
272 Period. Polytech. Elec. Eng. Comp. Sci.� B. Farkas, K. Veszprémi

Design of HIL for Multilevel Inverter
Using Zynq-7000 Platform – Part 2

Balázs Farkas1*, Károly Veszprémi1

Received 24 April 2017; accepted after revision 25 May 2017

Abstract
Development of power electronic devices requires multi
-disciplined engineering activities. These cover the thermal,
electrical and software design. Due to this design complexity
rapid prototyping methods and model-based design are
becoming more and more important in the R&D projects in
this field. This article is the second part of the series which
introduces the development of Hardware-in-the-Loop (HIL)
device for the simulation of Cellular H-Bridge inverter (CHB).
Zynq-7000 platform is chosen as a hardware platform for HIL.
This part focuses on the details of the model transformation,
development of the hardware environment and the verification
of the HIL. FPGA development is also demonstrated including
interfaces, IPs and introduction of the resource utilization.
Apart from them, operation of the system software in ARM core
is also described including TCP/IP interface, IRQ handling
and Matlab synchronisation mechanism. Finally, the Matlab
interface and simulation results are introduced.

Keywords
Multi-level inverter, Zynq-7000, Hardware in the loop, CHB

1 Introduction
Nowadays researchers and developers face a challenge

regarding the increasing product complexity and stricter time
to market requirements. These trends imply that the rapid
prototype solutions have been starting to be more popular [1].
One of the most promising rapid prototype solutions is the HIL
based prototypes [2-4]. Due to the fact that the computational
capacity is becoming cheaper and cheaper, there are currently
many solutions to build HIL system with high performance.
One of these devices is Zynq-7000 system on chip product.
It is very attractive not only because of the high available
resources but also because of the strong community behind it.

Development of power electronic devices requires multi-
disciplined engineering competence and skill set as a result of
the system complexity. Therefore, application of the HIL in
the power electronic system design seems to be a promising
opportunity to improve the efficiency of the design and
development [5-7].

In the previous part of this article series, the development
of the Simulink model is demonstrated. The aim of this article
is to introduce the details of the Matlab Simulink model
deployment to the aforementioned Zynq-7000 platform in
case of CHB multi-level inverter. The deployment procedure
covers the model transformation, FPGA design, development
of the system software and Matlab interface as it can be seen in
Fig. 1. Apart from technical details, the applied tool chain and
verification environment are also shortly introduced.

Fig. 1 Development process of the model and hardware in the V-model.

1 Department of Electric Power Engineering,
Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics
H-1111 Budapest, Egry J. utca 18, Hungary
* Corresponding author, e-mail: balazs.farkas86@gmail.com

61(3), pp. 272-278, 2017
https://doi.org/10.3311/PPee.10934

Creative Commons Attribution b

research article

PPPeriodica Polytechnica
Electrical Engineering
and Computer Science

mailto:balazs.farkas86@gmail.com
https://doi.org/10.3311/PPee.10934

273Design of HIL for Multilevel Inverter Using Zynq-7000 Platform – Part 2� 2017 61 3

The article consists of four main sections. The first section
introduces the applied tool chain. In the next section the details
of the model transformation are described. The hardware
environment is analyzed in the third section. Finally, the
verification of the implemented system is demonstrated.

2 Applied Tool chain
This part of the article deals with the tool chain, which is

used during the model transformation. The application of an
efficient tool chain can extensively contribute to the success
of the development. Due to the fact that an efficient tool chain
makes the model transformation much easier, the development
efforts can be mainly focused on models at high abstraction
level. In this case, the observability of the system is much
better than it would be at any lower abstraction layer. Another
benefit of it is that the probability of the design error can be
reduced thanks to the automated or semi-automated workflow.
It is also beneficial that the tool chain which includes the highly
supported tools can provide extra services like automatic driver
generation, communication stack integration, inherent debug
interfaces, data coherency management etc.

Fig. 2 introduces the details of the applied tool chain. At the
top of the tool chain the Matlab can be found. It is responsible for
the model development, handling of the number representation,
code generation and verification. Simulink is used for model
development. The transformation of the number representation
is based on the Fixed Point Toolbox. The code generation can
be executed by the SimulinkCoder or Embedded Coder. In case
of the verification Simulink and Instrumentation Toolbox are
extensively used.

Fig. 2 The main stages of the Model based development in Matlab.

The generated C++ code is the input data of the Vivado
High Level Synthesis (HLS) tool. This tool is developed by
Xilinx. By means of this tool the developer can design FPGA
hardware in C++ language. Another advantage of Vivado HLS
is the easy integration of the hardware interface into the code
of the model. These interfaces include standardized hand-
shaking protocol, buses and stream ports as well. In our case the
Advanced eXtensible Interface (AXI) was chosen as a general
communication bus between the hardware units. The best
practice for the interface integration is the wrapper concept.
It means the general C++ wrapper is designed, which handle
all hardware interface issues and the generated function of the
model is integrated into this wrapper by a function calling.
Apart from the communication interface implementation, the
wrapper is responsible for the initialization, reset and signal
mapping as well. In the last phase by means of the Vivado
HLS the code is tested, based on the predesigned testbench.
In addition the Vivado HLS can also analyze the designed
system from the resource and timing point of view. Thanks
to this fact the designer can have high amount of information
of how the code is implemented. Moreover, the latency of the
implemented design is also calculated. If everything is correct,
Vivado HLS generates an IP for the next steps in the FPGA
design procedure.

The next tool which is applied is Vivado HLx. This software
is also the member of the Xilinx Vivado family. It focuses
on the FPGA design. Based on the previously generated IP,
the hardware system of the HIL can be easily implemented.
The biggest benefits of the Vivado HLx are graphical design
interface, huge available pre-implemented IP library and
automated design data management. Apart from IP of the
model, other hardware units are integrated into the design
to implement the whole hardware environment. They are the
interface to processing system of the Zynq-7000, hardware
timer, block ram etc. The details of the hardware design is
introduced in 4th section. Based on the hardware design Vivado
HLx generates the bitstream file of FPGA and hardware
definition data.

Xilinx Software Development Kit (SDK) is an Eclipse based
tool for developing and debugging of the software components
in the ARM cores. SDK can automatically generate board
support package by using the Vivado HLx hardware descriptor
files. It includes driver functions and API for the hardware
units in FPGA and macros. Beyond them SDK has got inherent
support for integration of TCP/IP communication stack into
the designed software. Finally, the system build and debug can
be executed in the SDK.

3 Model Transformation
The main mission of the introduced tool chain is to implement

an efficient model transformation procedure. The process of
the model transformation covers the conversion of the floating

274 Period. Polytech. Elec. Eng. Comp. Sci.� B. Farkas, K. Veszprémi

point Simulink model to executable codes for target. Currently
the target is Zynq-7000. t includes two pieces of ARM cores
and one piece of FPGA. As a consequence of this fact, at the
end of the transformation we would need a bit stream file for
FPGA and executable files (ELF) for the ARM cores. Finally,
the SDK can download these executables into the targets.

The starting point of the model transformation is a verified
floating point Simulink model. By means of the Fixed Point
Toolbox the number representation can be converted from
floating point into fixed point ones. This conversion is necessary,
because DSP48 slice of Artix-7 FPGA in Zynq-7000 has not
got inherent support for floating point calculation. As a result of
this, the implementation of floating point arithmetic units would
use too much resources. The tool uses the simulation based
signal range data and user defined signal limits. In addition, it
can derive the range information for the signals which have not
got limit specification. To convert the number representation the
tool still needs the word length and fraction length parameters.
In our cases the word length is 32 bit and the fraction length
is 16 bit. As far as the resource utilization is concerned, it is a
worst-case scenario, since not all signal requires this resolution.
Thereafter the fixed point model should be simulated again to
check its behavior by comparing with the reference model.

The next step is C++ code generation based on the fixed
point model by the tool of Simulink Coder or Embedded Coder.
The settings of the model have got huge amount of influence
over the code structure. The atomic subsystems and referenced
models are implemented as a reusable function. It is worth
applying this technique to structure the code and increase the
understandability and traceability. In case of model interfaces,
the non-virtual buses are implemented in the C++ function
argument list. The parameters of the gains can be tunable. In
this case they are also put into the function argument list. The
outputs of the code generation are .cpp and .h files.

These files have to be imported into the Vivado HLS. In
the Vivado HLS a top wrapper function is created around
the model. The CHB model is referred in wrapper by the
function calling. The arguments of the wrapper symbolize the
implementable hardware interfaces. They are mainly based on
the AXI bus. The reset, control, status, input and output signals
of the model are accessible through AXI bus. Apart from the IP
of the model some extra low level interfaces are additionally
required which are automatically added by Vivado HLS, like
irq, start and AXI low level signals. In addition, the micro
architecture of the implemented design can be easily tuned by
Vivado HLS as well. It means, the pipelining, clock constraints
etc. are configurable by means of pragmas. Vivado HLS also
supports the design analyses and optimization. Due to this
facts, it can be investigated how much resources are used in
specific units or how many clock cycles are required to execute
any functions. Finally, the design can be automatically tested
by the predefined testbench.

4 Hardware environment
This section deals with the introduction of the hardware

environment. It has got four main groups: programmable
logic, processing system, Zedboard and HostPC as it can be
seen in Fig. 3.

Fig. 3 Architecture of the hardware system.

4.1 System Architecture
Programmable logic practically covers the FPGA. Apart

from the IP of the model, the communication interfaces and
hardware timer are implemented here. The communication
interfaces are based on the AXI protocol. To implement AXI
interface between the processing system and the programmable
logic, AXI interconnect, AXI master and slave interfaces are
needed. AXI masters can initiate communication cycle in
the direction of the AXI slaves. AXI masters have AXI slave
interface and vice versa. Hardware timer, blockRAM and
model have got AXI master interface. They are connected
to the AXI slave interface of the processing system since the
processing system is the AXI master in the communication.
AXI communication channel is implemented not only
between the programmable logic and processing system, but
also between the CHB model and blockRAM. Thanks to this
solution, blockRAM can be simultaneously accessible by
CHB model and processing system. In case of the hardware
timer and CHB model the AXI interface to the processing
system is used for the configuration and signal transfer. The
CHB model archives the simulation data of the last step into
the blockRAM through the AXI interface.

The currently relevant parts of the processing system
are ARM core, general interrupt controller (GIC), Ethernet
controller, memory interface, UART interface and AXI

275Design of HIL for Multilevel Inverter Using Zynq-7000 Platform – Part 2� 2017 61 3

masterinterface. The software developed in the SDK runs in
the ARM core. GIC is responsible for receiving the IRQ from
the CHB model and calls its handler function. AXI master
interface is used to implement the communication between the
processing system and programmable logic. Ethernet controller
manages the low level of the TCP/IP based communication.
DDR ram in the Zedboard is used for store simulation data and
the memory interface controls DDR RAM. UART peripheral is
extensively used for the purpose of debugging in SDK.

4.2 System Behavior
In this section the operation of the system is introduced.

Fig. 4 shows the timing diagram of the system.
The starting point of the explanation is the hardware timer.

The responsibility of this hardware is to periodically launch
one step simulation cycle of CHB model. For correct opera-
tion, the period time has to be longer than the latency of the
model. When the CHB model receives the start signal, it can
get into the RUN or RDY state. In case of the RDY state, the
next simulation cycle is not allowed to start because the IRQ of
the previous cycle is not acknowledged by system software yet.
If the acknowledge signal is already received and the hardware
timer send the start signal, the model is allowed to run a new
simulation cycle and getting into the state of RUN.

At the end of a simulation cycle, the model copies the
simulation data into the blockRAM and initiates a IRQ signal
to the GIC. Then GIC calls the IRQ handler function. It has to
copy the data from the blockRAM into the DDR RAM. When
it is done, IRQ handler sets the _DataVld flag and returns.
This flag is continuously polled inside the infinite loop. After
its value becomes true the write function of the LWIP stack
in the ARM core is called and the simulation data are sent to
Simulink. In the monitoring system in the Simulink, TCP/
IP receive block from Instrumentation Toolbox blocks the
simulation until it does not receive all required data. When they
receive these data package, one Simulink simulation cycle is
allowed. The sent data from the CHB model are acquired in

Simulink by the monitoring system. Simultaneously, the values
of the input signals like grid and motor voltages and parameters
are firstly calculated and sent by TCP/IP transmit block.

When LWIP stack in the ARM core receives all input signal
and parameters, it sets _DataRcv flag. This flag is also polled
inside an infinite loop. These data are sent to the CHB model
through AXI bus, if the flag value is true. This is practically the
update process of the CHB model. The last step is to send the
acknowledge signal to CHB model. It makes possible the next
simulation cycle to start.

Fig. 5 Simulation environment of CHB model.

5 Implementation
In this chapter the characteristics of the implemented system

and the implementation process are shortly described.
The architecture of the model has got a strong impact on

code structure and the hierarchy of functions. The resource
utilization is also influenced by the model architecture, because
Vivado HLS can share the critical resources between the units
which belong to the same function. Vivado HLS implements
four instances of rectifier and six instances for the inverter
functions. As a consequence of the fact that there are six

Fig. 4 Timing diagram of the HIL system.

276 Period. Polytech. Elec. Eng. Comp. Sci.� B. Farkas, K. Veszprémi

instances of rectifier units in the model, pipelining at function
level is required for the function calls.

During the development it is important for the developers
to get information about the resource utilization. At the end of
the model synthesis, Vivado HLS provides roughly resource
estimation for the functional units. After the implementation of
the model, Vivado HLS estimates the required resources again,
but only for the total design. After the implementation of the
hardware system, the Vivado HLx accurately calculates the
used resources. The results of the aforementioned estimation
can be seen in Fig. 6 and Fig. 7.

Fig. 6 Resource utilization of the main functional units.

Fig. 7 Estimation and calculation for the utilization of the resources.

In terms of the implementation, the utilized LUT number
is almost the half of the first estimation and in the other cases
the results seem to be coherent. The auxiliary hardware system
around the model does not require high amount of resources,
see Fig. 6.

Tools can analyze not only the resource utilization but the
timing aspects also. In this case, clock frequency and maximal
latency of the model are critical. The clock of the FPGA was
chosen to 10 ns. The latency is 243 clock cycles. This high
value is implied by the low number of the utilized DSP slices
and their pipelining. As a consequence of the clock frequency
and model latency, the duration of a simulation cycle in HIL is
around 2.5 – 3 us.

6 Simulation Results
The accuracy and behavior of the HIL are verified by means

of the SimPower System reference model. The CHB control
is the same as it was in the first part of the article. Therefore,
an open-loop control system is implemented without current
control loop. The cell reference signals are pre-calculated. HIL
and reference model are simulated by the same parameter set
and the SimPower System toolbox based reference model runs
in the Simulink. The signals of the HIL are acquired by means
of block from Instrumentation Toolbox. The acquired data
are visualized by standard Simulink blocks, like Scope. The
configuration data are introduced in Table 1. This parameter set
is the same as it was in the previous part of this article.

Table 1 Simulation Parameters

Parameter Value

Motor Nominal Data 2.3 kV / 140 A

Grid Nominal Data (Sec.) 1.1 kV / 50 A

Motor Leakage Inductance 300 uH (1%)

Transformer Leakage Induct. 300 uH (~0.8%)

DC Link Capacitor 3 mF

Switching Frequency 3 kHz

Frequency of Motor EMF 50 Hz

Grid Frequency 50 Hz

Firstly, the relevant signals of the HIL are introduced
including input and motor currents and output voltages of the
cells. Then, these signals are compared to the reference model.
The input currents of the cell are shown in Fig. 8. The input
current system is not symmetrical; it is mainly the consequence
of the single phase load of the DC-link capacitors in the cells.
This grid currents asymmetry is also the consequence of the
fact that the frequency of the motor EMF is the same as the
grid frequency.

Fig. 9. and Fig. 10. show the motor currents. The phase
voltages of the CHB can be seen in Fig. 11. The number of the
voltage levels meets the theoretical values. In case of N pieces
of the two-level cell in each phase with symmetrical DC-link.
It is 2N + 1, between line and neutral.

277Design of HIL for Multilevel Inverter Using Zynq-7000 Platform – Part 2� 2017 61 3

Fig. 8 Input currents of the upper cell in U phase.

Fig. 9 Motor phase currents.

Fig. 10 Motor phase currents (enlarged).

Fig. 11 U phase voltage at CHB output.

In Fig. 12 the line voltage of the inverter is introduced.
Since there are 2 cells in each phase, the number of the voltage
levels between line and line should be 4N + 1. It can also be
observed in the aforementioned figures.

Fig. 12 U-V line voltage at CHB output.

Fig. 13 shows the DC link voltage of the cell in the U phase.
The effects of the single phase load are the relative high voltage
ripple and capacitor load in the DC link. The deviation between
the signals of the HIL and the reference model is minimal.

Fig. 13 DC link voltage of the upper cell in U phase.

Maximum deviation is around 10V if the average DC link
voltage is roughly 1500V. It means around 0.7% error.

The deviation between the model in HIL and the reference
model in case of the input currents and the motor currents is
also shown in Fig. 14 and Fig. 15. In spite of the fact that the
error of the DC-link voltage seems to be negligible, its effect
on the motor current is significant. Its root causes are the small
values of impedance.

Fig. 14 Comparison of the implemented and the reference model in case of R
phase Input current of the upper cell in U phase.

278 Period. Polytech. Elec. Eng. Comp. Sci.� B. Farkas, K. Veszprémi

Fig. 15 Comparison of the implemented and the reference model in case of U
phase motor current.

Taking everything into account the behavior of the model in
the HIL and reference model is similar.

7 Conclusion
This two-part article series introduces power electronics

model development and operation on the Zynq-7000 platform.
The second part of the series (Part 2) focuses on the model
transformation, hardware development and details of
implementation in terms of the CHB HIL model.

In the first section, the applied tool chain is demonstrated.
Apart from it, the hardware development workflow is also
introduced with V-model based approach. It extends the model
based development workflow, which was described in the
previous part of the article series.

The next section focuses on the details of the model
transformation. Not only the tools of the transformation are
considered, but the main steps and practical issues also.

In the section of the hardware environment, the explanation
of the system operation is described both from architectural
and from behavior points of view. The structure diagram is
divided into layers. It includes all relevant hardware units and
their interfaces.

The core element of the behavior analyses is the timing
diagram. The interaction between all functional units are
demonstrated on this figure.

The fifth section deals with the characteristics of the
implementation. Two critical aspects are considered here:
the resource utilization and timing constraints. All in all, the
implemented model needs less than half of the available resources.
Its consequence is that the speed of the HIL model is moderate.

The verification is executed by the SimPower System based
reference model. Its results are described in the last section.
The errors of the HIL model are generally small. However,
they require further investigation.

Future works will focus on increasing the speed and on further
optimization of resource utilization in terms of the HIL model.

References
[1]	 Faruque, M. D. O., Strasser, T., Lauss, G. "Real-Time Simulation Tech-

nologies for Power Systems Design, Testing, and Analysis." IEEE Power
and Energy Technology Systems Journal. 2(2), pp. 63-73. 2015.

	 https://doi.org/10.1109/JPETS.2015.2427370
[2]	 Kökényesi, T., Varjasi, I. "Comparison of Real-Time Simulation Meth-

ods for Power Electronics Applications. In: 2013 4th International Youth
Conference on Energy (IYCE), Siófok, Hungary. Jun. 6-8, 2013, pp. 1-5.

	 https://doi.org/10.1109/IYCE.2013.6604137
[3]	 Matar, M. "An FPGA-Based Real-Time Simulator for the Analysis of

Electromagnetic Transients in Electrical Power Systems." Phd Thesis,
University of Toronto. 2009.

[4]	 Debreceni, T., Kökényesi, T., Sütő, Z., Varjasi, I. "FPGA-based re-
al-time Hardware-In-the-Loop simulator of a mini solar power station."
In: 2014 IEEE International Energy Conference (ENERGYCON),
Cavtat, 2014, pp. 70-75.

	 https://doi.org/10.1109/ENERGYCON.2014.6850408
[5]	 Li, W., Grégoire, L. A., Souvanlasy, S., Bélanger, J. "An FPGA-based

real-time simulator for HIL testing of modular multilevel converter con-
troller." In: 2014 IEEE Energy Conversion Congress and Exposition
(ECCE), Pittsburgh, PA, 2014, pp. 2088-2094.

	 https://doi.org/10.1109/ECCE.2014.6953678
[6]	 Matar, M., Iravani, R. "FPGA Implementation of the Power Electronic

Converter Model for Real-Time Simulation of Electromagnetic Tran-
sients." IEEE Transactions on Power Delivery. 25(2), pp. 852–860. 2010.

	 https://doi.org/10.1109/TPWRD.2009.2033603
[7]	 Ould-Bachir, T., Merdassi, A., Cense, S., Blanchette, H. F., Bélanger, J.

"FPGA-based Real-Time Simulation of a PSIM Model: An Indirect Matrix
Converter Case Study." In: IECON 2015 - 41st Annual Conference of the
IEEE Industrial Electronics Society, Yokohama, 2015, pp. 003336-003340.

	 https://doi.org/10.1109/IECON.2015.7392614

https://doi.org/10.1109/JPETS.2015.2427370
https://doi.org/10.1109/IYCE.2013.6604137
https://doi.org/10.1109/ENERGYCON.2014.6850408
https://doi.org/10.1109/ECCE.2014.6953678
https://doi.org/10.1109/TPWRD.2009.2033603
https://doi.org/10.1109/IECON.2015.7392614

	1 Introduction
	2 Applied Tool chain
	3 Model Transformation
	4 Hardware environment
	4.1 System Architecture
	4.2 System Behavior

	5 Implementation
	6 Simulation Results
	References

