
Cite this article as: Szemenyei, M., Vajda, F. "3D Object Detection and Scene Optimization for Tangible Augmented Reality", Periodica Polytechnica
Electrical Engineering and Computer Science, 62(2), pp. 25–37, 2018. https://doi.org/10.3311/PPee.10482

https://doi.org/10.3311/PPee.10482
Creative Commons Attribution b |25

Periodica Polytechnica Electrical Engineering and Computer Science, 62(2), pp. 25–37, 2018

3D Object Detection and Scene Optimization for
Tangible Augmented Reality

Márton Szemenyei1*, Ferenc Vajda1

1 Department of Control Engineering and Information Technology, Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics, H-1521 Budapest, P.O.B. 91, Hungary

* Corresponding author, email: szemenyei@iit.bme.hu

Received: 10 January 2017, Accepted: 08 May 2018, Published online: 23 May 2018

Abstract

Object recognition in 3D scenes is one of the fundamental tasks in computer vision. It is used frequently in robotics or augmented

reality applications [1]. In our work we intend to apply 3D shape recognition to create a Tangible Augmented Reality system that is

able to pair virtual and real objects in natural indoors scenes. In this paper we present a method for arranging virtual objects in a

real-world scene based on primitive shape graphs. For our scheme, we propose a graph node embedding algorithm for graphs with

vectorial nodes and edges, and genetic operators designed to improve the quality of the global setup of virtual objects. We show that

our methods improve the quality of the arrangement significantly.

Keywords

object detection, tangible user interfaces, graph node embedding, genetic optimization

1 Introduction
Object recognition and detection is one of the vital tasks
in computer vision. While most methods use 2D visual
information only [2], there are numerous 3D shape based
recognition techniques [3, 4], as well as methods that use
both visual and shape information [5, 6]. Object detection
methods are essential for scene understanding [7], which
has a number of applications in different fields, such as
robotics [1] or augmented reality [8].

One such application is Tangible Augmented Reality
(TAR) [9], in which virtual objects are attached to real
ones, and the real-world objects serve as input devices
for user manipulation. While most TAR systems use real
objects with artificial markers for their systems, [10, 11]
there are a few that are able to use any object with suffi-
cient natural features [12]. Still, even these systems do not
pair real and virtual objects intelligently in order to ensure
easy user manipulation.

In this paper we present an algorithm that performs the
matching of virtual and real objects in a scene with no
artificial features using 3D shape recognition. This way,
virtual objects can be paired with real ones with similar
shape, resulting in easily learnable interaction techniques.

Our method describes the shape of objects and scenes
using graphs of primitive shapes [13]. This ensures that

the actual segmentation of objects is also learnable. First,
we use a support vector machine to classify the segments
individually, then we optimize the labels over the entire
scene using a genetic algorithm. The cost function used
for the second part ensures that the setup of the scene
satisfies multiple criteria in addition to shape similarity
(such as the presence of certain categories, relative posi-
tion of objects, etc.).

One of our main contributions in this paper is a graph
node embedding framework for graph that have vectorial
node and edge weights. We show, that this embedding sig-
nificantly improves the segment-by-segment classification
accuracy. Our other contribution is the proposal of genetic
operators specifically designed to improve the perfor-
mance of evolutionary optimization methods for the prob-
lem presented in this paper.

In the next section, we discuss relevant results of other
workshops in the areas of 3D shape recognition, graph
recognition, and global optimization. Then, in Section 3,
we present our shape description method, with emphasis
on the graph node embedding framework. In Section 4,
we present the optimization algorithm used to determine
the arrangement of virtual objects in the scene, including
the cost function, and the genetic operators used. Finally,

https://doi.org/10.3311/PPee.10482
https://doi.org/10.3311/PPee.10482
mailto:szemenyei@iit.bme.hu

26|Szemenyei and Vajda
Period. Polytech. Elec. Eng. Comp. Sci., 62(2), pp. 25–37, 2018

we present and evaluate the results of our methods on
several datasets.

2 Related Work
In this chapter, we discuss results related to our own work.
We begin by elaborating on the various methods for 3D
shape recognition, while in the second part we discuss clas-
sification and recognition in graphs. In the last part of the
chapter, we discuss various global optimization methods.

2.1 3D shape recognition
Classifying objects based on 2D shape is a relatively com-
mon task, for which numerous methods exist. Most of these
methods, however, cannot be generalized easily to 3D
shapes [14]. Still, there are a few, such as the Generalized
Hough Transform [4], or RANSAC [15] work reliably for
3D recognition as well. Nonetheless, these algorithms
require a reference model for matching, which cannot be
easily obtained, mainly due to high intra-class variation.

When no reference model is available, learning algo-
rithms are more appropriate for the task. There are numer-
ous approaches for this, such as using local features
[16, 17] to create a learning algorithm. Another approach
is described in [14], using shape distributions. These algo-
rithms, however, require a segmentation step in order to
produce object candidates for classification. In relatively
simple 3D scenes, with helpful prior information (such as
urban scenes, where the ground is easy to segment) this
may be easy to do. On the other hand, in complex, cluttered
scenes (such as indoors scenes) segmentation might become
unreliable, resulting in inferior detection performance.

Recently deep convolutional neural networks (CNN)
have become increasingly popular amongst researchers
working on object recognition and detection, mainly due
to their superb efficiency [2, 18]. Unsurprisingly, there
is significant work on 3D object detection using either
depth-based [5, 6] or volumetric [18, 19] data. Since CNNs
are able to perform (super)pixel classification, multi-ob-
ject detection in larger scenes using CNNs is relatively
straightforward [5, 20]. Nonetheless, CNNs are notori-
ously difficult to train [21, 22], since they are fraught with
numerical difficulties. CNNs also require large amounts
of training data and computational resources.

Another approach is presented by Schnabel et al. [23],
who use a RANSAC variant to segment a scene into prim-
itive shapes (such as plane, sphere, cylinder, etc.), which
they treat as the “building blocks” of the objects and the
scene. Their algorithm uses local sampling and inlier

detection, in order to increase the chance of finding local
shapes. They proceed by constructing a topology graph of
the object, where the nodes of the graph are the primitives,
and edges represent the geometric relations between the
nodes. The adjacency between the shapes is determined
by their distance. [13]

In order to detect objects in a larger scene, they con-
struct a reference graph for each category, and apply brute-
force graph matching. Since a single reference graph has
relatively low number of nodes, the matching algorithm
remains feasible. [13] They further decrease the number
of possible matches between the scene and the reference
graphs, by introducing a number of constraints. Node con-
straints ensure that only nodes of the same primitive type
are matched, while edge constraints enforce the similar-
ity of the relations between adjacent nodes. A third type
or constraints – graph constraints can be used to take the
relationship of non-adjacent nodes into account as well.

2.2 Graph classification
Graph based learning has numerous applications, includ-
ing bioinformatics [24] and network analysis. [25]
Recognizing objects visually using graph-based learning
is relatively common as well, since objects can usually be
described using graph of (visual) features. [26] In this sec-
tion we discuss relevant results of graph-based learning.

The difficulty of graph classification is that most stan-
dard learning algorithms require a vector (or tensor) of
features as their input. Since these methods cannot take
graphs as inputs, a way to convert it to a vectorial represen-
tation – to embed the graph into a vector space – is needed.
This, however, is not a simple task, since the ordering of
graph nodes is arbitrary, and any simple method of vec-
torizing a graph would yield a vector that is not invariant
to the ordering of nodes. [27] A related difficulty is, that
graphs of different sizes yield vectors of different dimen-
sions, while standard learning algorithms assume, that all
data is in the same vector space.

One class of learning algorithms employ so called kernel
functions in order to implicitly use a higher dimensional rep-
resentation of the data for learning. These kernel functions
are symmetric, positive semi-definite functions that can usu-
ally be interpreted as a similarity measure between objects.
[28] When using kernel learning methods (such as SVM),
an elegant solution presents itself: defining a kernel function
between graphs. Since a kernel function does not require a
vectorial input, nor does it explicitly produce a vectorial rep-
resentation, the entire problem can be circumvented.

Szemenyei and Vajda
Period. Polytech. Elec. Eng. Comp. Sci., 62(2), pp. 25–37, 2018 |27

Perhaps the most widely-known graph kernel is the ran-
dom walk kernel [28], which interprets the edge weights of
the graph as the probabilities of taking that edge during a
random walk. It performs simultaneous random walks on
the two graphs, and derives a similarity score based on the
probability of performing the same walk. This probability
is computed on the direct product of the two graphs using
the following equation:

K X Y w i e A s
i

N
T i

,() = ()
=
∑

1

 (1)

w i e i() = −ϑ , (2)

where A is the adjacency matrix of the direct product, s
and e contain the probabilities of starting and ending the
walk on a given node respectively, N is the maximum
length of the walks considered, and ϑ is a hyperparameter
controlling the slope of the weight w.

However, when using non-kernel learning algorithms
the graphs must be embedded explicitly. Perhaps the most
widely used method for explicit vectorial embedding is the
spectral representation. [29] The simplest version of spec-
tral embedding is to compute the spectral decomposition
of the adjacency matrix of the graph. (3) If the graph has
weights on the nodes, these can be inserted in the diagonal
of the adjacency matrix. [29]

A V V T= Λ (3)

If the eigenvalues and the corresponding eigenvec-
tors are ordered, then this representation will be par-
tially invariant to node ordering. Since this invariance
is only partial, and alignment step is still needed. [30]
Furthermore, spectral embedding is able to handle graphs
of different sizes, by enlarging the smaller graph using
dummy nodes. [31]

Aside from the adjacency matrix, other matrices may
be used for the spectral decomposition. The Laplacian
matrix of graphs is a rather frequent choice, which is
computed (4) using the adjacency (A), and the degree (D)
matrices of the graph. One other method for embedding
graphs is the heat kernel (5). The t parameter heat kernel
controls the trade-off between local and global represen-
tation of the graph. According to Zhu and Wilson [32] the
heat kernel outperforms the other two. It is also possible
to mix different spectral representations [31] in order to
create a more robust method.

L D A= − (4)

H Ve Vt T= − Λ (5)

However, we intend to classify a graph on a node-by-
node basis, which means that instead of embedding entire
graphs, we need to embed nodes into a vector space. In
contrast with embedding graphs, there has been very little
work done on the topic of embedding nodes. For instance,
[26] has used a low-distortion node embedding framework
to perform many-to many feature matching using the earth
movers distance. Riba et al. [33] use binary embedding to
produce hash keys for graph retrieval.

These methods, however, place limitations on the struc-
ture of the graphs or the weights of nodes and edges. Since
our shape description method yields full graphs with vec-
torial weights on both the nodes and edges, the previous
methods are insufficient for our application. To our best
knowledge, no work has been done yet on embedding
graph nodes of vectorial weighted graphs, with no restric-
tions on the topology.

2.3 Global optimization
Optimization problems are frequent in learning computer
vision, and scene understanding. [34] In many cases, the
optimization problem is relatively simple (for instance,
if the cost function and constraints are convex), and may
be solved using standard gradient-based, or second order
methods. In constrained cases, methods for solving linear
or quadratic programs may be used. [35]

These algorithms, however rely on the gradient of the
cost function to some extent. If the gradient cannot be
computed, these methods are unusable. Moreover, there
may be constraints on some variables that make the prob-
lem NP-hard, as is the case, when some variables are
required to be integers or binary. A final problem is the
tendency of simple optimization methods to get stuck in
local minima.

To solve these complex optimization problems, one
needs to rely on heuristic methods. These methods are
capable of finding global optima even in difficult prob-
lems, however, it is difficult (and in most cases impossible)
to guarantee their convergence. Moreover, according to
the No Free Lunch Theorem (NFLT) [36], on average no
optimization method can outperform brute-force search
on all the optimization problems.

It is possible, however, to make a heuristic method
that performs well on a subset of problems. Variations
of hill-climbing method are very popular, such as shot-
gun-gradient methods, or simulated annealing. [37]

28|Szemenyei and Vajda
Period. Polytech. Elec. Eng. Comp. Sci., 62(2), pp. 25–37, 2018

One of the most popular heuristic methods are genetic, or
evolutionary methods. [38] The idea behind these methods
is to implement a scheme similar to biological evolution:
simulating subsequent generation of solution candidates,
using fitness based selection for offspring generation, and
random mutation to create a (hopefully) better population.

One great advantage of genetic algorithms is that by
implementing problem specific crossover and mutation
operators, it is possible to apply these algorithms effi-
ciently to almost any kind of problem. Weise [37] details
the most commonly used operators for genetic methods.
There are also numerous fitness scaling and selection
schemes [37], which influence convergence greatly.

There is a great number of further heuristics that aim
to increase the efficiency of genetic algorithms. On such
idea is to use multiple populations, instead of just one, and
implement some form of migration between them. This
enables the algorithm to explore the parameter space more
easily, since populations share similar genes, therefore
tend to converge. [39]

Genetic algorithms are not guaranteed to improve the
best individual every situation. This might result in the
optimal solution disappearing from the population. In
order to avoid this it is possible to introduce elitism to the
selection strategy. [40] This means, that the best few indi-
viduals always survive, and become a part of the next gen-
eration unchanged.

3 Graph based shape description
In multi-instance object detection algorithms one of the
first steps is usually a segmentation procedure, aiming
to produce “object candidates” for a subsequent classi-
fication method. This is a viable way in shape recogni-
tion, especially in scenes, where segmentation is relatively
straightforward. In urban scenes, for instance, one can
easily remove the ground, resulting in most of the objects
becoming disjoint in the point cloud. [3]

This, however, cannot be done in indoors scenes, since
it is significantly more frequent for objects to be cluttered
in this context. Therefore, we use a different approach: we
segment our scene into primitive shapes (Fig. 1), and clas-
sify these ‘building blocks’ individually first. Since primi-
tive shapes have several features (depending on the primi-
tive type), it would be straightforward to use these features
to classify each primitive.

However, this way, geometric relations between the
primitives, and the local context of each primitive would
be ignored. This could lead to high classification errors, if

two classes contain very similar shapes, albeit in different
contexts. Therefore, we construct a graph from the prim-
itive shapes, and use a graph node embedding procedure
in order to produce a feature vector for each primitive that
encodes the local context of the primitive as well.

In this section we briefly discuss the graph construc-
tion process, then we describe our graph node embedding
framework in detail.

3.1 Construction of shape graphs
The first step of constructing shape graphs is to segment
the 3D point cloud of the scene using the algorithm pro-
posed by Schnabel et al. [23]. Their implementation is able
to detect five different primitive shapes: planes, cylinders,
cones, spheres and tori. We then construct a graph using
the primitive shapes as nodes, while the edges represent
the geometric relations between the nodes.

Each primitive shape type has a few distinct features
that further define the exact shape of the point cloud they
represent. (Table 1) By computing these features we are
able to assign a feature vector to each primitive shape.
Since the features of the different primitive types are
incompatible, it makes sense to construct a unified feature
vector for each primitive by concatenating the features of
the individual types. Of course, for every primitive shape
the features of the other types will be set to zero.

Furthermore, each primitive shape can be easily
assigned with a coordinate system, consisting of an origin
and at least a single direction in the 3D space. (The only
exception is the sphere, where there is no special direction.)
This means, that we may describe the geometric relations
between the primitives by computing the rigid transform
between their coordinate systems. (Table 2) However, since
we want our algorithm to be invariant to rotation, we only
consider the distance between the origins, and the angle of

Fig. 1 A graph constructed from primitive shapes
(only close edges are shown)

Szemenyei and Vajda
Period. Polytech. Elec. Eng. Comp. Sci., 62(2), pp. 25–37, 2018 |29

the rotation between their special directions. Since spheres
do not have a special direction, the angle between spheres
and other primitives is always set to zero.

It is worth noting, that both the nodes and the edges of
the constructed graph have vectorial weights. Furthermore,
the edges of the graph have two different types of weights.
The first type is the traditional “distance” type, meaning,
that if this feature is larger, then the two nodes are less
connected. The second type is the “feature” type, which
describes other qualities of the connection, but its mag-
nitude does not influence the strength of the connection.
Moreover, we construct full graphs, therefore we do not
make explicit decisions on the adjacency of the nodes, we
simply store the distance between them amongst the fea-
tures. This way the subsequent steps can make use of a con-
tinuous adjacency property, without loss of information.

3.2 Graph node embedding framework
In this subsection we present our graph node embedding
framework in detail. Our goal is to create descriptors for
nodes in graphs that have vectorial node and edge weights.
We also wish to place no restrictions on the graph struc-
ture, that is, we propose a framework that is applicable to
full, directed graphs as well.

Our embedding method aims to describe ‘what the
graph looks like’ from the perspective of the node that is
being embedded (the central node). Therefore the frame-
work needs to include information on the features of the
central node, as well as the surrounding ones. It also needs
to incorporate information on the geometric relations
between the nodes.

Since our goal is to embed the local context of the node,
the influence of nodes farther from the central node must
be less than that of the immediate neighbours. This means
that if the edge features of the graph include a parame-
ter that can be interpreted as “distance” or “connection
strength”, then this parameter may be used to weight the
influence of the nodes. Since shape graph edges have a
distance parameter, we will use it for our discussion with-
out loss of generality, since connection strength may be
understood as the inverse of distance.

The first step of the embedding process is to order the
nodes of the graph in based on the distance from the cen-
tral node. Since the spectral embedding is only partially
invariant to the node ordering, this step alone ensures
that the feature vectors are different for separate nodes. If
the ordering is not obvious due to some nodes being too
close, then two separate feature vectors may be made with
the different orderings and averaged. In order to create
descriptors of the same size for all nodes, the maximum
number of nodes included must be set. Distant nodes are
clipped from larger graphs, while smaller ones are padded
with zero nodes and edges.

It is important to note, that padding should not alter
the original shape of the scene. However, if features are
normalized, then padding the graph with all-zero nodes
means that we are adding average shapes to average dis-
tance, which might affect the embedding adversely.
Luckily, there is a simple way to avoid this. Since our node
and edge features are non-negative, we divide the features
with the standard deviation, but do not subtract the mean.
Thus, the non-negative property of our features is pre-
served, and adding zero nodes to the graph is equivalent
with leaving the shape of the scene unchanged.

The next step of our embedding method is to construct
a graph feature matrix F according to the equation below.

F =
















= ()

T T

T T

T T n n e e e

N

N NN

ij i j i j ij

11 1

1

1 1

�
� � �
�

, , , ,

 (6)

where T is a feature transform function, ni is the ith node of
the graph, while eij is the edge pointing from the ith to the
jth node. N is the maximum number of neighbouring nodes
considered in the embedding. Note, that there are very few
restrictions on the properties of T, leaving the choice of
feature transform to the researcher.

Nonetheless, there are a few helpful guidelines for con-
structing the transform function. First, we have previously
divided edge features into “distance” (ed ) and “feature”
(ef) types. We treat feature type values the same way we
treat node features, therefore we concatenate them to the
node feature vectors. (7) Second, we use the distance type

Table 1 Primitive shapes and their features

Primitive Plane Cylinder Sphere Cone Torus

Features

Area,
Diameter,
Bounding
Box Area

Radius,
Height Radius

Radius,
Height,
Angle

Inner
Radius,
Outer

Radius

Table 2 Coordiante Systems for pirmitives

Primitive Plane Cylinder Sphere Cone Torus

Origin Centroid Centroid Centroid Peak Centroid

Direction Normal Axis N/A Axis Normal

30|Szemenyei and Vajda
Period. Polytech. Elec. Eng. Comp. Sci., 62(2), pp. 25–37, 2018

features to scale the result of the feature transform, there-
fore distant nodes will not affect the graph feature matrix
significantly. Our choice for the feature transform func-
tion is shown in the equation below.

T w
n
e
e

n e e

w
e e

ij ij

i

if

ijf

j jf ijf

ij
id j

=
















 

=
+ +

1 1

1

2

1

1

1 µ dd ijde
2 2+()

,

 (7)

where µ is a hyperparameter controlling the distance scal-
ing. It is important to note, that we do not only scale the
feature transform using the distance from the central node,
but also the distance between the two interacting nodes.
This is because the interaction between distant nodes is
not significant for a local context-based embedding.

In order to finalize the embedding process, we com-
pute the singular value decomposition of the graph feature
matrix, and concatenate the first couple singular values and
vectors (8). When using quadratic, antisymmetric (Tji = Tij

T)
feature transform functions the graph feature matrix is guar-
anteed to be symmetric. In this case, the eigendecomposition
may be used in order to reduce the size of the feature vector.
However, we do not place such restrictions on the transform
function, hence using SVD is recommended.

v

u
v

u
v
k k

k k

=























σ
σ

σ
σ

1 1

1 1

 , (8)

where σi , ui , and vi are the ith singular value, left and right
singular vectors respectively, and k is the maximum num-
ber of singular values considered.

4 Object detection in scenes
The second part of our object matching algorithm is the
optimization of the object pairings in the entire scene. This
is needed, since the individual and independent classifi-
cation of primitive shapes might result in inferior perfor-
mance. This is caused by the fact, that we are classifying
segments individually, without considering the labels of
nearby segments. However, nearby primitive shapes are
likely to belong to the same object, thus have the same label.
By introducing a compactness requirement, we encourage
close primitive shapes to take the same label.

Moreover, there are several requirements unique to the
TAR application, which need to be taken into consider-
ation when determining the final setup of the scene. For
instance, the presence of some virtual objects might be
necessary for the AR application to work, while others
may be optional. In other cases it may be appropriate to
encourage the algorithm to place more than one instance
of certain objects.

A further possible addition to the requirements is cate-
gory context. With this additional part, we may encourage
or discourage certain categories to be near to each other.
There are cases in which objects tend to be near, or even
touching in scenes (items are usually placed on tables, for
instance). In this case, the aforementioned compactness
requirement might punish the system for making sensible
placement decisions.

In this section we discuss our method to solve the scene
optimization problem. First, we detail the cost function
and the constraints we use. Then we discuss our optimi-
zation method, focusing on the problem specific genetic
operators proposed for our application. In the final part of
the section we elaborate on the problem of introducing and
learning context information from labelled scenes.

4.1 Cost function for scene optimization
It is worth noting, that without the compactness and con-
text parts, our problem can be formed as a binary linear
program (BiLP). The formulation is shown below.

min

. .

,x

T

j
ij

i
ij j

j

c x

s t x i x a j

a

∈{ }

∑ ∑= ∀ ≥ ∀

=

0 1

1 ,

11 if class is required

0 otherwise

j



,

 (9)

where xij is the binary label indicating whether the ith node
has a class label j. The first constraint forces all nodes to
have exactly one class label, which is necessary due to the
one-hot coding used. The second set of constraints deter-
mines whether the object is required or not. Since our vari-
ables are non-negative, the second constraint is ignorable
for classes where aj is zero.

The costs of the ith node belonging to the jth class (cij )
can be derived from the node-by-node classification
method. For the purpose of normalization it is more sen-
sible to use costs ranging from zero to one instead of raw
classification scores. These can be easily attained by trans-
forming raw scores using a softmax function. This way,

Szemenyei and Vajda
Period. Polytech. Elec. Eng. Comp. Sci., 62(2), pp. 25–37, 2018 |31

the cij cost factors can be interpreted as the probabilities of
the ith node belonging to the jth class.

By adding extra parts to the cost function, the problem
loses its linearity. Yet, this is not a serious loss, since inte-
ger constraints on the variables already make this problem
difficult to solve, due to the NP hard nature of ILPs. The
first such extra component is compactness, which is com-
puted as follows.

C
d

n n n ncomp
i

N

j i

N

ij
i j

T

i j= −() −()
=

−

= +
∑∑

1

1

1

2
2

µ
, (10)

where dij is the distance between the ith and jth nodes, N is
the number of nodes, µ is the hyperparameter controlling
the relative importance of this criterion, while ni is the
vector containing the binary labels of the ith node. By
adding this extension to the cost function, the problem
becomes quadratic.

It is also possible to introduce soft requirements for
the presence of objects, instead of a hard constraint. This
makes sense if the presence of a virtual object is not essen-
tial, but we still want to reward the algorithm for placing
as many different types of objects as possible. To ensure
this, we might add a reward rj to the cost function, if there
is at least one node has the label j.

Another important use of a soft constraint of class pres-
ence is the possibility of rewarding the algorithm for plac-
ing more than one instance of a virtual object. Introducing
this extension is quite tricky, however, since the number
of nodes having the label i is not the same as the num-
ber of objects. To solve this problems, we introduce node
clusters, and count the number of occurrences of the label
i in different clusters only. A single cluster of nodes con-
tains nodes that are closer to each other than a predefined
threshold. This threshold may be computed adaptively,
using the distances in the scene.

The final extension of the cost function is the addition
of context. This step allows the algorithm to encourage
or discourage the closeness of certain categories. This
extension may counter the compactness criterion for cer-
tain class combinations only. As mentioned before, this is
essential in indoors scenes. The context reward is com-
puted as follows:

C dcont
i

N

j i

N

ij ij

c c

=
=

−

= +
∑ ∑β σ

1

1

1

,min
, (11)

where σij is the context coefficient for the ith and jth classes,
dij,min is the minimum distance between nodes belonging to
the ith and jth classes, Nc is the number of classes, and β is

the hyperparameter controlling the relative importance of
this part of the cost function. With all extensions covered,
we present the complete cost function.

C c x C C r Ntotal
T

comp cont
i

N

i i

c

= + + −
=
∑

1

, (12)

where ri is the reward for the presence of the ith class, and
Ni is the number of node clusters that have the label i.

4.2 Methods for scene optimization
The next step in arranging the virtual objects in the scene
is finding the optimum of the cost function. Because of
the NP-hard nature of the optimization problem presented
in the previous subsection, heuristic optimization methods
are needed. Perhaps the simplest heuristic method avail-
able is a greedy neighbourhood search. This algorithm iter-
atively evaluates all the neighbours of the initial point, and
moves to the one with the lowest cost function. The per-
formance of this algorithm depends greatly on the choice
of initial point, and the definition of neighbourhood.

There are two obvious ways of setting the initial point.
The first is setting all binary labels to zero (creating an
infeasible solution), and letting the algorithm build its way
greedily to a feasible one. The second method is random
initialization. In our case, however, there is a third solu-
tion: initializing each node using the node-by-node classi-
fication. Arguably, this way the initialization will be rela-
tively close to the optimal solution, making it very likely
for the algorithm to converge to the optimum.

For the greedy algorithm, neighbourhood is defined as a
single difference in the labels of the nodes. It is important
to note, however, that not all neighbours of a feasible solu-
tion are feasible, since they are not guaranteed to contain
an instance of all required classes. One significant draw-
back of the greedy search is that it finds local minima. If
the classification method has low accuracy, then the ini-
tialization may be too far from the true solution for this
algorithm to converge reliably.

For this reason, we used a simple single population
genetic algorithm with elitist strategy for scene optimiza-
tion. Moreover, we developed specific crossover and muta-
tion operators, as well as a custom initialization strategy.

Class Score Optimal Initialization (CSOI): The first
step of initialization is to determine the population size.
Since the number of parameters depends on the size of the
scene, using a fixed population size is not recommended.
For our problem, setting the population size to 10 times
the number of nodes worked relatively well. To create the

32|Szemenyei and Vajda
Period. Polytech. Elec. Eng. Comp. Sci., 62(2), pp. 25–37, 2018

initial population, we selected the individual that maxi-
mizes the classification scores, and added it to the popu-
lation. The rest of the population consists of mutated ver-
sions of this seed solution.

Random Drag&Shuffle Mutation (RDSM): (Fig. 2)
The point of the mutation operator is to allow the genetic
algorithm to escape local minima by randomly finding bet-
ter regions of the parameter space. The standard mutation
operator for binary/nominal integer genomes is the random
flip operator, which randomly changes the label of a single
node. In our case, however, the random flip operator is very
likely to create a significantly worse candidate solution,
because of the compactness element in the cost function.
This means, that the mutated solution is not very likely
to survive many generations, and allow the algorithm to
explore other regions of the parameter space.

To solve this, we introduce the concept of random drag:
the node whose label is changed will “drag” other nearby
nodes with it with a certain probability. The drag proba-
bility influences the trade-off between node mutation and
cluster mutation. By allowing both kinds of mutation to
occur, the parameter space can be explored more efficiently.

A further idea is to allow the mutation operator to per-
mute the labels themselves with a given probability. This
allows the algorithm to consider other combinations of
classes, which would require several rounds of consequent
mutations otherwise. The RDSM operator is used for gen-
erating the initial population.

Clustered N-Point Crossover (CNPC): (Fig. 3) The
standard crossover operator for binary/nominal integer
genomes is the N-point intersection. This operator ran-
domly selects N-1 intervals in the genome, and inherit
them from the two parents in an alternating way. The
problem with this operator is similar to the problem we
encountered with the mutation, namely, that defining the
crossover on the level of nodes may lead to the creation of
a high number of inferior offspring.

We solve this problem using a similar idea: we define
the intersection operator on node clusters, instead of the
nodes themselves. This means, that all nodes are assigned
to a cluster based on their proximity, using an adaptive
threshold to divide clusters. Then, the clusters are ordered
randomly, and divided into N intervals. The labels are
inherited from the parents alternatingly.

(a) (b)

Fig. 2 The mutation operator: (a) is the original setup, (b) is the traditional flip mutation. (c) is flip mutation using drag, and
(d) shows label permutation

(c) (d)

Szemenyei and Vajda
Period. Polytech. Elec. Eng. Comp. Sci., 62(2), pp. 25–37, 2018 |33

4.3 Optimizing the context reward
In Section 4.1, we introduced the idea of using context
information in the cost function. This way, we allow the
optimization algorithm to prefer certain virtual objects
being close or distant. This is especially useful for counter-
ing the compactness criterion for certain categories only.

In our earlier discussion we have not clarified how the
context rewards (σij from Eq. (11)) are determined for all
the possible class combinations. The simplest solution is
to let the researcher set them using trial and error meth-
ods. This, however, is not only time consuming, it will
also likely underperform automated optimization.

For this reason, we use a simple optimization procedure
to determine the context reward parameters. In order to
achieve this, we run the genetic algorithm and operators
introduced in the previous subsection, and select the N
best unique solutions from the last generation. With their
help, we propose the following cost function:

C c c
i

N

i true= − −
=
∑

1

, (13)

where ci is the cost of the ith best solution, while ctrue is the
cost of the ground truth solution. Using this cost function,

we can run the stochastic gradient descent (SGD) algo-
rithm to find the optimal values of the context rewards,
according to the following derivative:

∂
∂

= −
=
∑C d d

ij k

N

k ij true ijσ
β

1

, ,
, (14)

where dk,ij and dtrue,ij are the minimum distance between
nodes belonging to the class i and j in the kth best, and the
true candidates respectively.

There is one important modification we made to the
standard algorithm, namely, that after every few epochs,
we rerun the genetic optimization algorithm, and set the
best N candidates. This technique prevents the algorithm
from returning context rewards that although make the
true solution better than the original best, but only to
result in a new incorrect solution to become the optimum.

5 Experimental Results
In this chapter we present the result of the experiments
based on our methods. In the first part, we test the graph
node embedding algorithm and show that it outper-
forms using the vectorial descriptors of the nodes. We
use support vector machines to perform node-by-node

Fig. 3 The crossover operator: (a) and (b) are the parents, (c) is the offspring.

(a) (b)

(c)

34|Szemenyei and Vajda
Period. Polytech. Elec. Eng. Comp. Sci., 62(2), pp. 25–37, 2018

classification. In the second part of the chapter we eval-
uate the scene optimization algorithm, showing that the
proposed genetic operators significantly improve the per-
formance of the optimization. We also show, that the con-
text optimization is helpful in cluttered scenes.

We use four different datasets for training the classifi-
cation algorithms. The first dataset consists of synthetic
shape graphs. This dataset is meant to be easy to learn, for
the five classes use different types of nodes, with some ran-
dom noise added. Some instances have additional “noise”
nodes, while others are missing some nodes to represent
errors of the segmentation.

The second dataset is also synthetic, however, the
five classes use the same pool of nodes, albeit in differ-
ent combinations. This dataset is meant to demonstrate
that the embedding algorithm significantly outperforms
the simple node descriptor based classification in cases
where the different classes have very similar nodes, but
in different configurations.

The third dataset consists of images of synthetic objects
created in Blender. There are five classes in ten variations
each, with series of images taken with a multiple cam-
era. We created hundreds of partial 3D reconstructions
for each category using VisualSfM. [41] The last database
uses real images in four categories and 4-10 variations for
each category. Here, the categories are relatively simple
(box/book, mug/can, sphere, and horizontal surface).

For the scene optimization, we created one scene data-
base for each training database using the same objects.
We have also created two databases, where certain cate-
gories are deliberately cluttered, making context learning
essential. These two databases use the synthetic and real
images respectively.

5.1 Graph node embedding
We evaluated the performance of our node embedding
method using support vector machines with RBF kernels.
We applied Bayesian optimization to find good hyperpa-
rameter values, using 20% holdout validation error (eho)
as the objective function. We then compute the training
(eclass) and 10-fold cross-validation errors (ecv ) with the
acquired hyperparameters. We compare the classifica-
tion and validation errors with and without applying node
embedding to the datasets. The results for all datasets are
shown in Table 3.

It is easy to see, that the graph node embedding algo-
rithm significantly decreases the loss of the node-by-node
classification in all cases. Interestingly, the first synthetic

database shows some improvement, even though it was cre-
ated so, that it would be easy to classify without embedding.
The reason for this is that the embedding method encodes
the local context into the noise nodes, making them easy
to classify. Arguably, the node embedding method is most
helpful for the second synthetic dataset that contains classes
with similar nodes in different configurations.

5.2 Object detection
For testing the scene optimization method, we used the
scene databases mentioned earlier. We compared the per-
formance of two algorithms: the simple greedy method, and
the genetic algorithm using our operators. We have com-
puted four performance indicators for each run. First, we
compute the classification error (ec) of nodes in the scenes,
and compare it with the SVM-only classification error (esvm).

Furthermore, we compute the percentage of scenes,
where the cost of the optimal scene labelling is lower than
the cost of the ground truth (ecost). This metric shows the
frequency of ‘cost function failures’, however, it is also
dependant on the performance of the optimization method.
The fourth metric is the percentage of scenes, where the
solution found by the optimization algorithm has higher
cost than the true solution (eopt). This metric evaluates the
performance of the optimization method. These last two
metrics are not independent, however. As the optimiza-
tion algorithm gets better at finding the optimum, it also
becomes more likely to find a solution that is better than
the true scene arrangement, if such a solution exists. This
means that as eopt decreases ecost will likely increase.

The results (Table 4) show, that the scene optimization
method reliably outperforms the node-by-node classifi-
cation. It is also obvious, that the graph node embedding
method improves the final classification accuracy as well.
Apparently, the genetic algorithm outperforms the greedy
building, especially in cases, where the node-by-node
classification error is high, therefore the true optimum is
presumably far from the initialization point.

We have also compared the performance of the pro-
posed genetic operators with the vanilla genetic operators

Table 3 Node-by-node classifiaction errors

Metric eho ecv eclass

Embedding No Yes No Yes No Yes

Synthetic 9.6 1.9 10.1 2.1 6.6 0.8

Synthetic2 67.5 2.4 68.1 2.4 64.6 0.6

Synthetic Images 39.2 32.8 39.2 31.7 33.6 14.6

Real Images 11.4 7 10.4 6.4 9.2 5.3

Szemenyei and Vajda
Period. Polytech. Elec. Eng. Comp. Sci., 62(2), pp. 25–37, 2018 |35

for one-hot coded nominal genomes. The results (Table 5)
show, that each operator improves the performance of the
genetic optimization on its own. The Random Drag and
Shuffle Mutation (RDSM), and the Class Score Optimal
Initialization (CSOI) achieve the highest decrease in error,
while the improvement caused by the Cluster N-Point
Crossover (CNPC) is more modest. Note that the opera-
tors were enabled in the same order they are presented in
the table. The changes in the table show the decrease in
error in addition to the previous operators’ result.

We also evaluated the performance of context opti-
mization, using the two scene databases created for this
purpose. We present the final classification error and the
cost function error for these two datasets, with and with-
out context optimization. The results (Table 6) show, that
context optimization is able to reliably improve the scene
optimization method performance, as long as the close-
ness of certain objects is dependent on their categories.

6 Conclusion
In this paper, we have presented an algorithm for pair-
ing virtual and real objects for an adaptive Tangible
Augmented Reality (TAR) system using shape recog-
nition. Our method builds primitive shape graphs from
the 3D point clouds, and uses a graph node embedding
method to allow for superb node-level classification. We
then use a genetic algorithm with special operators to
optimize the arrangement of virtual objects globally.

We have shown, that node embedding improves classi-
fication accuracy significantly, especially when there are
similar nodes in different classes, albeit in different config-
urations. We have also shown, that constructing a cost func-
tion for TAR and optimizing it can significantly improve the
accuracy of the pairing algorithm compared to the node level
classification. The class score optimal initialization scheme,
random drag and shuffle mutation and clustered n-point
crossover operators improve the chance of the genetic opti-
mization algorithm to find the optimal solution significantly.

Table 6 Results before and after the context optimization

Metric ec ecost

Context No Yes No Yes

Synthetic Images 28.5 17.9 92.7 66.4

Real Images 17.3 8.7 47.9 27.9

Table 4 Result of the scene optimization

Metric ec esvm

Algorithm Greedy Genetic Greedy Genetic

Embedding No Yes No Yes No Yes No Yes

Synthetic 0.1 0.2 0 0 6.5 0.9 6.5 0.9

Synthetic2 51.1 0.2 3.8 0 64.6 0.6 64.6 0.6

Synth. Images 23.9 12.2 16.2 6.3 33.4 14.4 33.4 14.4

Real Images 4.2 1.2 3.5 0.7 8.9 5.1 8.9 5.1

Metric ecost eopt

Synthetic 0.1 0 0.1 0 0.3 0.3 0 0

Synthetic2 0 0 2.7 0 97.5 0.7 7.5 0.1

Synth. Images 18.9 12.3 35.3 19.5 45.9 28.9 3.6 0.8

Real Images 1.3 1.1 1.5 1.4 7.5 6.4 0 0

Table 5 Change in errors caused by the special genetic operators

Method RDSM CNPC CSOI

Metric ec eopt ec eopt ec eopt

Synthetic 59.4 65.5 0.8 1.5 9.5 29.2

Synthetic2 55.5 52 0.7 0.3 14.1 47.2

Synthetic Images 57.2 66.9 0.8 2.9 2.9 11.5

Real Images 43.3 62.7 0.2 0.4 1.7 2.4

References
[1] Wojek, C., Walk, S., Roth, S., Schindler, K., Schiele, B. "Monocular

Visual Scene Understanding: Understanding Multi-Object Traffic
Scenes", IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(4), pp. 882–897, 2012.

 https://doi.org/10.1109/tpami.2012.174
[2] Szegedy, C., Liu, W., Jia, Y. "Going deeper with convolutions", In:

IEEE Conference on Computer Vision and Pattern Recognition,
Boston, MA, USA, 2015, pp. 1–9.

 https://doi.org/10.1109/CVPR.2015.7298594
[3] Golonivskiy, A., Kim, V. G., Funkhouser, T. "Shape-based

Recognition of 3D Point Clouds in Urban Environments", In: IEEE
12th International Conference on Computer Vision, Kyoto, Japan,
2009, pp. 2154–2161.

 https://doi.org/10.1109/iccv.2009.5459471

[4] Tombari, V., Di Stefano, L. "Object recognition in 3D scenes with
occlusions and clutter by Hough voting", In: Fourth Pacific-Rim
Symposium on Image and Video Technology, Singapore, 2010,
pp. 349–355.

 https://doi.org/10.1109/psivt.2010.65
[5] Wu, C., Lenz, I., Saxena, A. "Hierarchical Semantic Labeling for

Task-Relevant RGB-D Perception", In: Proceedings of Robotics:
Science and Systems, Berkeley, USA, 2014.

 https://doi.org/10.15607/rss.2014.x.006
[6] Schwarz, M., Schulz, H., Behnke, S. "RGB-D Object Recognition

and Pose Estimation based on Pre-trained Convolutional Neural
Network Features", In: Proceedings of the IEEE International
Conference on Robotics and Automation, Seattle, 2015,
pp. 1329–1335.

 https://doi.org/10.1109/icra.2015.7139363

https://doi.org/10.1109/tpami.2012.174
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/iccv.2009.5459471
https://doi.org/10.1109/psivt.2010.65
https://doi.org/10.15607/rss.2014.x.006
https://doi.org/10.1109/icra.2015.7139363

36|Szemenyei and Vajda
Period. Polytech. Elec. Eng. Comp. Sci., 62(2), pp. 25–37, 2018

[7] Li, L.-J., Socher, R., Fei-Fei, L. "Towards Total Scene
Understanding: Classification, Annotation and Segmentation in an
Automatic Framework", In: 2009 IEEE Conference on Computer
Vision and Pattern Recognition, Miami, FL, 2009, pp. 2036–2043.

 https://doi.org/10.1109/cvprw.2009.5206718
[8] Pauly, O., Diotte, B., Fallavollita, P., Weidert, S., Euler, E., Navab,

N. "Machine learning-based augmented reality for improved sur-
gical scene understanding", Computerized Medical Imaging and
Graphics, 41, pp. 55–60, 2015.

 https://doi.org/10.1016/j.compmedimag.2014.06.007
[9] Billinghurst, M., Kato, H., Poupyrev, I. "Tangible Augmented

Reality", In: ACM SIGGRAPH ASIA, 2008.
 https://doi.org/10.1145/1508044.1508051
[10] Billinghurst, M., Kato, H., Myojin, S. "Advanced Interaction

Techniques for Augmented Reality Applications", In:
Shumaker, R. (ed.) Virtual and Mixed Reality. VMR 2009,
Lecture Notes in Computer Science, Vol. 5622, Springer, Berlin,
Heidelberg, pp. 13–22.

 https://doi.org/10.1007/978-3-642-02771-0_2
[11] Lee, G. A., Billinghurst, M., Kim, G. J. "Occlusion based Interaction

Methods for Tangible Augmented Reality Environments", In:
Proceedings of the 2004 ACM SIGGRAPH international confer-
ence on Virtual Reality continuum and its applications in industry,
Singapore, 2004, pp. 419–426.

 https://doi.org/10.1145/1044588.1044680
[12] Broll, W., Meier, E., Schardt, T. "The Virtual Round Table

- a Collaborative Augmented Multi-User Environment", In:
Proceedings of the ACM Collaborative Virtual Environments, San
Fransisco, CA, USA, 2000, pp. 39–45.

 https://doi.org/10.1145/351006.351011
[13] Schnabel, R., Wahl, R., Wessel, R., Klein, R. "Shape Recognition

in 3D Point Clouds", In: The 16-th International Conference in
Central Europe on Computer Graphics, Visualization and Computer
Vision’2008, Bory, 2008. [online] Available at: http://cg.cs.uni-bonn.
de/aigaion2root/attachments/schnabel-2008-shape.pdf [Accessed:
10 January 2018]

[14] Osada, R., Funkhouser, T., Chazelle, B., Dobkin, D. "Matching
3D Models with Shape Distributions", In: SMI 2001 International
Conference on Shape Modeling and Applications, Genova, Italy,
2001, pp. 154–166.

 https://doi.org/10.1109/sma.2001.923386
[15] Fishler, M. A., Bolles, R. C. "Random sample consensus: a par-

adigm for model fitting with applications to image analysis and
automated cartography", Magazine Communications of the ACM,
24(6), pp. 381–395, 1981.

 https://doi.org/10.1145/358669.358692
[16] Rusu, R., Blodow, N., Beetz, M. "Fast Point Feature Histograms

(FPFH) for 3D Registration", In: 2009 IEEE International
Conference on Robotics and Automation, Kobe, Japan, 2009,
pp. 3212–3217.

 https://doi.org/10.1109/ROBOT.2009.5152473
[17] Lazebnik, S., Schmid, C., Ponce, J. "A sparse texture represen-

tation using local affine regions", IEEE Transactions on Pattern
Analysis and Machine Intelligence, 27(8), pp. 1265–1278, 2005.

 https://doi.org/10.1109/TPAMI.2005.151

[18] Wu, Z., Song, S., Khosla, A., Yu, L. Z. F., Tang, X., Xiao, J. "3D
ShapeNets: A Deep Representation for Volumetric Shape Modeling",
In: 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Boston, MA, USA, 2015, pp. 1912–1920.

 https://doi.org/10.1109/CVPR.2015.7298801
[19] Bai, S., Bai, X., Zhou, Z., Zhang, Z., Latecki, L. J. "GIFT: A

Real-time and Scalable 3D Shape Search Engine", In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 2016, pp. 5023–5032.

 https://doi.org/10.1109/CVPR.2016.543
[20] Gupta, S., Girshick, R., Arbeláez, P., Malik, J. "Learning

Rich Features from RGB-D Images for Object Detection
and Segmentation", In: Fleet, D., Pajdla, T., Schiele, B.,
Tuytelaars, T. (eds.) Computer Vision – ECCV 2014. ECCV 2014,
Lecture Notes in Computer Science, Vol. 8695, Springer, Cham,
2014, pp. 345–360.

 https://doi.org/10.1007/978-3-319-10584-0_23
[21] Bengio, Y. "Practical Recommendations for Gradient-Based

Training of Deep Architectures", In: Montavon, G., Orr, G.
B., Müller, K. R. (eds.) Neural Networks: Tricks of the Trade,
Lecture Notes in Computer Science, Vol. 7700, Springer, Berlin,
Heidelberg, 2012, pp. 437–478.

 https://doi.org/10.1007/978-3-642-35289-8_26
[22] Bottou, L. "Stochastic Gradient Descent Tricks", In: Montavon,

G., Orr, G. B., Müller, K. R. (eds.) Neural Networks: Tricks of the
Trade, Lecture Notes in Computer Science, Vol. 7700, Springer,
Berlin, Heidelberg, 2012, pp. 421–436.

 https://doi.org/10.1007/978-3-642-35289-8_25
[23] Schnabel, R., Wahl, R., Klein, R. "Efficient RANSAC for Point-

Cloud Shape Detection", Computer Graphics Forum, 26(2),
pp. 214–226, 2007.

 https://doi.org/10.1111/j.1467-8659.2007.01016.x
[24] Sharan, R., Ideke, T. "Modeling cellular machinery through

biological network comparison", Nature Biotechnology, 24(4),
pp. 427–433, 2006.

 https://doi.org/10.1038/nbt1196
[25] Kumar, R., Novak, J., Tomkins, A. "Structure and evolution

of online social networks", In: Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining, Philadelphia, PA, USA, 2006, pp. 611–617.

 https://doi.org/10.1145/1150402.1150476
[26] Demirci, M. F., Osmanlioglu, Y., Shokoufandeh, A., Dickinson, S.

"Efficient many-to-many feature matching under the l1 norm",
Journal of Computer Vision and Image Understanding, 115(7),
pp. 976–983, 2011.

 https://doi.org/10.1016/j.cviu.2010.12.012
[27] Wilson, R. C., Hancock, E. R., Luo, B. "Pattern vectors from alge-

braic graph theory", IEEE Transactions on Pattern Analysis and
Machine Intelligence, 27(7), pp. 1112–1124, 2005.

 https://doi.org/10.1109/tpami.2005.145
[28] Vishwanathan, S. V. N., Schraudolph, N. N., Kondor, R.,

Borgwardt, K. M. "Graph Kernels", Journal of Machine Learning,
11, pp. 1201–1242, 2010. [online] Available at: http://www.jmlr.
org/papers/volume11/vishwanathan10a/vishwanathan10a.pdf
[Accessed: 10 January 2018]

https://doi.org/10.1109/cvprw.2009.5206718
https://doi.org/10.1016/j.compmedimag.2014.06.007
https://doi.org/10.1145/1508044.1508051
https://doi.org/10.1007/978-3-642-02771-0_2
https://doi.org/10.1145/1044588.1044680
https://doi.org/10.1145/351006.351011
http://cg.cs.uni-bonn.de/aigaion2root/attachments/schnabel-2008-shape.pdf
http://cg.cs.uni-bonn.de/aigaion2root/attachments/schnabel-2008-shape.pdf
https://doi.org/10.1109/sma.2001.923386
https://doi.org/10.1145/358669.358692
https://doi.org/10.1109/ROBOT.2009.5152473
https://doi.org/10.1109/TPAMI.2005.151
https://doi.org/10.1109/CVPR.2015.7298801
https://doi.org/10.1109/CVPR.2016.543
https://doi.org/10.1007/978-3-319-10584-0_23
https://doi.org/10.1007/978-3-642-35289-8_26
https://doi.org/10.1007/978-3-642-35289-8_25
https://doi.org/10.1111/j.1467-8659.2007.01016.x
https://doi.org/10.1038/nbt1196
https://doi.org/10.1145/1150402.1150476
https://doi.org/10.1016/j.cviu.2010.12.012
https://doi.org/10.1109/tpami.2005.145
http://www.jmlr.org/papers/volume11/vishwanathan10a/vishwanathan10a.pdf
http://www.jmlr.org/papers/volume11/vishwanathan10a/vishwanathan10a.pdf

Szemenyei and Vajda
Period. Polytech. Elec. Eng. Comp. Sci., 62(2), pp. 25–37, 2018 |37

[29] Chung, F. "Spectral graph theory", American Mathematical
Society, 1997.

 https://doi.org/10.1090/cbms/092
[30] Ferrer, M., Serratosa, F., Sanfeliu, A. "Synthesis of median spec-

tral graph", In: Marques, J. S., Pérez de la Blanca, N., Pina, P.
(eds.) Pattern Recognition and Image Analysis. IbPRIA 2005,
Lecture Notes in Computer Science, Vol. 3523, Springer, Berlin,
Heidelberg, 2005, pp. 139–146.

 https://doi.org/10.1007/11492542_18
[31] White, D., Wilson, R. C. "Mixing Spectral Representations of

Graphs", In: 18th International Conference on Pattern Recognition
(ICPR’06), Hong Kong, 2006, pp. 140–144.

 https://doi.org/10.1109/icpr.2006.803
[32] Zhu, P., Wilson, R. C. "Stability of the Eigenvalues of Graphs", In:

Gagalowicz, A., Philips, W. (eds.) Computer Analysis of Images
and Patterns. CAIP 2005, Lecture Notes in Computer Science,
Vol. 3691, Springer, Berlin, Heidelberg, 2005, pp. 371–378.

 https://doi.org/10.1007/11556121_46
[33] Riba, P., Lladós, J., Fornés, A., Dutta, A. "Large-scale Graph Indexing

using Binary Embeddings of Node Contexts", In: Liu, C. L., Luo,
B., Kropatsch, W., Cheng, J. (eds.) Graph-Based Representations
in Pattern Recognition. GbRPR 2015, Lecture Notes in Computer
Science, Vol. 9069, Springer, Cham, 2015, pp. 208–217.

 https://doi.org/10.1007/978-3-319-18224-7_21
[34] Sofka, M., Zhang, J., Zhou, S. K., Comaniciu, D. "Multiple object

detection by sequential monte carlo and Hierarchical Detection
Network", In: 2010 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, San Francisco, CA,
USA, 2010, pp. 1735–1742.

 https://doi.org/10.1109/cvpr.2010.5539842

[35] Boyd, S., Vandenberghe, L. "Convex Optimization", Cambridge
University Press, 2004. [online] Available at: http://stanford.
edu/~boyd/cvxbook/bv_cvxbook.pdf [Accessed: 10 January 2018]

[36] Wolpert, D., Macready, W. "No Free Lunch Theorems for
Optimization", IEEE Transactions on Evolutionary Computation,
1(1), pp. 67–82, 1997.

 https://doi.org/10.1109/4235.585893
[37] Weise, T. "Global Optimization Algorithms - Theory and Application",

Self-Published, 2009. [online] Available at: http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.569.5284&rep=rep1&type=pdf
[Accessed: 10 January 2018]

[38] Fraser, A. S. "Simulation of genetic systems by automatic digi-
tal computers", Australian Journal of Biological Science, 10(1),
pp. 484–491, 1957.

 https://doi.org/10.1071/bi9570484
[39] Cohoon, J. P., Hegde, S. U., Martin, W. N., Richards, D. "Punctuated

equilibria: a parallel genetic algorithm", In: Proceedings of
the Second International Conference on Genetic Algorithms
on Genetic algorithms and their application, Cambridge,
Massachusetts, USA, 1987, pp. 148–154.

[40] Laumanns, M., Zitzler, E., Thiele, L. "A unified model for multi-ob-
jective evolutionary algorithms with elitism", In: Proceedings of
the 2000 Congress on Evolutionary Computation, La Jolla, CA,
USA, 2000, pp. 46–53.

 https://doi.org/10.1109/CEC.2000.870274
[41] Wu, C. "Towards Linear-time Incremental Structure From

Motion", In: 2013 International Conference on 3D Vision - 3DV
2013, Seattle, WA, USA, 2013, pp. 127–134.

 https://doi.org/10.1109/3dv.2013.25

https://doi.org/10.1090/cbms/092
https://doi.org/10.1007/11492542_18
https://doi.org/10.1109/icpr.2006.803
https://doi.org/10.1007/11556121_46
https://doi.org/10.1007/978-3-319-18224-7_21
https://doi.org/10.1109/cvpr.2010.5539842
http://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
http://stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
https://doi.org/10.1109/4235.585893
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.569.5284&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.569.5284&rep=rep1&type=pdf
https://doi.org/10.1071/bi9570484
https://doi.org/10.1109/CEC.2000.870274
https://doi.org/10.1109/3dv.2013.25

	1 Introduction
	2 Related Work
	2.1 3D shape recognition
	2.2 Graph classification
	2.3 Global optimization

	3 Graph based shape description
	3.1 Construction of shape graphs
	3.2 Graph node embedding framework

	4 Object detection in scenes
	4.1 Cost function for scene optimization
	4.2 Methods for scene optimization
	4.3 Optimizing the context reward

	5 Experimental Results
	5.1 Graph node embedding
	5.2 Object detection

	6 Conclusion
	References

