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Abstract

Object recognition in 3D scenes is one of the fundamental tasks in computer vision. It is used frequently in robotics or augmented 

reality applications [1]. In our work we intend to apply 3D shape recognition to create a Tangible Augmented Reality system that is 

able to pair virtual and real objects in natural indoors scenes. In this paper we present a method for arranging virtual objects in a 

real-world scene based on primitive shape graphs. For our scheme, we propose a graph node embedding algorithm for graphs with 

vectorial nodes and edges, and genetic operators designed to improve the quality of the global setup of virtual objects. We show that 

our methods improve the quality of the arrangement significantly.
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1 Introduction
Object recognition and detection is one of the vital tasks 
in computer vision. While most methods use 2D visual 
information only [2], there are numerous 3D shape based 
recognition techniques [3, 4], as well as methods that use 
both visual and shape information [5, 6]. Object detection 
methods are essential for scene understanding [7], which 
has a number of applications in different fields, such as 
robotics [1] or augmented reality [8].

One such application is Tangible Augmented Reality 
(TAR) [9], in which virtual objects are attached to real 
ones, and the real-world objects serve as input devices 
for user manipulation. While most TAR systems use real 
objects with artificial markers for their systems, [10, 11] 
there are a few that are able to use any object with suffi-
cient natural features [12]. Still, even these systems do not 
pair real and virtual objects intelligently in order to ensure 
easy user manipulation.

In this paper we present an algorithm that performs the 
matching of virtual and real objects in a scene with no 
artificial features using 3D shape recognition. This way, 
virtual objects can be paired with real ones with similar 
shape, resulting in easily learnable interaction techniques.

Our method describes the shape of objects and scenes 
using graphs of primitive shapes [13]. This ensures that 

the actual segmentation of objects is also learnable. First, 
we use a support vector machine to classify the segments 
individually, then we optimize the labels over the entire 
scene using a genetic algorithm. The cost function used 
for the second part ensures that the setup of the scene 
satisfies multiple criteria in addition to shape similarity 
(such as the presence of certain categories, relative posi-
tion of objects, etc.).

One of our main contributions in this paper is a graph 
node embedding framework for graph that have vectorial 
node and edge weights. We show, that this embedding sig-
nificantly improves the segment-by-segment classification 
accuracy. Our other contribution is the proposal of genetic 
operators specifically designed to improve the perfor-
mance of evolutionary optimization methods for the prob-
lem presented in this paper.

In the next section, we discuss relevant results of other 
workshops in the areas of 3D shape recognition, graph 
recognition, and global optimization. Then, in Section 3, 
we present our shape description method, with emphasis 
on the graph node embedding framework. In Section 4, 
we present the optimization algorithm used to determine 
the arrangement of virtual objects in the scene, including 
the cost function, and the genetic operators used. Finally, 
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we present and evaluate the results of our methods on 
several datasets.

2 Related Work
In this chapter, we discuss results related to our own work. 
We begin by elaborating on the various methods for 3D 
shape recognition, while in the second part we discuss clas-
sification and recognition in graphs. In the last part of the 
chapter, we discuss various global optimization methods.

2.1 3D shape recognition
Classifying objects based on 2D shape is a relatively com-
mon task, for which numerous methods exist. Most of these 
methods, however, cannot be generalized easily to 3D 
shapes [14]. Still, there are a few, such as the Generalized 
Hough Transform [4], or RANSAC [15] work reliably for 
3D recognition as well. Nonetheless, these algorithms 
require a reference model for matching, which cannot be 
easily obtained, mainly due to high intra-class variation.

When no reference model is available, learning algo-
rithms are more appropriate for the task. There are numer-
ous approaches for this, such as using local features 
[16, 17] to create a learning algorithm. Another approach 
is described in [14], using shape distributions. These algo-
rithms, however, require a segmentation step in order to 
produce object candidates for classification. In relatively 
simple 3D scenes, with helpful prior information (such as 
urban scenes, where the ground is easy to segment) this 
may be easy to do. On the other hand, in complex, cluttered 
scenes (such as indoors scenes) segmentation might become 
unreliable, resulting in inferior detection performance.

Recently deep convolutional neural networks (CNN) 
have become increasingly popular amongst researchers 
working on object recognition and detection, mainly due 
to their superb efficiency [2, 18]. Unsurprisingly, there 
is significant work on 3D object detection using either 
depth-based [5, 6] or volumetric [18, 19] data. Since CNNs 
are able to perform (super)pixel classification, multi-ob-
ject detection in larger scenes using CNNs is relatively 
straightforward [5, 20]. Nonetheless, CNNs are notori-
ously difficult to train [21, 22], since they are fraught with 
numerical difficulties. CNNs also require large amounts 
of training data and computational resources. 

Another approach is presented by Schnabel et al. [23], 
who use a RANSAC variant to segment a scene into prim-
itive shapes (such as plane, sphere, cylinder, etc.), which 
they treat as the “building blocks” of the objects and the 
scene. Their algorithm uses local sampling and inlier 

detection, in order to increase the chance of finding local 
shapes. They proceed by constructing a topology graph of 
the object, where the nodes of the graph are the primitives, 
and edges represent the geometric relations between the 
nodes. The adjacency between the shapes is determined 
by their distance. [13]

In order to detect objects in a larger scene, they con-
struct a reference graph for each category, and apply brute-
force graph matching. Since a single reference graph has 
relatively low number of nodes, the matching algorithm 
remains feasible. [13] They further decrease the number 
of possible matches between the scene and the reference 
graphs, by introducing a number of constraints. Node con-
straints ensure that only nodes of the same primitive type 
are matched, while edge constraints enforce the similar-
ity of the relations between adjacent nodes. A third type 
or constraints – graph constraints can be used to take the 
relationship of non-adjacent nodes into account as well.

2.2 Graph classification
Graph based learning has numerous applications, includ-
ing bioinformatics [24] and network analysis. [25] 
Recognizing objects visually using graph-based learning 
is relatively common as well, since objects can usually be 
described using graph of (visual) features. [26] In this sec-
tion we discuss relevant results of graph-based learning.

The difficulty of graph classification is that most stan-
dard learning algorithms require a vector (or tensor) of 
features as their input. Since these methods cannot take 
graphs as inputs, a way to convert it to a vectorial represen-
tation – to embed the graph into a vector space – is needed. 
This, however, is not a simple task, since the ordering of 
graph nodes is arbitrary, and any simple method of vec-
torizing a graph would yield a vector that is not invariant 
to the ordering of nodes. [27] A related difficulty is, that 
graphs of different sizes yield vectors of different dimen-
sions, while standard learning algorithms assume, that all 
data is in the same vector space.

One class of learning algorithms employ so called kernel 
functions in order to implicitly use a higher dimensional rep-
resentation of the data for learning. These kernel functions 
are symmetric, positive semi-definite functions that can usu-
ally be interpreted as a similarity measure between objects. 
[28] When using kernel learning methods (such as SVM), 
an elegant solution presents itself: defining a kernel function 
between graphs. Since a kernel function does not require a 
vectorial input, nor does it explicitly produce a vectorial rep-
resentation, the entire problem can be circumvented.
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Perhaps the most widely-known graph kernel is the ran-
dom walk kernel [28], which interprets the edge weights of 
the graph as the probabilities of taking that edge during a 
random walk. It performs simultaneous random walks on 
the two graphs, and derives a similarity score based on the 
probability of performing the same walk. This probability 
is computed on the direct product of the two graphs using 
the following equation:

K X Y w i e A s
i

N
T i

,( ) = ( )
=
∑

1

    (1)

w i e i( ) = −ϑ ,      (2)

where A is the adjacency matrix of the direct product, s 
and e contain the probabilities of starting and ending the 
walk on a given node respectively, N is the maximum 
length of the walks considered, and ϑ is a hyperparameter 
controlling the slope of the weight w.

However, when using non-kernel learning algorithms 
the graphs must be embedded explicitly. Perhaps the most 
widely used method for explicit vectorial embedding is the 
spectral representation. [29] The simplest version of spec-
tral embedding is to compute the spectral decomposition 
of the adjacency matrix of the graph. (3) If the graph has 
weights on the nodes, these can be inserted in the diagonal 
of the adjacency matrix. [29]

A V V T= Λ      (3)

If the eigenvalues and the corresponding eigenvec-
tors are ordered, then this representation will be par-
tially invariant to node ordering. Since this invariance 
is only partial, and alignment step is still needed. [30] 
Furthermore, spectral embedding is able to handle graphs 
of different sizes, by enlarging the smaller graph using 
dummy nodes. [31]

Aside from the adjacency matrix, other matrices may 
be used for the spectral decomposition. The Laplacian 
matrix of graphs is a rather frequent choice, which is 
computed (4) using the adjacency (A), and the degree (D) 
matrices of the graph. One other method for embedding 
graphs is the heat kernel (5). The t parameter heat kernel 
controls the trade-off between local and global represen-
tation of the graph. According to Zhu and Wilson [32] the 
heat kernel outperforms the other two. It is also possible 
to mix different spectral representations [31] in order to 
create a more robust method.

L D A= −      (4)

H Ve Vt T= − Λ      (5)

However, we intend to classify a graph on a node-by-
node basis, which means that instead of embedding entire 
graphs, we need to embed nodes into a vector space. In 
contrast with embedding graphs, there has been very little 
work done on the topic of embedding nodes. For instance, 
[26] has used a low-distortion node embedding framework 
to perform many-to many feature matching using the earth 
movers distance. Riba et al. [33] use binary embedding to 
produce hash keys for graph retrieval.

These methods, however, place limitations on the struc-
ture of the graphs or the weights of nodes and edges. Since 
our shape description method yields full graphs with vec-
torial weights on both the nodes and edges, the previous 
methods are insufficient for our application. To our best 
knowledge, no work has been done yet on embedding 
graph nodes of vectorial weighted graphs, with no restric-
tions on the topology. 

2.3 Global optimization
Optimization problems are frequent in learning computer 
vision, and scene understanding. [34] In many cases, the 
optimization problem is relatively simple (for instance, 
if the cost function and constraints are convex), and may 
be solved using standard gradient-based, or second order 
methods. In constrained cases, methods for solving linear 
or quadratic programs may be used. [35]

These algorithms, however rely on the gradient of the 
cost function to some extent. If the gradient cannot be 
computed, these methods are unusable. Moreover, there 
may be constraints on some variables that make the prob-
lem NP-hard, as is the case, when some variables are 
required to be integers or binary. A final problem is the 
tendency of simple optimization methods to get stuck in 
local minima.

To solve these complex optimization problems, one 
needs to rely on heuristic methods. These methods are 
capable of finding global optima even in difficult prob-
lems, however, it is difficult (and in most cases impossible) 
to guarantee their convergence. Moreover, according to 
the No Free Lunch Theorem (NFLT) [36], on average no 
optimization method can outperform brute-force search 
on all the optimization problems.

It is possible, however, to make a heuristic method 
that performs well on a subset of problems. Variations 
of hill-climbing method are very popular, such as shot-
gun-gradient methods, or simulated annealing. [37]  
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One of the most popular heuristic methods are genetic, or 
evolutionary methods. [38] The idea behind these methods 
is to implement a scheme similar to biological evolution: 
simulating subsequent generation of solution candidates, 
using fitness based selection for offspring generation, and 
random mutation to create a (hopefully) better population.

One great advantage of genetic algorithms is that by 
implementing problem specific crossover and mutation 
operators, it is possible to apply these algorithms effi-
ciently to almost any kind of problem. Weise [37] details 
the most commonly used operators for genetic methods. 
There are also numerous fitness scaling and selection 
schemes [37], which influence convergence greatly.

There is a great number of further heuristics that aim 
to increase the efficiency of genetic algorithms. On such 
idea is to use multiple populations, instead of just one, and 
implement some form of migration between them. This 
enables the algorithm to explore the parameter space more 
easily, since populations share similar genes, therefore 
tend to converge. [39]

Genetic algorithms are not guaranteed to improve the 
best individual every situation. This might result in the 
optimal solution disappearing from the population. In 
order to avoid this it is possible to introduce elitism to the 
selection strategy. [40] This means, that the best few indi-
viduals always survive, and become a part of the next gen-
eration unchanged.

3 Graph based shape description
In multi-instance object detection algorithms one of the 
first steps is usually a segmentation procedure, aiming 
to produce “object candidates” for a subsequent classi-
fication method. This is a viable way in shape recogni-
tion, especially in scenes, where segmentation is relatively 
straightforward. In urban scenes, for instance, one can 
easily remove the ground, resulting in most of the objects 
becoming disjoint in the point cloud. [3]

This, however, cannot be done in indoors scenes, since 
it is significantly more frequent for objects to be cluttered 
in this context. Therefore, we use a different approach: we 
segment our scene into primitive shapes (Fig. 1), and clas-
sify these ‘building blocks’ individually first. Since primi-
tive shapes have several features (depending on the primi-
tive type), it would be straightforward to use these features 
to classify each primitive. 

However, this way, geometric relations between the 
primitives, and the local context of each primitive would 
be ignored. This could lead to high classification errors, if 

two classes contain very similar shapes, albeit in different 
contexts. Therefore, we construct a graph from the prim-
itive shapes, and use a graph node embedding procedure 
in order to produce a feature vector for each primitive that 
encodes the local context of the primitive as well.

In this section we briefly discuss the graph construc-
tion process, then we describe our graph node embedding 
framework in detail.

3.1 Construction of shape graphs
The first step of constructing shape graphs is to segment 
the 3D point cloud of the scene using the algorithm pro-
posed by Schnabel et al. [23]. Their implementation is able 
to detect five different primitive shapes: planes, cylinders, 
cones, spheres and tori. We then construct a graph using 
the primitive shapes as nodes, while the edges represent 
the geometric relations between the nodes.

Each primitive shape type has a few distinct features 
that further define the exact shape of the point cloud they 
represent. (Table 1) By computing these features we are 
able to assign a feature vector to each primitive shape. 
Since the features of the different primitive types are 
incompatible, it makes sense to construct a unified feature 
vector for each primitive by concatenating the features of 
the individual types. Of course, for every primitive shape 
the features of the other types will be set to zero.

Furthermore, each primitive shape can be easily 
assigned with a coordinate system, consisting of an origin 
and at least a single direction in the 3D space. (The only 
exception is the sphere, where there is no special direction.) 
This means, that we may describe the geometric relations 
between the primitives by computing the rigid transform 
between their coordinate systems. (Table 2) However, since 
we want our algorithm to be invariant to rotation, we only 
consider the distance between the origins, and the angle of 

Fig. 1 A graph constructed from primitive shapes  
(only close edges are shown)
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the rotation between their special directions. Since spheres 
do not have a special direction, the angle between spheres 
and other primitives is always set to zero.

It is worth noting, that both the nodes and the edges of 
the constructed graph have vectorial weights. Furthermore, 
the edges of the graph have two different types of weights. 
The first type is the traditional “distance” type, meaning, 
that if this feature is larger, then the two nodes are less 
connected. The second type is the “feature” type, which 
describes other qualities of the connection, but its mag-
nitude does not influence the strength of the connection. 
Moreover, we construct full graphs, therefore we do not 
make explicit decisions on the adjacency of the nodes, we 
simply store the distance between them amongst the fea-
tures. This way the subsequent steps can make use of a con-
tinuous adjacency property, without loss of information.

3.2 Graph node embedding framework
In this subsection we present our graph node embedding 
framework in detail. Our goal is to create descriptors for 
nodes in graphs that have vectorial node and edge weights. 
We also wish to place no restrictions on the graph struc-
ture, that is, we propose a framework that is applicable to 
full, directed graphs as well.

Our embedding method aims to describe ‘what the 
graph looks like’ from the perspective of the node that is 
being embedded (the central node). Therefore the frame-
work needs to include information on the features of the 
central node, as well as the surrounding ones. It also needs 
to incorporate information on the geometric relations 
between the nodes.

Since our goal is to embed the local context of the node, 
the influence of nodes farther from the central node must 
be less than that of the immediate neighbours. This means 
that if the edge features of the graph include a parame-
ter that can be interpreted as “distance” or “connection 
strength”, then this parameter may be used to weight the 
influence of the nodes. Since shape graph edges have a 
distance parameter, we will use it for our discussion with-
out loss of generality, since connection strength may be 
understood as the inverse of distance.

The first step of the embedding process is to order the 
nodes of the graph in based on the distance from the cen-
tral node. Since the spectral embedding is only partially 
invariant to the node ordering, this step alone ensures 
that the feature vectors are different for separate nodes. If 
the ordering is not obvious due to some nodes being too 
close, then two separate feature vectors may be made with 
the different orderings and averaged. In order to create 
descriptors of the same size for all nodes, the maximum 
number of nodes included must be set. Distant nodes are 
clipped from larger graphs, while smaller ones are padded 
with zero nodes and edges.

It is important to note, that padding should not alter 
the original shape of the scene. However, if features are 
normalized, then padding the graph with all-zero nodes 
means that we are adding average shapes to average dis-
tance, which might affect the embedding adversely. 
Luckily, there is a simple way to avoid this. Since our node 
and edge features are non-negative, we divide the features 
with the standard deviation, but do not subtract the mean. 
Thus, the non-negative property of our features is pre-
served, and adding zero nodes to the graph is equivalent 
with leaving the shape of the scene unchanged.

The next step of our embedding method is to construct 
a graph feature matrix F according to the equation below.
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    (6)

where T is a feature transform function, ni is the ith node of 
the graph, while eij is the edge pointing from the ith to the 
jth node. N is the maximum number of neighbouring nodes 
considered in the embedding. Note, that there are very few 
restrictions on the properties of T, leaving the choice of 
feature transform to the researcher.

Nonetheless, there are a few helpful guidelines for con-
structing the transform function. First, we have previously 
divided edge features into “distance” (ed ) and “feature” 
(ef ) types. We treat feature type values the same way we 
treat node features, therefore we concatenate them to the 
node feature vectors. (7) Second, we use the distance type 

Table 1 Primitive shapes and their features

Primitive Plane Cylinder Sphere Cone Torus

Features

Area,
Diameter,
Bounding 
Box Area

Radius,
Height Radius

Radius,
Height,
Angle

Inner 
Radius,
Outer 

Radius

Table 2 Coordiante Systems for pirmitives

Primitive Plane Cylinder Sphere Cone Torus

Origin Centroid Centroid Centroid Peak Centroid

Direction Normal Axis N/A Axis Normal
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features to scale the result of the feature transform, there-
fore distant nodes will not affect the graph feature matrix 
significantly. Our choice for the feature transform func-
tion is shown in the equation below.

T w
n
e
e

n e e

w
e e

ij ij
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where µ is a hyperparameter controlling the distance scal-
ing. It is important to note, that we do not only scale the 
feature transform using the distance from the central node, 
but also the distance between the two interacting nodes. 
This is because the interaction between distant nodes is 
not significant for a local context-based embedding.

In order to finalize the embedding process, we com-
pute the singular value decomposition of the graph feature 
matrix, and concatenate the first couple singular values and 
vectors (8). When using quadratic, antisymmetric (Tji = Tij

T ) 
feature transform functions the graph feature matrix is guar-
anteed to be symmetric. In this case, the eigendecomposition 
may be used in order to reduce the size of the feature vector. 
However, we do not place such restrictions on the transform 
function, hence using SVD is recommended.
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where σi , ui , and vi are the ith singular value, left and right 
singular vectors respectively, and k is the maximum num-
ber of singular values considered.

4 Object detection in scenes
The second part of our object matching algorithm is the 
optimization of the object pairings in the entire scene. This 
is needed, since the individual and independent classifi-
cation of primitive shapes might result in inferior perfor-
mance. This is caused by the fact, that we are classifying 
segments individually, without considering the labels of 
nearby segments. However, nearby primitive shapes are 
likely to belong to the same object, thus have the same label. 
By introducing a compactness requirement, we encourage 
close primitive shapes to take the same label.

Moreover, there are several requirements unique to the 
TAR application, which need to be taken into consider-
ation when determining the final setup of the scene. For 
instance, the presence of some virtual objects might be 
necessary for the AR application to work, while others 
may be optional. In other cases it may be appropriate to 
encourage the algorithm to place more than one instance 
of certain objects.

A further possible addition to the requirements is cate-
gory context. With this additional part, we may encourage 
or discourage certain categories to be near to each other. 
There are cases in which objects tend to be near, or even 
touching in scenes (items are usually placed on tables, for 
instance). In this case, the aforementioned compactness 
requirement might punish the system for making sensible 
placement decisions.

In this section we discuss our method to solve the scene 
optimization problem. First, we detail the cost function 
and the constraints we use. Then we discuss our optimi-
zation method, focusing on the problem specific genetic 
operators proposed for our application. In the final part of 
the section we elaborate on the problem of introducing and 
learning context information from labelled scenes.

4.1 Cost function for scene optimization
It is worth noting, that without the compactness and con-
text parts, our problem can be formed as a binary linear 
program (BiLP). The formulation is shown below.

min

. .

,x

T

j
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i
ij j
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c x
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∑ ∑= ∀ ≥ ∀

=
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1         ,         

11  if class  is required

0  otherwise

j



,

  (9)

where xij is the binary label indicating whether the ith node 
has a class label j. The first constraint forces all nodes to 
have exactly one class label, which is necessary due to the 
one-hot coding used. The second set of constraints deter-
mines whether the object is required or not. Since our vari-
ables are non-negative, the second constraint is ignorable 
for classes where aj is zero.

The costs of the ith node belonging to the jth class (cij ) 
can be derived from the node-by-node classification 
method. For the purpose of normalization it is more sen-
sible to use costs ranging from zero to one instead of raw 
classification scores. These can be easily attained by trans-
forming raw scores using a softmax function. This way, 
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the cij cost factors can be interpreted as the probabilities of 
the ith node belonging to the jth class.

By adding extra parts to the cost function, the problem 
loses its linearity. Yet, this is not a serious loss, since inte-
ger constraints on the variables already make this problem 
difficult to solve, due to the NP hard nature of ILPs. The 
first such extra component is compactness, which is com-
puted as follows.

C
d

n n n ncomp
i

N

j i

N

ij
i j

T

i j= −( ) −( )
=

−

= +
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1

1

1

2
2

µ
,   (10)

where dij is the distance between the ith and jth nodes, N is 
the number of nodes, µ is the hyperparameter controlling 
the relative importance of this criterion, while ni is the 
vector containing the binary labels of the ith node. By 
adding this extension to the cost function, the problem 
becomes quadratic.

It is also possible to introduce soft requirements for 
the presence of objects, instead of a hard constraint. This 
makes sense if the presence of a virtual object is not essen-
tial, but we still want to reward the algorithm for placing 
as many different types of objects as possible. To ensure 
this, we might add a reward rj to the cost function, if there 
is at least one node has the label j.

Another important use of a soft constraint of class pres-
ence is the possibility of rewarding the algorithm for plac-
ing more than one instance of a virtual object. Introducing 
this extension is quite tricky, however, since the number 
of nodes having the label i is not the same as the num-
ber of objects. To solve this problems, we introduce node 
clusters, and count the number of occurrences of the label 
i in different clusters only. A single cluster of nodes con-
tains nodes that are closer to each other than a predefined 
threshold. This threshold may be computed adaptively, 
using the distances in the scene.

The final extension of the cost function is the addition 
of context. This step allows the algorithm to encourage 
or discourage the closeness of certain categories. This 
extension may counter the compactness criterion for cer-
tain class combinations only. As mentioned before, this is 
essential in indoors scenes. The context reward is com-
puted as follows:

C dcont
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j i

N

ij ij
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=
=

−

= +
∑ ∑β σ

1

1

1

,min
,     (11)

where σij is the context coefficient for the ith and jth classes, 
dij,min is the minimum distance between nodes belonging to 
the ith and jth classes, Nc is the number of classes, and β is 

the hyperparameter controlling the relative importance of 
this part of the cost function. With all extensions covered, 
we present the complete cost function.

C c x C C r Ntotal
T

comp cont
i

N

i i

c

= + + −
=
∑

1

,    (12)

where ri is the reward for the presence of the ith class, and 
Ni is the number of node clusters that have the label i.

4.2 Methods for scene optimization
The next step in arranging the virtual objects in the scene 
is finding the optimum of the cost function. Because of 
the NP-hard nature of the optimization problem presented 
in the previous subsection, heuristic optimization methods 
are needed. Perhaps the simplest heuristic method avail-
able is a greedy neighbourhood search. This algorithm iter-
atively evaluates all the neighbours of the initial point, and 
moves to the one with the lowest cost function. The per-
formance of this algorithm depends greatly on the choice 
of initial point, and the definition of neighbourhood.

There are two obvious ways of setting the initial point. 
The first is setting all binary labels to zero (creating an 
infeasible solution), and letting the algorithm build its way 
greedily to a feasible one. The second method is random 
initialization. In our case, however, there is a third solu-
tion: initializing each node using the node-by-node classi-
fication. Arguably, this way the initialization will be rela-
tively close to the optimal solution, making it very likely 
for the algorithm to converge to the optimum.

For the greedy algorithm, neighbourhood is defined as a 
single difference in the labels of the nodes. It is important 
to note, however, that not all neighbours of a feasible solu-
tion are feasible, since they are not guaranteed to contain 
an instance of all required classes. One significant draw-
back of the greedy search is that it finds local minima. If 
the classification method has low accuracy, then the ini-
tialization may be too far from the true solution for this 
algorithm to converge reliably.

For this reason, we used a simple single population 
genetic algorithm with elitist strategy for scene optimiza-
tion. Moreover, we developed specific crossover and muta-
tion operators, as well as a custom initialization strategy.

Class Score Optimal Initialization (CSOI): The first 
step of initialization is to determine the population size. 
Since the number of parameters depends on the size of the 
scene, using a fixed population size is not recommended. 
For our problem, setting the population size to 10 times 
the number of nodes worked relatively well. To create the 
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initial population, we selected the individual that maxi-
mizes the classification scores, and added it to the popu-
lation. The rest of the population consists of mutated ver-
sions of this seed solution.

Random Drag&Shuffle Mutation (RDSM): (Fig. 2) 
The point of the mutation operator is to allow the genetic 
algorithm to escape local minima by randomly finding bet-
ter regions of the parameter space. The standard mutation 
operator for binary/nominal integer genomes is the random 
flip operator, which randomly changes the label of a single 
node. In our case, however, the random flip operator is very 
likely to create a significantly worse candidate solution, 
because of the compactness element in the cost function. 
This means, that the mutated solution is not very likely 
to survive many generations, and allow the algorithm to 
explore other regions of the parameter space.

To solve this, we introduce the concept of random drag: 
the node whose label is changed will “drag” other nearby 
nodes with it with a certain probability. The drag proba-
bility influences the trade-off between node mutation and 
cluster mutation. By allowing both kinds of mutation to 
occur, the parameter space can be explored more efficiently.

A further idea is to allow the mutation operator to per-
mute the labels themselves with a given probability. This 
allows the algorithm to consider other combinations of 
classes, which would require several rounds of consequent 
mutations otherwise. The RDSM operator is used for gen-
erating the initial population.

Clustered N-Point Crossover (CNPC): (Fig. 3) The 
standard crossover operator for binary/nominal integer 
genomes is the N-point intersection. This operator ran-
domly selects N-1 intervals in the genome, and inherit 
them from the two parents in an alternating way. The 
problem with this operator is similar to the problem we 
encountered with the mutation, namely, that defining the 
crossover on the level of nodes may lead to the creation of 
a high number of inferior offspring.

We solve this problem using a similar idea: we define 
the intersection operator on node clusters, instead of the 
nodes themselves. This means, that all nodes are assigned 
to a cluster based on their proximity, using an adaptive 
threshold to divide clusters. Then, the clusters are ordered 
randomly, and divided into N intervals. The labels are 
inherited from the parents alternatingly.

(a) (b)

Fig. 2 The mutation operator: (a) is the original setup, (b) is the traditional flip mutation. (c) is flip mutation using drag, and  
(d) shows label permutation

(c) (d)
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4.3 Optimizing the context reward
In Section 4.1, we introduced the idea of using context 
information in the cost function. This way, we allow the 
optimization algorithm to prefer certain virtual objects 
being close or distant. This is especially useful for counter-
ing the compactness criterion for certain categories only.

In our earlier discussion we have not clarified how the 
context rewards (σij from Eq. (11)) are determined for all 
the possible class combinations. The simplest solution is 
to let the researcher set them using trial and error meth-
ods. This, however, is not only time consuming, it will 
also likely underperform automated optimization.

For this reason, we use a simple optimization procedure 
to determine the context reward parameters. In order to 
achieve this, we run the genetic algorithm and operators 
introduced in the previous subsection, and select the N 
best unique solutions from the last generation. With their 
help, we propose the following cost function:

C c c
i

N

i true= − −
=
∑

1

,      (13)

where ci is the cost of the ith best solution, while ctrue is the 
cost of the ground truth solution. Using this cost function, 

we can run the stochastic gradient descent (SGD) algo-
rithm to find the optimal values of the context rewards, 
according to the following derivative:

∂
∂

= −
=
∑C d d

ij k

N

k ij true ijσ
β

1

, ,
,     (14)

where dk,ij and dtrue,ij are the minimum distance between 
nodes belonging to the class i and j in the kth best, and the 
true candidates respectively.

There is one important modification we made to the 
standard algorithm, namely, that after every few epochs, 
we rerun the genetic optimization algorithm, and set the 
best N candidates. This technique prevents the algorithm 
from returning context rewards that although make the 
true solution better than the original best, but only to 
result in a new incorrect solution to become the optimum. 

5 Experimental Results
In this chapter we present the result of the experiments 
based on our methods. In the first part, we test the graph 
node embedding algorithm and show that it outper-
forms using the vectorial descriptors of the nodes. We 
use support vector machines to perform node-by-node 

Fig. 3 The crossover operator: (a) and (b) are the parents, (c) is the offspring.

(a) (b)

(c)
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classification. In the second part of the chapter we eval-
uate the scene optimization algorithm, showing that the 
proposed genetic operators significantly improve the per-
formance of the optimization. We also show, that the con-
text optimization is helpful in cluttered scenes.

We use four different datasets for training the classifi-
cation algorithms. The first dataset consists of synthetic 
shape graphs. This dataset is meant to be easy to learn, for 
the five classes use different types of nodes, with some ran-
dom noise added. Some instances have additional “noise” 
nodes, while others are missing some nodes to represent 
errors of the segmentation.

The second dataset is also synthetic, however, the 
five classes use the same pool of nodes, albeit in differ-
ent combinations. This dataset is meant to demonstrate 
that the embedding algorithm significantly outperforms 
the simple node descriptor based classification in cases 
where the different classes have very similar nodes, but 
in different configurations.

The third dataset consists of images of synthetic objects 
created in Blender. There are five classes in ten variations 
each, with series of images taken with a multiple cam-
era. We created hundreds of partial 3D reconstructions 
for each category using VisualSfM. [41] The last database 
uses real images in four categories and 4-10 variations for 
each category. Here, the categories are relatively simple 
(box/book, mug/can, sphere, and horizontal surface). 

For the scene optimization, we created one scene data-
base for each training database using the same objects. 
We have also created two databases, where certain cate-
gories are deliberately cluttered, making context learning 
essential. These two databases use the synthetic and real 
images respectively.

5.1 Graph node embedding
We evaluated the performance of our node embedding 
method using support vector machines with RBF kernels. 
We applied Bayesian optimization to find good hyperpa-
rameter values, using 20% holdout validation error (eho) 
as the objective function. We then compute the training 
(eclass) and 10-fold cross-validation errors (ecv ) with the 
acquired hyperparameters. We compare the classifica-
tion and validation errors with and without applying node 
embedding to the datasets. The results for all datasets are 
shown in Table 3.

It is easy to see, that the graph node embedding algo-
rithm significantly decreases the loss of the node-by-node 
classification in all cases. Interestingly, the first synthetic 

database shows some improvement, even though it was cre-
ated so, that it would be easy to classify without embedding. 
The reason for this is that the embedding method encodes 
the local context into the noise nodes, making them easy 
to classify. Arguably, the node embedding method is most 
helpful for the second synthetic dataset that contains classes 
with similar nodes in different configurations.

5.2 Object detection
For testing the scene optimization method, we used the 
scene databases mentioned earlier. We compared the per-
formance of two algorithms: the simple greedy method, and 
the genetic algorithm using our operators. We have com-
puted four performance indicators for each run. First, we 
compute the classification error (ec) of nodes in the scenes, 
and compare it with the SVM-only classification error (esvm). 

Furthermore, we compute the percentage of scenes, 
where the cost of the optimal scene labelling is lower than 
the cost of the ground truth (ecost). This metric shows the 
frequency of ‘cost function failures’, however, it is also 
dependant on the performance of the optimization method. 
The fourth metric is the percentage of scenes, where the 
solution found by the optimization algorithm has higher 
cost than the true solution (eopt). This metric evaluates the 
performance of the optimization method. These last two 
metrics are not independent, however. As the optimiza-
tion algorithm gets better at finding the optimum, it also 
becomes more likely to find a solution that is better than 
the true scene arrangement, if such a solution exists. This 
means that as eopt decreases ecost will likely increase.

The results (Table 4) show, that the scene optimization 
method reliably outperforms the node-by-node classifi-
cation. It is also obvious, that the graph node embedding 
method improves the final classification accuracy as well. 
Apparently, the genetic algorithm outperforms the greedy 
building, especially in cases, where the node-by-node 
classification error is high, therefore the true optimum is 
presumably far from the initialization point.

We have also compared the performance of the pro-
posed genetic operators with the vanilla genetic operators 

Table 3 Node-by-node classifiaction errors

Metric eho ecv eclass

Embedding No Yes No Yes No Yes

Synthetic 9.6 1.9 10.1 2.1 6.6 0.8

Synthetic2 67.5 2.4 68.1 2.4 64.6 0.6

Synthetic Images 39.2 32.8 39.2 31.7 33.6 14.6

Real Images 11.4 7 10.4 6.4 9.2 5.3
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for one-hot coded nominal genomes. The results (Table 5) 
show, that each operator improves the performance of the 
genetic optimization on its own. The Random Drag and 
Shuffle Mutation (RDSM), and the Class Score Optimal 
Initialization (CSOI) achieve the highest decrease in error, 
while the improvement caused by the Cluster N-Point 
Crossover (CNPC) is more modest. Note that the opera-
tors were enabled in the same order they are presented in 
the table. The changes in the table show the decrease in 
error in addition to the previous operators’ result.

We also evaluated the performance of context opti-
mization, using the two scene databases created for this 
purpose. We present the final classification error and the 
cost function error for these two datasets, with and with-
out context optimization. The results (Table 6) show, that 
context optimization is able to reliably improve the scene 
optimization method performance, as long as the close-
ness of certain objects is dependent on their categories.

6 Conclusion
In this paper, we have presented an algorithm for pair-
ing virtual and real objects for an adaptive Tangible 
Augmented Reality (TAR) system using shape recog-
nition. Our method builds primitive shape graphs from 
the 3D point clouds, and uses a graph node embedding 
method to allow for superb node-level classification. We 
then use a genetic algorithm with special operators to 
optimize the arrangement of virtual objects globally.

We have shown, that node embedding improves classi-
fication accuracy significantly, especially when there are 
similar nodes in different classes, albeit in different config-
urations. We have also shown, that constructing a cost func-
tion for TAR and optimizing it can significantly improve the 
accuracy of the pairing algorithm compared to the node level 
classification. The class score optimal initialization scheme, 
random drag and shuffle mutation and clustered n-point 
crossover operators improve the chance of the genetic opti-
mization algorithm to find the optimal solution significantly.

Table 6 Results before and after the context optimization

Metric ec ecost

Context No Yes No Yes

Synthetic Images 28.5 17.9 92.7 66.4

Real Images 17.3 8.7 47.9 27.9

Table 4 Result of the scene optimization

Metric ec esvm

Algorithm Greedy Genetic Greedy Genetic

Embedding No Yes No Yes No Yes No Yes

Synthetic 0.1 0.2 0 0 6.5 0.9 6.5 0.9

Synthetic2 51.1 0.2 3.8 0 64.6 0.6 64.6 0.6

Synth. Images 23.9 12.2 16.2 6.3 33.4 14.4 33.4 14.4

Real Images 4.2 1.2 3.5 0.7 8.9 5.1 8.9 5.1

Metric ecost eopt

Synthetic 0.1 0 0.1 0 0.3 0.3 0 0

Synthetic2 0 0 2.7 0 97.5 0.7 7.5 0.1

Synth. Images 18.9 12.3 35.3 19.5 45.9 28.9 3.6 0.8

Real Images 1.3 1.1 1.5 1.4 7.5 6.4 0 0

Table 5 Change in errors caused by the special genetic operators

Method RDSM CNPC CSOI

Metric ec eopt ec eopt ec eopt

Synthetic 59.4 65.5 0.8 1.5 9.5 29.2

Synthetic2 55.5 52 0.7 0.3 14.1 47.2

Synthetic Images 57.2 66.9 0.8 2.9 2.9 11.5

Real Images 43.3 62.7 0.2 0.4 1.7 2.4
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