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Abstract
Large power transformers are regarded as crucial and expen-
sive assets in power systems. Due to the competing global 
market, to make a good and competing power transformer 
design, a non-linear optimization problem should be solved in 
a very short time in the preliminary design stage. The paper 
shows and compares the performance of four different meth-
ods to solve this problem for three phase core type power 
transformers. The first algorithm is a novel meta-heuristic 
technique which combines the geometric programming with 
the method of branch and bound. Then this conventional multi 
design method is solved by a simple iterative technique and 
two novel evolutionary algorithms to enhance the convergence 
speed. One of these algorithms is the particle swarm optimiza-
tion technique which is used by many other researchers and 
the grey wolf optimization algorithm which is a new method 
in this optimization sub-problem. An example design on an 
80 MVA, three phase core type power transformer using these 
four methods is presented and its performances are analyzed. 
The results demonstrate that the grey wolf optimization is a 
good alternative for this optimization problem.

Keywords
evolutionary algorithms, mathematical optimization, power 
transformers, geometric programming, electrical machine 
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1 Introduction
Making a good and competing power transformer design is a 

non-linear optimization problem. In an electrical machine the dif-
ferent electrodynamic, thermodynamic and mechanic fields inter-
play simultaneously. Therefore a lot of technical and economic 
factors need to be harmonized in the design process. Moreover by 
the large number of the optimized parameters this task belongs to 
the branch of the most general mathematical optimization prob-
lems [1, 2]. Because of the complexity of this task the transformer 
design process is split up two main different stages in practice 
(Fig. 1): the preliminary and the final design stages [3-7].

The subject of this paper is only the preliminary design 
stage. Here the main challenging task is to find the key perfor-
mance parameters of a cost optimal solution in a limited time 
to give a decent answer for a price quotation request. Gener-
ally, the main objective of the large electrical machine design 
is to minimize the total cost of ownership (TCO) by reducing 
the lifetime cost of the power losses and the manufacturing 
costs. Kapp mentioned this optimization problem in his book 
[8] at the beginning of the last century and showed a simple 
analytical approach to determine the key design parameters of 
the cost optimal transformer design. Since then a wide range of 
analytical and numerical method based algorithms have been 
proposed in the literature, from the simple approximative solu-
tions [9] to the solvers which use the recent achievements of 
computational mathematics (e.g. neural networks, Monte Carlo 
methods, genetic algorithms, etc.) [9-11]. This shows that trans-
former design optimization is an active research field nowadays.

The focus of this paper - a geometric programming (GP) 
based meta-heuristic design optimization method - has been 
presented in the previous article of the authors [12]. This 
Geometrec Programming based novel solution has compared 
to three multi design transformer methods (MDM) [2, 13].

These three MDM subvariants which are examined in this 
paper, contain the same calculation methods as shown in [12] 
regarding meta-heuristic optimization, however, different opti-
mum search algorithms are implemented (brute force search, 
particle swarm optimization (PSO) and gray wolf optimization 
(GWO)) to search the optimal design. The MDM method with 
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a simple brute force search or combined with several genetic, 
evolutionary algorithms like PSO can be found in the literature 
[2, 9, 14, 15], but the GWO algorithm has not been used previ-
ously for this transformer design optimization problem.

Fig. 1 Stages of a transformer design process [16]

The paper is organized in the following way. The first sec-
tion gives a brief overview of the main design formulas of the 
realized transformer model. After that, in the second section the 
four examined optimum search models are shown, and finally 

in the Results and Discussion section, the performance of these 
four transformer design algorithms are discussed and compared 
in a real world transformer optimization task. 

2 Design formulas for the preliminary design 
optimization

This section describes briefly the applied design formulas of 
a three phase core type power transformer optimization. This 
design process is the same as the geometric programming based 
algorithm [12, 17]. At this rough preliminary design stage the 
transformer is modelled by the active part (the core and wind-
ings) because its mass and dimensions determine the total cost 
of the equipment (Table 1). The generally used two winding 
model extended with a regulating winding and the dimensions 
of the transformer tank, which are already capable to take into 
consideration the limitations of the outer dimensions and the 
mass of the tank. By the sake of simplicity, in the examined 
models the high voltage winding is regulated with an on-load 
tap changer. The GP based algorithms take every performance 
parameter into consideration with a separate variable (Table 1) 
in the constraint equalities and inequalities which are formulated 
in a special posynomial and monomial format [18]. In contrast 
to the MDM based algorithms – which use the design formulas 
in their classical form – the new method contains and varies 
only the independent variables of this optimization problem.

Fig. 2 The figure shows the steps of the realized MDM algorithm.
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Table 1 List of the transformer model’s performance parameters to be optimized.

Independent variables

Quantity Dimension Variable  

Core diameter mm Dc

Flux density in the core T B

Main insulation distance mm g

Current density

secondary A

mm
2 js

primary A

mm
2 jp

regulating A

mm
2 jr

Winding height secondary mm hs

Dependent variables  

Load Loss kW Pll

No Load Loss kW Pnll

Width of the working window mm s

Core mass t Mc

Tank length mm L

Tank width mm W

Tank height mm H

Winding thickness

secondary mm ts

primary mm tp

regulating mm tr

Mean radius

secondary mm rs

primary mm rp

regulating mm rr

Abstract variables for short-circuit impedance calculation  

a, b, c, d, e, f  

2.1 Objective function
The objective function in each examined transformer opti-

mization algorithm is based on the capitalized cost of the trans-
former. This function contains the manufacturing cost of the 
active part and the cost of the calculated losses: 

f K P K P C Mnll ll k k
k

n

0 1 2

0

= ⋅ + ⋅ + ⋅ ,
=
∑

where  f0  is the TCO of the transformer’s active part in € and 
also the objective function of this optimization method.  K1  is 
the capitalized cost of the no-load loss and  K2  is the load loss 
capitalization cost in €/kW.  Pnll  is the no-load loss of the trans-
former in kW and  Pll  is the sum of the load losses generated in 
the transformers’ active part in kW unit.  Mk  is the mass of the 
part of the model which is represented by  k  in kg.  Ck  repre-
sents the specific cost of the transformer part in €/kg.

2.2 Turn voltage
The turn voltage of the windings is calculated from the given 

power and the independent variables, the calculation can be 
formulated in the next form: 

P R fh t jwl c c in in in in= 4 44 2 2
. λ λ

where  Pw  is the power of a single wounded limb,  λc  is the 
filling factor of the transformer’s core.

2.3 Core and no-load loss calculation
Similarly to the meta-heuristic method in [12], in the case of 

a three phase three legged core, the core mass can be calculated 
by the following formulas:

M M M Mc leg yoke corner= + + ,

M Rcorner c c fe= ⋅ ⋅ ⋅ ⋅ ,3 λ π ρ ζ

M R EI EI hcolumn c c fe TOP BOT in= ⋅ ⋅ ⋅ ⋅ + +( ),2 λ π ρ

M R s p Ryoke c c fe d c= ⋅ ⋅ ⋅ ⋅ ⋅ + ⋅ + ⋅( ),2
4 2 6λ π ρ

where  Mcorner  is the mass of the corners of the core,  Mleg  is 
the mass of the leg,  Myoke  is the mass of the yoke.  λc  is the 
filling factor of the core, it depends on the quality of the ap-
plied electrical steel and the construction technology.  ζ  is a 
technology dependent factor for the core volume calculation,  
ρfe  is the density of the electrical steel.  EITOP  and  EIBOT  are the 
end insulation distances, between the bottom and the top of the 
yoke and the inner winding and  pd  is the phase insulation. The  
hin  winding is used as a reference height in the model as in the 
meta-heuristic method based optimization [12]. The height of 
the outer and the regulating windings are taken into considera-
tion by a simple multiplication of one factor. 

A loss function is fitted to the applied electrical steel [19] 
like in the case of the meta-heuristic method [1, 12, 20].: 

P M f pnll c b nll= ⋅ ⋅

where,  fb  is the building factor which depends on the tech-
nology. The effect of the manufacturing technology and the 
building-factor whose typical value is 1.2 in the case of a rough 
calculation at the preliminary design stage.

2.4 Winding mass and loss calculation
The mass of a transformer winding is formulated in the next 

form: 

m R t t hk k k k k k in= +( )2πρλ α

where  ρ  is the copper density and  λk  is the copper filling 
factor in the winding  k .  αk  is a constant multiplier, which 
takes the height of the winding into account.  Rk ,  tk  are the 

(1)

(2)

(8)

(7)

(6)

(4)

(3)

(5)
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parameters of the examined winding,  hin  is the height of the 
inner winding, which is usually the highest [21].  (Rk + tk )  takes 
into consideration that 

P m jll k Cu k k, = ⋅ +( )∑ρ κ1

where  ρCu  is the copper resistance  Ω ∙ m  at  75 °C,  k  repre-
sents the winding,  jk  is the current density in the  k th winding 
in  A / mm2

 .  κ  is an empirical constant which consider the 
optimal ratio  PAC / PDC  of the losses [1, 22].

2.5 Short Circuit Impedance (SCI)
The SCI can be calculated by analytically in the following 

way:

SCI % fP
U h s

R t R t R gwl

T

in in ou ou
m( ) =

+ .( )
⋅ + +







2

0 32 3 3

0

2

πµ

where the  SCI  is given in [%]. The  UT  means the turn volt-
age,  Pwl  the built-in power in a wounded limb. In this type of 
transformer core it holds that  Pwl = Pphase  where  Pphase  is the 
phase power of a transformer.  Rm  is the mean diameter of the 
main gap of the transformer. 

3 Meta-heuristic method
The modern interior-point method based GP solvers can 

be applied to solve the transformer design optimization task, 
which guarantees that the obtained solution is the global opti-
mum [17]. Moreover, even large scale geometric programs can 
be solved extremely efficiently and reliably [18, 23]. However, 
the description of this branch of mathematical optimization 
methods is quite restrictive. The expressions of the equality 
and inequality constraints are prescribed to be special mathe-
matical formulae called monomials (Eq. (11)) and posynomials 
(Eq. (12)). Here  ck > 0  and the  α  parameters are real numbers. 
Every  x  variable value has to be positive as well. 

m x c x x xg n
n( ) = ⋅ ⋅ ⋅ ⋅

1 2

1 2
α α α



p x c x x xk
k

n
k

k

K
k n( ) = ⋅ ⋅ ⋅ ⋅

=
∑ 1 2

1

1 2
α α α



But as the authors have shown, this method cannot been 
used in the case of core-form transformers, where the short cir-
cuit impedance is required [12, 20]. To solve this problem a 
meta-heuristic algorithm was created along the lines of Branch 
and Bound search (BB). The BB executes a binary search in 
sense that the solution space is divided into several subspaces, 
which can be described in appropriate convex terms [12, 20]. 
The BB can produce large number of sub-cases, but the BB 
is usually quite efficient in the practice because it employs 
advanced techniques to remove certain parts of the search tree 
before evaluation. The general solution for core-form power 
transformers are deeply described in [12].

4 Evolutionary algorithms
In the optimization process, besides the brute force tech-

nique and geometric programming, two different meta-heuris-
tic procedures were considered as well, namely particle swam 
optimization (PSO) and grey wolf optimization (GWO). Such 
computational methods, regardless the problem on which they 
are applied, do not guarantee the globally optimal solution to be 
found. In return, they provide the ability of much faster scan-
ning of large search spaces, which are not feasible to be sam-
pled completely and finely enough. On the other hand, since 
they do not use the gradient of the problem as opposed to the 
classic optimization methods, they do not require the problem 
to be differentiable.

4.1 Particle swarm optimization
Particle swarm optimization, first proposed by Ebenhard and 

Kennedy [24], was intended to model social behaviour, e.g. in 
a bird flock. The main idea is based on a so called swarm, an 
initial population of candidate solutions, which are moved in 
the search space during optimization, i.e., during the search 
for the global extrema of a function  f :  n →   called the 
cost function in a search space  S Ì  n . Without the loss of 
generality let us confine ourselves to a minimization problem, 
when the goal is to find  a Î S  such that  " b Î S , f

 (a) ≤ f (b) . 
Let  N  be the number of particles (candidate solutions) in the 
swarm and define  xi  and  vi  to be the position and the velocity 
of a particle in the search space, respectively, for  i = 1, …, N. 
Moreover, let  pi  denote the best known position of the  i th 
particle and  g  the best known position of all the particles in 
the swarm. Let us introduce three freely chosen scalar values,  
ω, φp  and  φg  controlling the efficiency and behaviour of the 
optimization process. On assigning an appropriate value to 
these variables see [25] and [26]. The algorithm consists of the 
following simple steps: 

1. Initialize the position  xi  of every particle in the swarm 
with a uniformly distributed random vector from the 
search space  S, 

2. Initialize  pi ← xi , i = 1, …, N  and then  g  with the  pi  
of the least cost, 

3. Initialize the components of every  vi  with a uniformly 
distributed random values from  {vi, j | bl, j ≤ vi, j ≤ bu, j ,  
j = 1, …, N }, where  bl  and  bu  are the lower and upper 
bounds of the search space, 

4. Do until iteration  M  is reached or termination criterion 
is met: 
• For every particle  i = 1, …, N , do: 

- For every dimensions  d = 1, …, n , do: 
* Pick random numbers  rp , rg  from  [0,1], 
* Update particle velocity:  xi ← xi + vi, 
- Update position  xi  of each particle by  xi ← xi + vi , 
- Update  pi  and  g  such that  vi, d ← ω vi, d + φp rp 

(pi, d − xi, d) + φg rg (gd − xi, d),

(9)

(10)

(11)

(12)
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5. The most optimal solution found is contained in  g .

4.2 Grey wolf optimization
The grey wolf optimization, proposed by Mirjalili et. al. 

[27], mimics the social characteristics in grey wolf packs and 
simulates their hunting behavior. Similarly to PSO, GWO is 
a swarm-based meta-heuristic. The population is divided into 
four groups, referred to as alpha (α), beta (β), delta (δ) and 
omega (ω), respectively. The three best instances having the 
minimal fitness values are alpha, beta and delta in ascending 
order. The remaining instances are the omega, which during the 
optimization are re-positioned in the search space according to 
the  α , β  and  δ . Let  X (i)  denote the position of a grey wolf in 
the i th iteration, X p

i( )  the position of the prey in the  i th itera-
tion and the operator ∙ element-wise multiplication between 
vectors of the same size. 

The mathematical model of the encircling, a notable part in 
the hunting process, can be described by the following formulas

D C X X= ⋅ − ,p
i i( ) ( )

X X A D( ) ( )i
p
i+ = − ⋅ ,1

where  A  and  C  are coefficient vectors, given by 

A a r a= ⋅ − ,2
1

C r= ,2 2

where  r1 , r2  are random vectors with components from  [0,1] 
and  a  varies linearly from 2 to 0 according to iteration. 

Since the position  Xp  of the prey, the global optimum, is 
not known, the   α , β  and  δ  wolves are assumed to have a bet-
ter knowledge about it. Consequently, the position of a wolf is 
updated according to the following equation 

X X( )i
j

j

+

=

= ,∑1

1

3
1

3

where 

X X A D1 1= − ⋅ ,α α

X X A D2 2= − ⋅ ,β β

X X A D3 3= − ⋅ ,δ δ

and

D C X Xα α= ⋅ − ,1

D C X Xβ β= ⋅ − ,2

D C X Xδ δ= ⋅ − .3

The general steps of the GWO algorithm are the following: 
1. Initialize the pack of wolves randomly within the bounds 

of the search space, 
2. Do until iteration  M  is reached or termination criterion 

is met:
(a) Calculate the value of the objective function for all 

the wolves in the population, 
(b) Chose the three instances with the best objective 

value to be the  α , β  and the  δ , respectively, 
(c) Update the position of the  ω  wolves according to
 Eq. (17), 
(d) Update a , r1  and  r2 , 

3. The position of the  α  wolf is the best approximated op-
timum.

5 Results and Discussion
5.1 Test Case Transformer Specification

The above mentioned four optimization methods have been 
compared regarding a three-phase, 80 MVA power transformer. 
For this comparison two different sets of capitalisation factors 
have been selected (k1 , k2 ) from [28]. Thereforethe value of the 
no-load loss capitalization is  k1 = 7000, the value of the load 
loss capitalization factor in €/kW  k2 = 1000 €/kW. The detailed 
data-sheet with all of the required electrical and mechanical 
parameters are presented in Table 2. 

For the sake of simplicity, the transformer cooling was cho-
sen to be ONAN and the ambient temperature was specified to 
40 °C. The allowed winding oil temperature rise was defined to 
Θwo=65 K, according to the IEC-60076 standard [29]. There-
fore a winding current density limit was set to  3 A / mm2  in the 
main windings and  3.5 A / mm2  in the regulating winding. The 
windings were modeled by their copper filling factors which 
factors were based on the technology and the manufacturing 
experience. 

The applied core material in this case was a TRAN-COR 
H1 grade electrical steel [19]. The maximum of the flux den-
sity was limited to 1.7 T considering the saturation of the core 
material and the over-voltages in the power grid. 

The minimal insulation distances were chosen by a priory 
empirical rules [1, 21, 30, 31]. These methods were based on 
the lightning impulse test and AC test requirements.

5.2 Discussion of the Results
Table 3 summarizes the optimal design variables which 

were calculated by the four different optimization methods. 
The value of the objective functions and the computational 
resource of the different methods can be compared. 

One calculation step in the different algorithms has a simi-
lar calculation effort. The MDM method which iterates over 
the given set of variables is the slowest from the compared 

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)
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methods (O(n6)). Fig. 3 shows the shape of the optimal TCO in 
the function of the turn voltage, and illustrates the large amount 
of possible solutions. For this graph  n = 200000  is made, but 
as the results of Table 3 shows this algorithm haven’t found the 
global optimum as the meta-heuristic method. Because of the 
improper discretization of the variable spaces.

Table 2 List of the transformer model parameters.

Parameter Dimension Value

Nominal power MVA 80

Frequency Hz 50

Connection group YNd11

Number of phases # 3

Short circuit impedance % 16.5

Main gap mm 71

Sum of the end insulation distance mm 370

LV side distance mm 155

HV side distance mm 330

Phase distance mm 71

Core-Tank insulation top mm 60

Core-Tank insulation bottom mm 90

Core

Number of legs # 3

Flux density limit T 1.73

Filling Factor % 90

Material Type 27H074

Material Price €/kg 3

Low Voltage 
Winding

Line Voltage kV 33

Phase Voltage kV 19.05

Phase Current A 1399.64

Copper filling factor % 70

Material and 
manufacturing price

€/kg 8

High Voltage 
Winding

Line Voltage kV 225

Phase Voltage kV 129.9

Phase Current A 205.28

BIL kV 1050

AC kV 460

Copper filling factor % 50

Material and 
manufacturing price

€/kg 7

Regulating 
Winding

Regulating range % 15

Insulation Fully insulated

Regulated winding High voltage

Filling factor % 70

Fig. 3 The optimal value of the TCO in the function of the turn voltages in the 
case of the multi design optimization method.

Fig. 4 Average performance of the applied PSO and the GWO algorithms.

Table 3 and Fig. 4 shows that the two evolutionary algo-
rithm improves the convergence of the MDM significantly, 
according to the literature [9, 32]. Fig. 4 shows that less than 
50 iterations are enough by the presented PSO or GWO based 
methods to achieve the accuracy of the simple iteration based 
MDM method. Fig. 4 compares the average convergence rate 
of the two evolutionary algorithm based methods. This aver-
age performance representation is made of 50 runs with linear 
topology, in both cases. The GWO algorithm shows a greater 
convergence rate than the PSO algorithm after few iterations, 
but after 100 iterations no significant difference can be seen 
between the average performances (Fig. 4). 

In this case the meta-heuristic method has found the optimal 
solution after only one iteration. Therefore, in this application 
the meta-heuristic search is the fastest from the four compared 
algorithms. But it should be noted that the convergence speed 
of the meta-heuristic method is depends on the value of the 
required SCI. As the previous study showed [12] if the opti-
mal value of the SCI is lesser or equal to the requirement, only 
one iteration can be enough otherwise it can be complicated. 
The number of the iterations in this algorithm depends on the 
distance between the optimal value of the impedance and the 
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required SCI. If the optimal value of the SCI is lower than the 
required, the algorithm finds the global optimum in the first 
step, but if the impedance is greater, about 100 iterations are 
enough to find an accurate solution. The value of the objec-
tive function is significantly better in this case than in that of 
the MDM method. The difference between the objectives is 
lesser than 1%, but the difference between the current densities 
is about 20% because of the non-linearity of the transformer 
design problem. In contrast to the PSO and GWO algorithms, 
no significant difference can be shown.

6 Conclusion
The paper presents and compares the performance of four 

different design optimization methods in the case of core-form 
power transformers. The MDM method can be implemented 
and applied easily, but it has a large computational require-
ment, and does not guarantee to find the global optimum of the 
transformer optimization problem. The difference between the 
relative values of the object functions are relatively small, but 
the difference between the computational cost is significant. 
The meta-heuristic algorithm which combines the geometric 
programming with the method of branch and bound gives more 
accurate results in much shorter time than any other examined 
method. The gray wolf optimization algorithm was applied 
successfully for the transformer optimization problem, and has 
a better performance for low iterations than the particle swarm 
optimization. By the application of these evolutionary strate-
gies the performance of the MDM method can be improved 
significantly and can reach about the accuracy of the meta-
heuristic method. 
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