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Abstract
Development of power electronic devices requires multi 
-disciplined engineering activities. These cover the thermal, 
electrical and software design. Due to this design complexity 
rapid prototyping methods and model-based design are 
becoming more and more important in the R&D projects in 
this field. This article is the second part of the series which 
introduces the development of Hardware-in-the-Loop (HIL) 
device for the simulation of Cellular H-Bridge inverter (CHB). 
Zynq-7000 platform is chosen as a hardware platform for HIL. 
This part focuses on the details of the model transformation, 
development of the hardware environment and the verification 
of the HIL. FPGA development is also demonstrated including 
interfaces, IPs and introduction of the resource utilization. 
Apart from them, operation of the system software in ARM core 
is also described including TCP/IP interface, IRQ handling 
and Matlab synchronisation mechanism. Finally, the Matlab 
interface and simulation results are introduced.
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1 Introduction
Nowadays researchers and developers face a challenge 

regarding the increasing product complexity and stricter time 
to market requirements. These trends imply that the rapid 
prototype solutions have been starting to be more popular [1]. 
One of the most promising rapid prototype solutions is the HIL 
based prototypes [2-4]. Due to the fact that the computational 
capacity is becoming cheaper and cheaper, there are currently 
many solutions to build HIL system with high performance. 
One of these devices is Zynq-7000 system on chip product. 
It is very attractive not only because of the high available 
resources but also because of the strong community behind it.

Development of power electronic devices requires multi-
disciplined engineering competence and skill set as a result of 
the system complexity. Therefore, application of the HIL in 
the power electronic system design seems to be a promising 
opportunity to improve the efficiency of the design and 
development [5-7].

In the previous part of this article series, the development 
of the Simulink model is demonstrated. The aim of this article 
is to introduce the details of the Matlab Simulink model 
deployment to the aforementioned Zynq-7000 platform in 
case of CHB multi-level inverter. The deployment procedure 
covers the model transformation, FPGA design, development 
of the system software and Matlab interface as it can be seen in 
Fig. 1. Apart from technical details, the applied tool chain and 
verification environment are also shortly introduced.

Fig. 1 Development process of the model and hardware in the V-model.
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The article consists of four main sections. The first section 
introduces the applied tool chain. In the next section the details 
of the model transformation are described. The hardware 
environment is analyzed in the third section. Finally, the 
verification of the implemented system is demonstrated. 

2 Applied Tool chain
This part of the article deals with the tool chain, which is 

used during the model transformation. The application of an 
efficient tool chain can extensively contribute to the success 
of the development. Due to the fact that an efficient tool chain 
makes the model transformation much easier, the development 
efforts can be mainly focused on models at high abstraction 
level. In this case, the observability of the system is much 
better than it would be at any lower abstraction layer. Another 
benefit of it is that the probability of the design error can be 
reduced thanks to the automated or semi-automated workflow. 
It is also beneficial that the tool chain which includes the highly 
supported tools can provide extra services like automatic driver 
generation, communication stack integration, inherent debug 
interfaces, data coherency management etc.

Fig. 2 introduces the details of the applied tool chain. At the 
top of the tool chain the Matlab can be found. It is responsible for 
the model development, handling of the number representation, 
code generation and verification. Simulink is used for model 
development. The transformation of the number representation 
is based on the Fixed Point Toolbox. The code generation can 
be executed by the SimulinkCoder or Embedded Coder. In case 
of the verification Simulink and Instrumentation Toolbox are 
extensively used.

Fig. 2 The main stages of the Model based development in Matlab.

The generated C++ code is the input data of the Vivado 
High Level Synthesis (HLS) tool. This tool is developed by 
Xilinx. By means of this tool the developer can design FPGA 
hardware in C++ language. Another advantage of Vivado HLS 
is the easy integration of the hardware interface into the code 
of the model. These interfaces include standardized hand-
shaking protocol, buses and stream ports as well. In our case the 
Advanced eXtensible Interface (AXI) was chosen as a general 
communication bus between the hardware units. The best 
practice for the interface integration is the wrapper concept. 
It means the general C++ wrapper is designed, which handle 
all hardware interface issues and the generated function of the 
model is integrated into this wrapper by a function calling. 
Apart from the communication interface implementation, the 
wrapper is responsible for the initialization, reset and signal 
mapping as well. In the last phase by means of the Vivado 
HLS the code is tested, based on the predesigned testbench. 
In addition the Vivado HLS can also analyze the designed 
system from the resource and timing point of view. Thanks 
to this fact the designer can have high amount of information 
of how the code is implemented. Moreover, the latency of the 
implemented design is also calculated. If everything is correct, 
Vivado HLS generates an IP for the next steps in the FPGA 
design procedure.

The next tool which is applied is Vivado HLx. This software 
is also the member of the Xilinx Vivado family. It focuses 
on the FPGA design. Based on the previously generated IP, 
the hardware system of the HIL can be easily implemented. 
The biggest benefits of the Vivado HLx are graphical design 
interface, huge available pre-implemented IP library and 
automated design data management. Apart from IP of the 
model, other hardware units are integrated into the design 
to implement the whole hardware environment. They are the 
interface to processing system of the Zynq-7000, hardware 
timer, block ram etc. The details of the hardware design is 
introduced in 4th section. Based on the hardware design Vivado 
HLx generates the bitstream file of FPGA and hardware 
definition data.

Xilinx Software Development Kit (SDK) is an Eclipse based 
tool for developing and debugging of the software components 
in the ARM cores. SDK can automatically generate board 
support package by using the Vivado HLx hardware descriptor 
files. It includes driver functions and API for the hardware 
units in FPGA and macros. Beyond them SDK has got inherent 
support for integration of TCP/IP communication stack into 
the designed software. Finally, the system build and debug can 
be executed in the SDK.

3 Model Transformation
The main mission of the introduced tool chain is to implement 

an efficient model transformation procedure. The process of 
the model transformation covers the conversion of the floating 
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point Simulink model to executable codes for target. Currently 
the target is Zynq-7000. t includes two pieces of ARM cores 
and one piece of FPGA. As a consequence of this fact, at the 
end of the transformation we would need a bit stream file for 
FPGA and executable files (ELF) for the ARM cores. Finally, 
the SDK can download these executables into the targets.

The starting point of the model transformation is a verified 
floating point Simulink model. By means of the Fixed Point 
Toolbox the number representation can be converted from 
floating point into fixed point ones. This conversion is necessary, 
because DSP48 slice of Artix-7 FPGA in Zynq-7000 has not 
got inherent support for floating point calculation. As a result of 
this, the implementation of floating point arithmetic units would 
use too much resources. The tool uses the simulation based 
signal range data and user defined signal limits. In addition, it 
can derive the range information for the signals which have not 
got limit specification. To convert the number representation the 
tool still needs the word length and fraction length parameters. 
In our cases the word length is 32 bit and the fraction length 
is 16 bit. As far as the resource utilization is concerned, it is a 
worst-case scenario, since not all signal requires this resolution. 
Thereafter the fixed point model should be simulated again to 
check its behavior by comparing with the reference model.

The next step is C++ code generation based on the fixed 
point model by the tool of Simulink Coder or Embedded Coder. 
The settings of the model have got huge amount of influence 
over the code structure. The atomic subsystems and referenced 
models are implemented as a reusable function. It is worth 
applying this technique to structure the code and increase the 
understandability and traceability. In case of model interfaces, 
the non-virtual buses are implemented in the C++ function 
argument list. The parameters of the gains can be tunable. In 
this case they are also put into the function argument list. The 
outputs of the code generation are .cpp and .h files.

These files have to be imported into the Vivado HLS. In 
the Vivado HLS a top wrapper function is created around 
the model. The CHB model is referred in wrapper by the 
function calling. The arguments of the wrapper symbolize the 
implementable hardware interfaces. They are mainly based on 
the AXI bus. The reset, control, status, input and output signals 
of the model are accessible through AXI bus. Apart from the IP 
of the model some extra low level interfaces are additionally 
required which are automatically added by Vivado HLS, like 
irq, start and AXI low level signals. In addition, the micro 
architecture of the implemented design can be easily tuned by 
Vivado HLS as well. It means, the pipelining, clock constraints 
etc. are configurable by means of pragmas. Vivado HLS also 
supports the design analyses and optimization. Due to this 
facts, it can be investigated how much resources are used in 
specific units or how many clock cycles are required to execute 
any functions. Finally, the design can be automatically tested 
by the predefined testbench.

4 Hardware environment
This section deals with the introduction of the hardware 

environment. It has got four main groups: programmable 
logic, processing system, Zedboard and HostPC as it can be 
seen in Fig. 3.

Fig. 3 Architecture of the hardware system.

4.1 System Architecture
Programmable logic practically covers the FPGA. Apart 

from the IP of the model, the communication interfaces and 
hardware timer are implemented here. The communication 
interfaces are based on the AXI protocol. To implement AXI 
interface between the processing system and the programmable 
logic, AXI interconnect, AXI master and slave interfaces are 
needed. AXI masters can initiate communication cycle in 
the direction of the AXI slaves. AXI masters have AXI slave 
interface and vice versa. Hardware timer, blockRAM and 
model have got AXI master interface. They are connected 
to the AXI slave interface of the processing system since the 
processing system is the AXI master in the communication. 
AXI communication channel is implemented not only 
between the programmable logic and processing system, but 
also between the CHB model and blockRAM. Thanks to this 
solution, blockRAM can be simultaneously accessible by 
CHB model and processing system. In case of the hardware 
timer and CHB model the AXI interface to the processing 
system is used for the configuration and signal transfer. The 
CHB model archives the simulation data of the last step into 
the blockRAM through the AXI interface.

The currently relevant parts of the processing system 
are ARM core, general interrupt controller (GIC), Ethernet 
controller, memory interface, UART interface and AXI 
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masterinterface. The software developed in the SDK runs in 
the ARM core. GIC is responsible for receiving the IRQ from 
the CHB model and calls its handler function. AXI master 
interface is used to implement the communication between the 
processing system and programmable logic. Ethernet controller 
manages the low level of the TCP/IP based communication. 
DDR ram in the Zedboard is used for store simulation data and 
the memory interface controls DDR RAM. UART peripheral is 
extensively used for the purpose of debugging in SDK.

4.2 System Behavior
In this section the operation of the system is introduced. 

Fig. 4 shows the timing diagram of the system.
The starting point of the explanation is the hardware timer. 

The responsibility of this hardware is to periodically launch 
one step simulation cycle of CHB model. For correct opera-
tion, the period time has to be longer than the latency of the 
model. When the CHB model receives the start signal, it can 
get into the RUN or RDY state. In case of the RDY state, the 
next simulation cycle is not allowed to start because the IRQ of 
the previous cycle is not acknowledged by system software yet. 
If the acknowledge signal is already received and the hardware 
timer send the start signal, the model is allowed to run a new 
simulation cycle and getting into the state of RUN.

At the end of a simulation cycle, the model copies the 
simulation data into the blockRAM and initiates a IRQ signal 
to the GIC. Then GIC calls the IRQ handler function. It has to 
copy the data from the blockRAM into the DDR RAM. When 
it is done, IRQ handler sets the _DataVld flag and returns. 
This flag is continuously polled inside the infinite loop. After 
its value becomes true the write function of the LWIP stack 
in the ARM core is called and the simulation data are sent to 
Simulink. In the monitoring system in the Simulink, TCP/
IP receive block from Instrumentation Toolbox blocks the 
simulation until it does not receive all required data. When they 
receive these data package, one Simulink simulation cycle is 
allowed. The sent data from the CHB model are acquired in 

Simulink by the monitoring system. Simultaneously, the values 
of the input signals like grid and motor voltages and parameters 
are firstly calculated and sent by TCP/IP transmit block. 

When LWIP stack in the ARM core receives all input signal 
and parameters, it sets _DataRcv flag. This flag is also polled 
inside an infinite loop. These data are sent to the CHB model 
through AXI bus, if the flag value is true. This is practically the 
update process of the CHB model. The last step is to send the 
acknowledge signal to CHB model. It makes possible the next 
simulation cycle to start.

Fig. 5 Simulation environment of CHB model.

5 Implementation
In this chapter the characteristics of the implemented system 

and the implementation process are shortly described. 
The architecture of the model has got a strong impact on 

code structure and the hierarchy of functions. The resource 
utilization is also influenced by the model architecture, because 
Vivado HLS can share the critical resources between the units 
which belong to the same function. Vivado HLS implements 
four instances of rectifier and six instances for the inverter 
functions. As a consequence of the fact that there are six 

Fig. 4 Timing diagram of the HIL system.
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instances of rectifier units in the model, pipelining at function 
level is required for the function calls. 

During the development it is important for the developers 
to get information about the resource utilization. At the end of 
the model synthesis, Vivado HLS provides roughly resource 
estimation for the functional units. After the implementation of 
the model, Vivado HLS estimates the required resources again, 
but only for the total design. After the implementation of the 
hardware system, the Vivado HLx accurately calculates the 
used resources. The results of the aforementioned estimation 
can be seen in Fig. 6 and Fig. 7.

Fig. 6 Resource utilization of the main functional units.

Fig. 7 Estimation and calculation for the utilization of the resources.

In terms of the implementation, the utilized LUT number 
is almost the half of the first estimation and in the other cases 
the results seem to be coherent. The auxiliary hardware system 
around the model does not require high amount of resources, 
see Fig. 6.

Tools can analyze not only the resource utilization but the 
timing aspects also. In this case, clock frequency and maximal 
latency of the model are critical. The clock of the FPGA was 
chosen to 10 ns. The latency is 243 clock cycles. This high 
value is implied by the low number of the utilized DSP slices 
and their pipelining. As a consequence of the clock frequency 
and model latency, the duration of a simulation cycle in HIL is 
around 2.5 – 3 us.

6 Simulation Results
The accuracy and behavior of the HIL are verified by means 

of the SimPower System reference model. The CHB control 
is the same as it was in the first part of the article. Therefore, 
an open-loop control system is implemented without current 
control loop. The cell reference signals are pre-calculated. HIL 
and reference model are simulated by the same parameter set 
and the SimPower System toolbox based reference model runs 
in the Simulink. The signals of the HIL are acquired by means 
of block from Instrumentation Toolbox. The acquired data 
are visualized by standard Simulink blocks, like Scope. The 
configuration data are introduced in Table 1. This parameter set 
is the same as it was in the previous part of this article.

Table 1 Simulation Parameters

Parameter Value

Motor Nominal Data 2.3 kV / 140 A

Grid Nominal Data ( Sec. ) 1.1 kV / 50 A

Motor Leakage Inductance 300 uH ( 1% )

Transformer Leakage Induct. 300 uH ( ~0.8% )

DC Link Capacitor 3 mF

Switching Frequency 3 kHz

Frequency of Motor EMF 50 Hz

Grid Frequency 50 Hz

Firstly, the relevant signals of the HIL are introduced 
including input and motor currents and output voltages of the 
cells. Then, these signals are compared to the reference model. 
The input currents of the cell are shown in Fig. 8. The input 
current system is not symmetrical; it is mainly the consequence 
of the single phase load of the DC-link capacitors in the cells. 
This grid currents asymmetry is also the consequence of the 
fact that the frequency of the motor EMF is the same as the 
grid frequency.

Fig. 9. and Fig. 10. show the motor currents. The phase 
voltages of the CHB can be seen in Fig. 11. The number of the 
voltage levels meets the theoretical values. In case of N pieces 
of the two-level cell in each phase with symmetrical DC-link. 
It is 2N + 1, between line and neutral. 
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Fig. 8 Input currents of the upper cell in U phase.

Fig. 9 Motor phase currents.

Fig. 10 Motor phase currents (enlarged).

Fig. 11 U phase voltage at CHB output.

In Fig. 12 the line voltage of the inverter is introduced. 
Since there are 2 cells in each phase, the number of the voltage 
levels between line and line should be 4N + 1. It can also be 
observed in the aforementioned figures.

Fig. 12 U-V line voltage at CHB output.

Fig. 13 shows the DC link voltage of the cell in the U phase. 
The effects of the single phase load are the relative high voltage 
ripple and capacitor load in the DC link. The deviation between 
the signals of the HIL and the reference model is minimal.

Fig. 13 DC link voltage of the upper cell in U phase.

Maximum deviation is around 10V if the average DC link 
voltage is roughly 1500V. It means around 0.7% error.

The deviation between the model in HIL and the reference 
model in case of the input currents and the motor currents is 
also shown in Fig. 14 and Fig. 15. In spite of the fact that the 
error of the DC-link voltage seems to be negligible, its effect 
on the motor current is significant. Its root causes are the small 
values of impedance.

Fig. 14 Comparison of the implemented and the reference model in case of R 
phase Input current of the upper cell in U phase.
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Fig. 15 Comparison of the implemented and the reference model in case of U 
phase motor current.

Taking everything into account the behavior of the model in 
the HIL and reference model is similar.

7 Conclusion
This two-part article series introduces power electronics 

model development and operation on the Zynq-7000 platform. 
The second part of the series (Part 2) focuses on the model 
transformation, hardware development and details of 
implementation in terms of the CHB HIL model. 

In the first section, the applied tool chain is demonstrated. 
Apart from it, the hardware development workflow is also 
introduced with V-model based approach. It extends the model 
based development workflow, which was described in the 
previous part of the article series.

The next section focuses on the details of the model 
transformation. Not only the tools of the transformation are 
considered, but the main steps and practical issues also. 

In the section of the hardware environment, the explanation 
of the system operation is described both from architectural 
and from behavior points of view. The structure diagram is 
divided into layers. It includes all relevant hardware units and 
their interfaces.

The core element of the behavior analyses is the timing 
diagram. The interaction between all functional units are 
demonstrated on this figure.

The fifth section deals with the characteristics of the 
implementation. Two critical aspects are considered here: 
the resource utilization and timing constraints. All in all, the 
implemented model needs less than half of the available resources. 
Its consequence is that the speed of the HIL model is moderate. 

The verification is executed by the SimPower System based 
reference model. Its results are described in the last section. 
The errors of the HIL model are generally small. However, 
they require further investigation.

Future works will focus on increasing the speed and on further 
optimization of resource utilization in terms of the HIL model.
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