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Abstract
Parameter estimation of band-limited periodic signals (sine 
and multisine waves) is a very common task in the field of 
measurement technology and control engineering. In the over-
whelming majority of data acquisition and control systems 
the analog signals of the real world are sampled an quan-
tized using analog-to-digital converters (ADCs). To estimate 
the parameters of the analog signal and the parameters of the 
quantizer from the same measurement record is an obvious 
need in these cases. The parameters of the recorded signal can 
be used to calculate the response of our system (e.g. signals 
of the actuators) while the parameters of the quantizer can be 
used to identify the transfer characteristic of the measurement 
channel. Maximum likelihood (ML) estimation of the quantizer 
and analog signal parameters has been developed to perform 
this task and to provide asymptotically unbiased and efficient 
estimators for the quantizer and signal parameters. This paper 
investigates the theoretical limits of this kind of estimation: 
provides the Cramér-Rao Lower Bound (CRLB) for the covari-
ance of the achieved estimators and compares them to CRLB 
values obtained using less complex signal and channel mod-
els. This article also provides a comparison of the empirical 
covariance of estimator populations achieved different ways to 
the CRLB of estimation. The major tendencies are drawn and 
explanation for them is provided as well.

Keywords
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1 Introduction
The aim of this paper is to investigate the theoretical limits 

and practical properties of quantizer and signal parameter esti-
mation in that case when parameters of the excitation signal 
and the quantizer has to be estimated from the same measure-
ment record. This kind of estimation is necessary in the follow-
ing scenarios:
•	 A band-limited periodic signal has been acquired via 

analog-to digital conversion. The signal contains har-
monic components and additive noise, and the quantiza-
tion of the signal is non-ideal. However the parameters 
(DC offset, frequency and the Fourier components) of the 
signal shall be estimated paying attention to the nonideali-
ties of the measurement channel (the quantizer). The esti-
mated parameters can be used for multiple applications:
o	 to determine power quality based on the harmonic con-

tent of the voltage signal of a power transmission line
o	 to control the frequency of a power transmission net-

work based on accurate estimation of system frequency
o	 to qualify an audio amplifier based on the harmonic 

distortion and the amount of noise at the output
and naturally other applications may exist.

•	 The aim is to qualify the analog-to-digital converter using 
standard quality measures e.g. effective number of bits 
(ENOB), signal to noise and distortion ratio (SINAD), 
integral nonlinearity (INL) differential nonlinearity 
(DNL), etc. These quantities can be calculated based on 
the parameter estimators using elemental mathematical 
operations. Owing to the properties of maximum likeli-
hood estimators [1] the quality measures calculated using 
the ML estimators of the signal and quantizer parameters 
are the ML estimators of the quality measures. This way 
applying a sinusoidal excitation - which necessarily con-
tains additive noise and harmonic components depend-
ing on the quality of the sine wave generator – and then 
calculating the ML estimators of the quantizer and exci-
tation signal parameters one can achieve asymptotically 
unbiased and asymptotically efficient estimators for the 
quality measures of the quantizer.
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Naturally there can be other scenarios when this kind of 
parameter estimation is required. The model described in 
Section 2 uses two restrictions:
•	 Gaussian noise model. The additive noise on the analog 

excitation signal is modelled as Gaussian white noise. 
The whiteness of the noise is used in the model when 
samples of noise are assumed to be uncorrelated. Due to 
experiments performed with real signal generators and 
ADCs in laboratory [2] the spectral power density func-
tion of the noise is smooth enough to make the white noise 
model lifelike. The other assumption is the Gaussian dis-
tribution. According to the experiments mentioned in [2] 
the Gaussian noise model is lifelike as well, however it 
is not required to have Gaussian noise on the excitation 
signal to make this kind of estimation work. The role of 
the noise model is to punish strictly monotonically the 
deviation of the reconstructed signal from the measured 
values, to decrease the likelihood when the model and 
the measurements move apart. This way any noise model 
which has symmetrical and piecewise monotonic prob-
ability density function can be used for this purpose. 
However, Gaussian model gives a good approximation 
of the reality according to laboratory experiments.

•	 Noisy sine wave as excitation signal. The model 
described in Section 2 uses a noisy sine wave without 
higher harmonic components. This model is useful when 
the quantizer is to be qualified and the test is performed 
using a sinusoidal excitation signal with the lowest pos-
sible harmonic distortion. In this case the signal model 
contains the fundamental harmonic only. However, the 
model can be extended to handle higher harmonics as it is 
described in Section 7. This extension only increases the 
parameter space without increasing the theoretical com-
plexity of the estimation problem.

2 Maximum likelihood estimation of ADC and sine 
wave parameters using Gaussian noise model

For maximum likelihood estimation of ADC testing the 
following model has been developed [3]. The converter is 
described with a set of code transition levels. Transition level 
T [k] is the value of the input voltage, that results code k-1 with 
probability of 50%, and code k with probability of 50% as well. 
The N-bit quantizer provides codes from 0 up to 2N-1, and has 
2N-1 transition levels. The reduced full scale of the converter 
is the voltage range between T [1] and T [2N-1]. Voltage values 
above the highest transition level result code 2N-1 and voltages 
below the lowest transition level result code 0. Quantization 
can be described with a function q(x) where
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The sinusoidal excitation signal can be described with four 
parameters:

x t A ft B ft C( ) = ( ) + ( ) +cos sin2 2π π

where A is the cosine coefficient, B is the sine coefficient, and 
C denotes the DC component of the signal. The frequency of 
the sine wave is denoted with  f. The electronic noise of the 
devices and the imperfections of the measurement environment 
are modeled with additional noise on the excitation signal. The 
most manifest is to assume Gaussian noise with zero mean and 
σ standard deviation. Let  n(t)  denote the realization of the 
additive noise. In this model the spectrum of the noise is white, 
so  n(τ1)  and  n(τ2)  are independent if  τ1 ≠ τ2 . This noisy sine 
wave is quantized and sampled (the sequence is interchange-
able), thus the output of the ADC can be described this way:

y k q x t n tk k( ) = ( ) + ( )( )
where  tk  denotes the  kth  sampling time moment (k = 1..M). 
The parameters of the model to be estimated to be estimated 
are the following:
•	 The code transition levels of the quantizer: T [1], T [2],  

…, T [2N-1]
•	 The cosine coefficient of the sine wave: A
•	 The sine coefficient of the sine wave: B
•	 The DC component of the sine wave: C
•	 The frequency of the sine wave: f
•	 The standard deviation of noise on the excitation signal: σ

As uniform sampling is assumed (effects of incidental non-
ideal sampling are not considered in this model), the frequency 
of the sine wave can be described using the angular frequency 
normalized to the sampling frequency:

θ ω π= =T f
fs
s

2

where  Ts  is the sampling time, and  fs  denotes the sampling 
frequency. Thus the parameter vector to be estimated is the 
following:

pT N NA B C T T T T= [ ] [ ]… −  − 



     θ σ 1 2 2 2 2 1

To express the likelihood of the parameters, it is necessary 
introduce a vector of discrete random variables, denoted by 
Y. Value Y (k) belongs to the kth sample of the measurement 
record and can achieve 2N values: it can be any of the output 
codes of the ADC form 0 to 2N-1 with a given probability. 
These probabilities can be described using the error function:

erf dx e zz
x

( ) = −∫
2 2

0
π

P Y k
T x tk( ) =  =
[ ]− ( )







 +













0
1

2

1

2
1erf

σ

(2)

(3)

(5)

(4)

(1)

(6)

(7)



314 Period. Polytech. Elec. Eng. Comp. Sci.� T. Virosztek, I. Kollár†

P Y k
T x tN

N
k( ) = −  = −

−  − ( )























2 1
1

2
1

2 1

2
erf

σ

P Y k l
T l x t T l x tk k( ) =  =

+[ ]− ( )







 +

[ ]− ( )








1

2

1

2 2
erf erf

σ σ














where  l = 1..2N-2 . To avoid using three different cases it is 
useful to define two „virtual” transition levels of the ADC: 
T [0] = -∞ and T [2N] = +∞. This way the value of  Y (k)  can be 
expressed in using (9) where now l = 0..2N-1 . The likelihood 
function of the measurement is

L Y k y k
k

M

p( ) = ( ) = ( ) 
=
∏P

1

where  y(k)  is the kth sample of the digital record. Merging the 
equations above, one can express the likelihood function this way:
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For computations it is feasible to define a cost function, 
which is the negative log-likelihood function:
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3 First order derivatives of the cost function
To ease the expression of the formulas, let us use the fol-

lowing notation. Let arg(k) denote the argument of the natural 
logarithm function in the kth element of the cost function. This 
means that arg(k) is two times larger than the probability of 
measuring y(k) for the kth sample, assuming parameters p.
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The first order partial derivatives of the cost function are 
expressed below:
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The partial derivatives with respect to the code transition 
levels are the following:
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4 The Fisher Information
The Fisher information [4] matrix of a measurement record, 

assuming parameter vector p is the following:
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This means that the elements of the Fisher information 
matrix can be expressed as the expected values of the second 
order derivatives of the cost function defined previously. This 
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way the Hessian matrix of the cost function shall be expressed 
- which is also useful while it is evaluated during the numeri-
cal optimization of the cost function. Note that the expression 
of the cost function CF(p) does not use any random variables. 
The elements of the measurement record (y(k), k = 1..M) are 
not random variables either. This way the value of CF(p) is 
deterministic and the values of its higher order derivatives are 
deterministic as well. Hence we can calculate the elements of 
the Fisher information matrix directly:

I E
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The general form of the elements of the Fisher information 
matrix is the following:
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Owing to the large amount of formulas this paper does not 
itemize all the elements of the Fisher information matrix, only 
shows an interesting part of them. The entire description of the 
Fisher information matrix is available in [4]. The second order 
derivatives with respect to the code transition levels deserve 
attention. The l+5th row and the l+5th row of the Fisher informa-
tion matrix contains the following element:
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The first sum in (26) is nonzero if and only if m = l or m = l -1 
or m = l + 1. The second sum in that equation is nonzero if and 
only if m = l. This way the (6..2N+4,6..2N+4) minor of the Fisher 
information matrix is tridiagonal. This fact will ease to calculate 
the inverse of the Fisher information matrix, which is the Cramér-
Rao Lower Bound of the parameter estimators. The inversion of 
the Fisher information matrix raises two main challenges. The 

numerical condition of the matrix can be poor: the sensitivity to 
the frequency estimator can be larger than the other sensitivities 
by several orders of magnitude. In this case the adjustment of fre-
quency scaling can be the solution as described in [6]. The other 
source of numerical problems is when some code transition levels 
do not appear in the likelihood function. This can happen if none 
of the adjacent code bins of the transition levels has been hit dur-
ing the excitation. In this case the rows and the columns of the 
Fisher information matrix corresponding to these transition levels 
contain zeros. To solve the problem, we have to remove these 
parameters from the model (since they do not affect the measure-
ment) and calculate the adequate minor of the Fisher information 
matrix. This minor matrix can be inverted and one can get the 
proper CRLB. Naturally this CRLB will not contain any informa-
tion regarding the neglected code transition levels.

5 Comparison of Cramér-Rao Lower Bounds
The Cramér-Rao Lower Bounds [7] for estimation of sine 

wave parameters have been expressed for less complex models, 
these formulas appear in the literature. In Subsections 5.1 and 
5.2 the CRLB of the frequency and amplitude estimation will 
be compared to results published previously.

5.1 Cramér-Rao Lower Bound for amplitude 
estimation

The expression of the CRLB for amplitude estimation 
appears in [8] based on [10]. For the estimator of the amplitude 
of the kth harmonic component (Rk ) the theoretical lower bound 
of the variance is

CRLB
MR
n

k
σ σ2
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where σn denotes the standard deviation of the additive noise 
on the multiharmonic signal and M denotes the number of 
recorded samples. In our signal model the sine wave is decom-
posed to a cosine component (coefficient A) and a sine compo-
nent (coefficient B). This way the amplitude of the signal (R) 
can be described as
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The comparison has been performed using the parameters 
described in Subsection 6.1, but the number of samples covers 
a wider range, it increases from 104 up to 107. The results appear 
in Fig. 1. The blue stars show the CRLB calculated using the 
additive noise model and the red points show the CRLB calcu-
lated using the quantizer model and the Fisher information as 
described in the previous sections.

Fig. 1 Comparison of CRLBs of amplitude estimators

The log-log scale of Fig. 1 shows that the CRLB is inversely 
proportional to M in both cases, however the CRLB using the 
quantizer model is always lower than the CRLB using the addi-
tive noise model. The ratio is in the range of [63.72%..64.07%].

5.2 Cramér-Rao Lower Bound for frequency 
estimation

The expression of the CLRB for the estimation of the frac-
tional period of a sampled sine wave appears in [9] based on 
[10]. In this paper the fractional period has been expressed the 
following way:

f
f

l
Ms

=
+δ

Where l is the integer part and  δ  is the fractional part of 
the number of periods. In this approach the frequency estima-
tion task is to estimate the fractional period  δ . The variance of 
estimator δ̂   has a theoretical lower bound. According to [9]

CRLB
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nσ
π

σ
δ
2

2

2

2
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where σn is the standard deviation of the additive noise on 
the sine wave, A is the amplitude of the sine wave and M is 
the number of samples. Note the attractive properties of this 
expression: the CRLB is directly proportional to the variance 
of the additive noise and inversely proportional to the power of 

the sine wave (thus inversely proportional to the signal-to-noise 
ratio). Furthermore it is inversely proportional to the number of 
samples such as the variance of the mean of independent obser-
vations. The approximation sign in (36) is owing to a first-order 
Taylor approximation in a variance calculation: the variance 
of a spectral quantity has been approximated by the variances 
of its components weighted by its squared sensitivity to these 
components (see [9] and [10]). Since our signal model uses 
parameter  θ = 2πf ⁄ fs  it is advantageous to express this CRLB 
in the terms of  θ .

θ π δ π πδ
=

+
= +2 2 2l

M
l

M M

Since the integer part of the periods (l) is constant in case of 
minor changes in frequency

var var varθ πδ π
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
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*

This way 
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M
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π

σ σ
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2

2

2

2

2 3
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The comparison has been performed using the parameters 
described in Subsection 6.1 but the number of samples covers a 
wider range, it increases from 104 up to 107. The results appear 
in Fig. 2. The blue stars show the CRLB calculated using the 
additive noise model and the red stars show the CRLB calcu-
lated using the quantizer model and the Fisher information as 
described in the previous sections.

Fig. 2 Comparison of CRLBs of frequency estimators

The log-log scale of Fig. 2 shows that the CRLB is propor-
tional to M-3 in both cases, however the CRLB using the quan-
tizer model is always lower than the CRLB using the additive 
noise model. The ratio is in the range of [68.90%..69.34%].

(35)

(36)

(39)

(37)

(38)
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6 Comparison of the empirical covariance of estimator 
populations with the Cramér-Rao Lower Bound

The theoretical lower bound of the covariance is important 
to evaluate the measurement results correctly and to design 
the measurement to fit for purpose. Considering the theoreti-
cal limits one can avoid to make decisions based on estimation 
results within the error margin and can also set measurement 
parameters to achieve variance and bias low enough to get use-
ful estimators. In the following subsections empirical covari-
ance of estimator populations achieved via simulated and 
real measurements are compared to the CRLB of covariance. 
Naturally not all the parameters are examined in this paper, 
only the investigation results of the most important ones are 
itemized in Subsections 6.1 and 6.2.

6.1 Estimator populations from simulated 
measurements

For the simulated measurements the parameter set was the 
following:
•	 Quantizer: 8-bit nonideal quantizer, INLmax = 2 LSB
•	 Excitation signal: 97 periods of sine wave, amplitude = 

120% Full Scale, THD = -70dB, additive Gaussian white 
noise σ = 1 LSB.

•	 Number of samples: 10k, 20k, 100k, 200k, 500k, 1M, 2M
•	 Number of simulated records with the same param-

eter set: 50

For each number of samples a set of 50 different simulated 
measurement records have been generated. The 50 records have 
the same parameters, the same amount of noise but the noise 
realization is different from record to record. The statistics are 
generated from the populations of the 50 different estimators 
of the same parameter. The simulated measurement records are 
available at [11]. For each population and estimator type the 
following quantities have been calculated:
•	 Empirical variance of the estimator using 4-parameter 

least squares fit as described in [11] and [12].
•	 Empirical variance of the estimator using ML estimation 

of the parameter
•	 Cramér-Rao Lower Bound for the variance of the estima-

tor as described in Section 4
These quantities are shown in Fig. 3 and Fig. 4.

6.1.1 Results for frequency estimators
As Fig. 3 shows the variance of the LS frequency estimators 

is lower than the variance of the ML estimators for the lower 
number of samples. This can be explained by the relatively low 
number of samples in a code bin. In these cases the large uncer-
tainty of code transition level estimators affects the uncertainty 
of other parameter estimators, this way the LS estimators per-
form better for lower numbers of samples. Above 105 samples 
the variance of the ML estimators becomes the lower one.

Fig. 3 Empirical variance of frequency estimators and the CRLB 
(simulated measurements) 

Fig. 4 Empirical variance of amplitude estimators and the CRLB 
(simulated measurements) 

6.1.2 Results for amplitude estimators
The tendencies in Fig. 4 are largely similar to the tenden-

cies of the frequency estimators. The empirical variance of the 
LS estimators is lower than the variance of the ML estima-
tors for relatively low numbers of samples, however at larger 
number of samples the asymptotically efficient property of ML 
estimators shows itself and the variance of the ML estimators 
becomes significantly lower than the variance of the LS esti-
mators. The empirical variance of the ML estimators does not 
reach the CRLB for these finite numbers of samples, but ML 
estimators show more attractive asymptotic behaviour than LS 
estimators do.

6.2 Estimator populations from real measurements
The measurements were designed to be largely similar to 

the simulations itemized in Section 6.1. The sine wave gen-
erator was a Bruel & Kjaer 1051 device, the ADC under test 
was the ADC of an NI-9201 data acquisition board. Since the 
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resolution of this SAR ADC is 12 bits, the codes have been 
truncated to the 8 most significant bits. Discarding the 4 least 
significant bits we gained an 8-bit SAR quantizer with low INL 
values. The frequency of the sine wave was set to 97 Hz, the 
time duration of the measurement was 1 second, and the sam-
pling rate was 100 kHz, 200 kHz and 500 kHz. This way the 
number of acquired samples in a record was 100k, 200k and 
500k. For each measurement setup 50 different measurements 
have been performed. The measurements have been automated 
using the NI LabWIEW environment. To ensure identical ini-
tial phase of the sine wave for the corresponding measurements 
is a difficult task in this case. However, it can be solved sched-
uling the automated measurements synchronized to the period 
of the excitation sine wave.

6.2.1 Results for frequency estimators

Fig. 5 Empirical variance of frequency estimators and the CRLB 
(real measurements) 

6.2.2 Results for amplitude estimators

Fig. 6 Empirical variance of amplitude estimators and the CRLB 
(real measurements)

The variance of amplitude estimators has been calculated 
using the method that is described in Subsection 5.1. The results 
of the measurement evaluation appear in Fig. 5 and Fig.  6. 
These figures show the same quantities as Fig. 3 and Fig.  4 
do – empirical covariance of the ML and LS estimators and 
the calculated value of the CRLB -, but the real measurements 
were performed using only three different numbers of samples. 
The results achieved via real measurements are largely similar 
to the results detailed in Subsection 6.1. The largest difference 
between the variances calculated based on simulated and real 
measurements was 57.16% which is acceptable considering 
that the variance values cover multiple orders of magnitudes in 
this case. A conclusion can be drawn up for both amplitude and 
frequency estimators and for both simulated and real measure-
ments: the variance of the ML estimators is higher than the LS 
ones for lower number of samples, but the relation changes to 
its opposite for higher number of samples. Since ML estimators 
are efficient, this observation fits to the theory regarding the 
asymptotical properties of ML estimators.

7 Generalization for arbitrary band-limited periodic 
signals

The signal model introduced in Section 2 assumes a pure 
sine wave with Gaussian additional noise but without harmonic 
distortion. However, handling upper harmonic components 
does not raise invincible challenges, only scales up the size of 
the parameter space. Assuming a band-limited periodic excita-
tion, our signal model is the following:

x t A ift B ift Ci
i

L

i
i

L

( ) = ( ) + ( ) +
= =
∑ ∑cos sin2 2

1 1

π π

where L is the number of harmonic components (including the 
fundamental harmonic). The parameter vector in this case is 
the following:

pT L L
NA A B B T TC= … … [ ]… − 



1 1

1 2 1
  

θ σ

The partial derivatives with respect to Ai and Bi can be cal-
culated easily using the derivatives with respect to A and B 
from the original (pure sine wave) signal model, e. g.
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Concerning second order and mixed second order deriva-
tives with respect to Ai and Bi these can be calculated using the 
derivatives w. r. t. A and B using the following substitutions:
•	 cos cos ;sin sink ki k kiθ θ θ θ( )→ ( ) ( )→ ( )
•	 cos cos ;sin sink k ki ki k k ki kiθ θ θ θ( ) → ( ) ( )→ ( )
•	 cos cos ;sin sink k ki k i k k ki k iθ θ θ θ( ) → ( ) ( ) → ( )2 2 2 2 2 2

Using this extension of the signal model the problem of esti-
mating signal and quantizer parameters simultaneously from 
the same measurement record can be solved for all those cases 
when the excitation is a band-limited periodic signal. This can 
be advantageous from two reasons.
•	 This way we can handle those cases where the excitation 

signal contains higher harmonics intentionally e.g. where 
the excitation is a multisine wave.

•	 Using this extension we can also handle those cases where 
the harmonic distortion of the excitation sine wave is 
large enough to mislead the sine wave fitting and thus the 
qualification of the quantizer. If the harmonic distortion 
of the excitation signal is not estimated and the perceived 
harmonic distortion is assigned to the quantizer than the 
quantizer will be seemingly worse than its real quality.

8 Conclusions
The calculations, the simulation and measurement results 

detailed in this paper provide the following main conclusions:
•	 The Fisher Information matrix and the Cramér-Rao Lower 

Bound can be calculated for maximum likelihood estima-
tion of quantizer and sine wave parameters. The numeri-
cal condition of the Fisher Information matrix can raise 
challenges; however these challenges can be answered.

•	 The CRLB of the ML model has been compared to the 
CRLB of a less complex model. This comparison shows 
that the asymptotic properties of these CRLBs are largely 
similar, however the CRLB based on a more complex 
model is lower than the CRLB of the simple additive 
noise model.

•	 The empirical variance of the ML estimators has been 
compared to the empirical variance of the LS estima-
tors based on simulated and real measurements. These 
variances have also been compared to the corresponding 
CRLBs.

•	 The signal model has been extended from noisy sine 
wave to an arbitrary noisy bandlimited periodic signal. 
Section 7 showed that this extension only increases the 
scale of the problem, but does not increase its theoretical 
complexity.

The experiments detailed in this paper can be reproduced, 
modified and extended using the open source ADCTest toolbox 
for MATLAB [4], the raw data (simulated and real measure-
ment records) are available at [13].
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