 Problem Statement
	3.1 Objective Function
	3.1.1 Technical Constraints 
	3.1.2 Assumptions


	4 Methodology
	5 Test cases and results
	5.1 Model of PV based DGs
	5.2 Optimal Planning of PV based DGs for Energy Losses Minimization

	6 Conclusions
	References

