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Abstract

Dynamic Positron Emission Tomography (PET) reconstructs the space-time concentration function of a radiotracer by observing 

the detector hits of gamma-photon pairs born during the radiotracer decay. The computation is based on the maximum likelihood 

principle, i.e. we look for the space-time function that maximizes the probability of the actual measurements. The number of finite 

elements representing the spatio-temporal concentration and the number of events detected by the tomograph may be higher than 

a billion, thus the reconstruction requires supercomputer performance. The enormous computational burden can be handled by 

graphics processors (GPU) if the algorithm is decomposed to parallel, independent threads, and the storage requirements are kept 

under control. This paper proposes a scalable dynamic reconstruction system where the algorithm is decomposed to phases where 

each phase is efficiently mapped onto the massively parallel architecture of the GPU.
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1 Introduction
With dynamic Positron Emission Tomography (PET), 
we can examine biological processes, like accumulation 
and emptying drugs in certain tissues. Dynamic tomog-
raphy reconstructs the space-time activity density, i.e. the 
dynamic concentration of a radiotracer isotope. To repre-
sent the spatial dependence with finite data, the domain is 
decomposed to  NV  homogeneous voxels. 

We assume that the time dependence of the radiotracer 
concentration can be expressed by a common kinetic 
model  K (pV , t ) , where spatial dependent properties are 
encoded in an NP dimensional vector of kinetic parameters 
pV . The primary output of the reconstruction is the param-
eter vector for each voxel, from which the Time Activity 
Concentration (TAC) function can be drawn or additional 
parameters can be computed for any point of the examined 
volume. One of the most important additional parameters 
is the Binding Potential (BP), which shows the metabolic 
rate, i.e. how strongly the tissue can accumulate the drug 
marked with the radiotracer isotope. 

There are various alternatives for the kinetic models. For 
example, in the spectral method [1], the unknown function 
is assumed to be a linear combination of basis functions 
that are the convolutions of the blood input function  Cp ( t )   
describing the radiotracer concentration in the blood from 

where diffusion can start, and exponential functions of 
pre-defined coefficients αP and constrained only for posi-
tive time values t  by the Heaviside step function ( )t :
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The spectral method reflects the concept that the impulse 
response of the biological system is a sum of exponen-
tials multiplied by the Heaviside step function to enforce 
causality, and the output is the convolution of the input 
defined by  Cp ( t )  and the impulse response. Coefficient 
ai  describes the strength of diffusion at the “frequency” of  
αi . The binding potential can be directly computed from 
the coefficients of the spectral method:
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The compartmental models [2] are similar to that of the 
spectral method with the exception that “frequencies” αi  
are also subject to reconstruction. 

In PET we use radiotracer isotopes decaying with pos-
itron emission. The positron may wander a few millime-
ters and then may annihilate with an electron, when two 
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oppositely directed gamma-photons are born. The system 
collects the events of simultaneous photon incidents in 
detector pairs. An event is a composition of the identifica-
tion of the detector pair, also called Line Of Response or 
LOR, and its time of occurrence. 

The raw input data of the reconstruction is the list of 
events. If the measurement time is discretized by interval 
boundaries t t tNF1 2, , ,  and events are binned in frames 
( )t tF F, +1 , the time complexity reduces from the number of 
events to the number of frames  NF  . 

Using concentration function  K (pV , t ) , the expected 
number of radioactive decays, i.e. number of positrons 
generated in voxel V  and in frame [ ]t tF F, +1  is 

x K t t tF V V
t

t

F

F

p p( ) = ,( ) −( )
+

∫ exp λ d
1

    (1)

where  λ  is the decay rate of the radiotracer. 
The correspondence between positron generation and 

gamma-photon detection is established by system matrix   
A that expresses the probability of generating an event in 
LOR L  given that a positron is emitted in voxel V . The 
expected number of events yL F,  in LOR L  during frame  
F  is the sum of the contributions of all voxels in the vol-
ume during this time: 

 y xL F L V F V
V

NV

, = ( ).,
=
∑A p

1

     (2)

The computation of the expected values of the detector 
hits is called the forward projection. 

The measured number of hits in LOR L  in frame  F  fol-
lows a Poisson distribution of expectation yL F, . Because 
of the statistical independence of different LORs and dif-
ferent frames as we required them to be disjoint, the com-
bined probability considering all LORs and all frames 
is the product of elementary probabilities. According to 
the concept of Maximum-Likelihood (ML) estimation, 
unknown parameters are found to maximize the following 
log-likelihood [3]: 
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     (3)

The optimization problem has very high computational 
complexity. The number of free variables, i.e. the dimen-
sion of the search space is  NP × NV , the log-likelihood act-
ing as the optimization target is a sum of  NL × NF  terms. 
The range of  NV  and  NL  is typically several hundred 
millions, NF is in the order of tens, and NP  is less than 
10 since we wish to describe a time function with a few 

parameters. Thus, both the dimension of the search space 
and the number of terms in the optimization target can be 
in the order of billions. This means that high performance 
computation platforms should be exploited. 

This paper proposes a fully 3D reconstruction algo-
rithm that runs on the GPU. In order to achieve this goal, 
we improve the algorithms, transform them according 
to the requirements of the GPUs, and exploit their mas-
sively parallel architecture. Our approach builds on that 
of Wang [4, 13] and executes the maximum-likelihood 
dynamic reconstruction method with a two-level iteration 
scheme that decomposes the solution to phases where each 
phase is of gathering type. Data exchange may happen just 
between phases. The storage complexity of the method is 
low, we need to represent the compressed list of events, a 
single LOR array, and just a voxel array in each frame, in 
addition to the final results, which is an array storing one 
parameter vector at each voxel. 

2 Previous work
The state of the art and previous work on the estimation of 
kinetic parametric images for dynamic PET are surveyed 
in review articles [4, 5]. 

The time-consuming process of fully 3D itera-
tive tomography reconstruction has been targeted by 
FPGAs [6], multi-CPU systems [7], the CELL proces-
sor [8], and GPUs, from which the massively parallel 
GPU has proven to be the most cost-effective platform for 
such tasks [9]. GPUs can be programmed with two dif-
ferent programming models. Shader APIs like OpenGL/
GLSL or Direct3D/HLSL present the GPU hardware as 
the direct implementation of the incremental rendering 
pipeline, including both programmable and fixed process-
ing stages. On the other hand, CUDA, StreamSDK, and 
OpenCL provide an access to the multiprocessors of the 
GPU where each multiprocessor contains a set of scalar 
processors organized into warps sharing the instruction 
unit, and therefore acting as a SIMD hardware. 

Previous work targeted the implementation of the geo-
metric projection step on the GPU, and the simplified 
involvement of other physical effects approximately as 
a Gaussian blur realization of the system’s point spread 
function. If only geometric effects are considered, the 
shader API is appropriate for the implementation [10, 11] 
since the rasterizer and the alpha-blending units accessible 
through the shader API support these simple calculations. 
While attenuation correction and the incorporation of the 
point spread function are relatively straightforward [12], 
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the physically plausible scatter correction should be 
replaced by a simple blurring operation to stay within the 
constraints of the incremental rendering pipeline. 

However, when more complex algorithms are imple-
mented, the additional control of the shader processors 
out-weights the possibility of exploiting the fixed function 
pipeline elements, like clipping, rasterization, depth-buff-
ering or alpha blending. Therefore, we build our solution 
on the CUDA platform. High performance implementa-
tion requires that CUDA threads run independently with-
out communication. 

In order to exploit the computational power of GPUs, 
we have to cope with their quasi-SIMD architecture and 
tailor the solution algorithm accordingly. The critical issue 
of the GPU programming, and parallel programming in 
general, is the thread mapping, i.e. the decomposition of 
the algorithm to parallel threads that can run efficiently. 
The following issues must be considered. 

Thread divergence: A GPU is a collection of multi-
processors, where each multiprocessor has several SIMD 
scalar processors that share the instruction unit and thus 
always execute the same machine instruction. Thus, 
during algorithm development we should minimize the 
dependence of flow control on input data. 

Coherent memory access and non-colliding writes: 
Generally, global memory access is slow on the GPU, espe-
cially when atomic writes are needed to resolve thread col-
lisions. Particle transport needs the consideration of many 
sources (inputs) and many detectors (outputs). This kind of 
“many to many” computation can be organized in two dif-
ferent ways. We can take input values one-by-one, obtain the 
contribution of a single input value to all of the outputs, and 
accumulate the contributions as different input values are 
visited. We call this scheme input-driven or scattering. The 
orthogonal approach would take output values one-by-one, 
and obtain the contribution of all input values to this par-
ticular output value. This approach is called output-driven 
or gathering. GPUs and in general parallel algorithms favor 
gathering since it computes a single result from the avail-
able data, which can be written out without communicating 
between and synchronizing of the computational threads.

Reuse: Running independent threads on different pro-
cessors, we cannot reuse temporary results obtained by dif-
ferent processors, which is obviously possible and worth-
while in a single thread implementation. To reuse partial 
results of other threads, the algorithm should be broken 
to phases. When threads implementing a phase are termi-
nated, they write out the results to the global memory. The 

threads of the next phase can input these data in parallel 
without explicit communication. 

3 Reconstruction algorithm
The reconstruction means the maximization of the 
log-likelihood of Eq. (3). The likelihood has an extremum 
where all partial derivatives are zero. Computing the par-
tial derivatives, we obtain 
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for V NV= , ,1 2,  and P NP= , ,1 . Thus, we have 
NV × NP  equations, each containing  NF  terms that depend 
on the unknown parameters of all voxels, and the compu-
tation of each equation requires the consideration of all 
LORs L  for which  AL, V  is not zero. Note that accurate 
reconstruction requires the computation of positron range 
and scattered particle paths as well, which makes system 
matrix A not sparse. 

The computation of the derivatives of the log-likelihood 
requires a forward projection and a back projection in each 
frame. Indeed, in frame F , the expected number of radio-
active decays in voxel V  is  xF V( )p , which is forward pro-
jected to obtain L Fy ,   according to Eq. (2). 

A gathering type approach is obtained if computational 
threads are assigned to LORs and each thread computes 
the expected hits for a single LOR L  during frame F . A 
back projection obtains a new estimate of the activity as 
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which can be substituted into Eq. (4): 
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Dividing both sides by the sensitivity of the voxel, i.e. 
by AL VL ,∑ , we get an equivalent requirement for the 
extremum of the likelihood: 
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In this equation xF V( )p  depends on the unknown 
parameter vector pV of voxel V , while  xV, F involves for-
ward and back projections and depends on the parameter 
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vectors of all voxels. Thus, if  xV, F  were known, then the 
computation could be decoupled for different voxels, 
where a system of equations with  NP  unknowns needs to 
be solved. In this way, forward/backward projection can 
be separated from the calculation of the parameter values, 
thus the complexity of the algorithm will be the sum of 
the complexities of the two steps and not their product. 
Having fixed  xV, F , the non-linear equation is solved, which 
can also be imagined as a curve-fitting process. 

Concerning the evaluation and the solution of this 
equation on massively parallel architectures, the process 
should be decomposed to phases where computational 
threads are assigned either to voxels or LORs and can be 
executed without inter-thread communication. 

There are various options to regularize the solution. 
One option is the modification of the optimization target 
in Eq. (3) by a regularization term that penalizes unac-
ceptable solutions [11], where, for example, the spatial or 
temporal variation is too high. The method of sieves [14], 
on the other hand, does not modify the optimization tar-
get, but filters the iterated approximation in each iteration 
step. Filtering can also exploit user specified region infor-
mation or anatomic segmentation based on the data gath-
ered by a CT or an MR [15]. 

Putting the discussed steps together, the pseudo-code 
of the reconstruction is as follows: 

for n = 1 to nmax do // main iteration
 for F = 1 to NF do // iterate through frames
 // evaluation: # of decays in voxels 

foreach voxel  V  in parallel

V F
t

t

Vx K t t t
F

F

, = ,( ) −( )
+

∫

1

p exp λ d

// forward projection: # of hits in LORs
foreach LOR  L  in parallel  y xL L V V FV

= , ′ ′,′∑ A
 // back projection: # of decays correction
 foreach voxel  V  in parallel x xV F V F

L V
yL
yLL

L VL
, ,= ⋅ ∑∑

,

,




A

A

// filtering: method of sieves
foreach voxel  V  in parallel x xV F V F, ,= Filter ( )

 endfor
// curve fitting: kinetic parameters
for each voxel  V  in parallel Solve Eq. (6)

endfor

The most time consuming steps are the forward projec-
tion and back projection. In the next section we discuss the 
efficient GPU implementation of these steps. 

3.1 Forward projection with factoring
Forward projection is the simulation of the physical pro-
cess of particle transport (Fig. 1). Emitted particles may 
end up in detectors after traveling in space including pos-
sible scattering and type changes. As the source and the 
detectors have 3D domain, and scattering can happen any-
where in the 3D space, the contribution of sources to detec-
tors is a high-dimensional integral in the domain of source 
points, detector points and arbitrary number of scattering 
points. Such high-dimensional integrals are calculated by 
tracing sample paths. The more paths are computed, the 
higher precision simulation is obtained.

The idea of factoring is that the transport process 
is decomposed to phases with the introduction of vir-
tual detectors (Fig. 2 shows the decomposition into two 
phases, but more than two phases are also possible). First 
the expected values in the first layer of virtual detectors 
are computed from the source. Then, the detectors of the 
first layer become sources and a similar algorithm is exe-
cuted until we arrive in the real detectors. 

The advantages of this approach are the followings. The 
calculation of a single phase can be much simpler than the 
complete transport process, thus we can eliminate all con-
ditional statements that would reduce GPU efficiency. As 
a computed sample path ended in a virtual detector is con-
tinued by all paths started from here in the next phase, we 
have much higher number of sample paths to estimate high 
dimensional integrals, thus the result is more accurate. 
Note that the number of sample paths increased from 4 
(Fig. 1) to 16 (Fig. 2). Considering the forward projection, 
which is essentially a multiplication with a huge system 
matrix, factoring can be imagined as decomposing the 
huge matrix as a product of several sparse matrices [16].

Each phase is computed in parallel on the GPU where 
threads do not communicate. However, the next phase can 
reuse the results of all threads of the previous phase, so 
redundant computations can be eliminated. 

The disadvantage of factoring is that virtual detectors 
discretize the continuous space into finite number of bins, 
so if their number is small, discretization error occurs. 

Fig. 1 Conceptual model of emission tomography. We also indicated the 
number of computed sample paths associated with each detector.
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In our proposed system, the transport process is decom-
posed to three factored phases: 

1. Positron transport from the point of generation to the 
point of annihilation where two oppositely directed 
gamma-photons are born, computing annihilation 
density xV

a  from positron emission density xV . 
2. Gamma-photon pair transport that follows the pho-

ton pair from the annihilation point to the surface of 
detector crystals and computes the expected number 
of hits on the surfaces of the crystal pairs (LORs), 
yL

surf , from the annihilation density. 
3. Detector response that includes all phenomena hap-

pening in the detector crystal, including inter-crys-
tal scattering, absorption, and the sensitivity of 
crystals and electronics. 

3.1.1 Output-driven positron transport
In order to simulate positron range, we need to compute 
the expected density of positron annihilation xV

a  from 
the expected density of positron generation xV  and the 
probability of positron migration between generation and 
annihilation. As the contributions of different voxels are 
independent and add up, the positron range calculation is 
similar to a spatially varying filtering 

 x xV
a

V V V
V

= ′ ′,
′
∑ P ,

where  PV', V  is the probability that a positron born in voxel   
V '  annihilates in voxel   V . The actual values of these prob-
abilities depend on the material–isotope pair. In homoge-
neous medium, this probability depends just on the rela-
tive position of the two voxels, thus the computation of the 
annihilation density is equivalent to a convolution with a 
larger filter kernel, which can be evaluated in frequency 
domain applying 3D Fast Fourier Transform, making the 
complexity independent of the filter kernel size. 

In inhomogeneous objects, blurring kernel PV’, V also 
depends on the absolute locations of the two voxels. The 
precise treatment of this phenomenon would require the 
consideration of all possible positron paths, which would 
lead to a high-dimensional integral for every voxel pair, 
and would pose prohibitive computational requirements. 

The idea of an approximated solution is that instead of 
considering the material in all points, we take into account 
the material type only at the beginning of the positron path 
[17]. This means that we blur each voxel with the filter ker-
nel associated with the material in this voxel and ignore 
the fact that there might be a material boundary nearby. 
This simplification replaces a spatially variant filtering by 
several spatially invariant convolutions and a summation. 

3.1.2 Output-driven photon pair transport to the 
detector surface
Forward projection computes the detector responses 
from the current emission density. Considering only the 
geometry, a LOR can be affected only if its detectors are 
seen at directions ω  and − ω  from emission point v . It 
also means that from detector hit points z1  and z2 , we 
can determine those emission points v  and direction ω , 
which can contribute. Thus, the detector response can be 
expressed as an integral over the detector surfaces. The 
Jacobian of the change of integration variables is [18, 19]: 

d d d d dω
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where θ z1
  and θ z2

 are the angles between the surface nor-
mals and the line connecting points z1  and z2  on the two 
detectors, respectively.

The LOR integral is expressed as a triple integral over 
the two detector surfaces  D1  and  D2  of the given LOR 
and over the line connecting two points z1  and z2  belong-
ing to the two detectors:
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Eq. (7) can be estimated by taking ND uniformly dis-
tributed point pairs, ( , )( ) ( ) z zi i

1 2  on the two detectors, and 
selecting Nmarch equidistant points 
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ment ( , )( ) ( ) z zi i

1 2  (Fig. 3): 
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Fig. 2 Conceptual model of factoring. The particle transport process is 
decomposed to phases by introducing virtual detectors. The simulation 

of all particles is first executed to the virtual detectors, then virtual 
detectors become virtual sources and the second phase simulates 

transport from them to the real detectors.
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Evaluating the line integral with ray marching visiting 
regular samples has some quadrature error, but works with 
arbitrary finite element representation and is very fast on 
GPUs since it can exploit its tri-linear filtering and texture 
caching features.  

This geometric calculation is easy to generalize to take 
into account extinction cross section  σt  due to photoelec-
tric absorption and Compton or Rayleigh out-scattering. 
When the line integral of the activity is approximated with 
ray marching, the transmittance should also be simultane-
ously estimated and the integrated activity should be mul-
tiplied with the transmittance: 
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The contribution of single and multiple scattering can 
be added to the direct contribution.

3.1.3 Output-driven detector response
Photons may get scattered in detector crystals before 

they get finally absorbed. The number of reported hits due 
to an absorption may be different in different crystals due 
to the variation of the crystal sensitivity. 

In order to reduce the data needed to model detectors, 
we decompose this phase to two phases and separately con-
sider the photon transport until absorption and the measure-
ment process from the absorption to the output of the elec-
tronics. The photon transport is assumed to be translation 

invariant, so it can be modeled by a single, incident direc-
tion dependent blurring kernel. To handle crystal sensitiv-
ity and electronics, we assign sensitivity c to each crystal  
c , which is the expected number of events reported in this 
detector by the output of the measuring system, provided 
that a gamma-photon has been absorbed here. The sensi-
tivity is a parameter for each detector crystal, which can be 
obtained by calibration measurements. Scattering inside the 
detectors can be modeled by a crystal transport probabil-
ity pi c→ ( )



ω  that specifies the conditional probability that a 
photon is absorbed in crystal  c provided that it arrived at 
the surface of crystal  i  from direction ω  (Fig. 4). The crys-
tal transport probability is obtained by off-line calculation 
executed, for example, with GATE [20, 21]. 

The sum of the crystal transport probabilities is the 
detection probability, i.e. the probability that the photon 
does not get lost, or from a different point of view, the pho-
ton does not leave the module without absorption: 

ν ω ω
 ( ) = ( ).→∑ pi c

c

Let us consider a LOR of direction ω   connecting crys-
tals  c1  and  c2 . The expected number of hits in this LOR is: 

� � � �y y p pL Lc c c c i j i c ij j c ij
ji

1 2 1 2 1 2,( ) ,( ) → →≈ ( ) ( )∑∑  surf ω ω   (8)

where 


ωij  is the direction vector between detectors i and 
j . We can observe that detector response is a convolution 
operation in 4D LOR space. 

To obtain a gathering type algorithm, computational 
threads are assigned to filtered LORs and they fetch and 
weight neighboring LORs to get the filtered value. 

3.2 Back projection
Back projection computes a fraction for each voxel V , 
where the denominator and the numerator are 
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Fig. 3 During the output-driven photon pair transport calculation, a 
single computational thread takes a detector pair, generates  ND  lines 
and marches on them sampling  Nmarch  points. This figure depicts the 

case when  ND = 1  and  Nmarch = 6 .

photon
crystals

intercrystal
scattering

absorption

Electronics
number 
of hits

c i

ω

r

Fig. 4 Inter-crystal scattering. The photon arrives at crystal i but is 
scattered to crystal c , were it finally gets absorbed and detected.
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In back projection the volumetric integral of the system 
matrix is estimated from a single position sample v , and 
the directional integral is approximated by a single sample 
per detector  i , which subtends solid angle Δωi  (Fig. 5). 
Emission point v  and point z1  on detector i determine 
direction ω . For this LOR, we get: 

A i j
i

L V,( ), ≈
∆

.
ω
π2

For other LORs associated with detector i , A i jL V,( ), = 0.  
Computational threads are assigned to voxels and each 
thread processes those LORs that go through this voxel. 

3.3 Curve fitting
To get the parameters of a voxel, the fitting error between 
the parametric curve and the discrete data generated by the 
back projection needs to be minimized. Eq. (6) is solved 
iteratively linearizing the 1 xF  term in each sub-iteration, 
which leads to a Gauss-Newton like method. The lineariza-
tion is done around current estimate p considering offset d 
from the current estimate as the independent parameter:
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After the substitution into Eq. (6) and rearrangement, 
we obtain a system of linear equations: 

F d b⋅ =       (10)

where 

F
p

p p
p

p

b
p

p

P Q
F

P

F

F

F

QF

N

P
F

P

F

x x
x

x

x x
x

F

,
=

=
∂ ( )
∂ ( )

∂ ( )
∂

,

=
∂ ( )
∂

∑










2
1

FFF

NF

p( )
−









.

=
∑ 1

1

The Levenberg-Marquardt method is a robust or 
damped version of the Gauss-Newton algorithm. It modi-
fies matrix F as 

F F FLM = + ( )µdiag

where μ is increased if the error gets greater in this step 
and reduced otherwise. Emphasizing the diagonal of the 
matrix makes the approach similar to gradient search, 
which is more robust when the process is far from the solu-
tion. Getting closer, the method becomes similar to the 

Gauss-Newton technique. Matrices F and F LM are sym-
metric and positive-definite if data points  xF  are positive. 
Thus, the efficient Cholesky factorization can be used to 
solve this equation. 

4 Results
The proposed reconstruction algorithm is built into a 3D 
fully GPU based PET reconstruction framework [22]. The 
tests are based on the geometry of the Mediso nanoS-
can-PET/CT device, which consists of 12 detector mod-
ules, each of them containing  81 × 39  pieces of crystals, 
with a size of  1.122 × 13 mm. The approximate number of 
LORs is  NL ≈ 1.8 ∙ 108 .

We choose the list mode for the storage of the measured 
data, which represents events as pairs of LOR index 
and time of occurrence. The projection operators of the 
reconstruction framework work with the binned mode 
representation, so switching between the two storage 
methods involves some extra costs. According to our 
experience, this conversion is negligible compared to the 
time of projection operators.

For the 3D tests we use a simplified version of the Zubal 
brain phantom [23]. We defined four regions with different 
time activity functions: blood, gray matter, white matter, 
and air. The measurement data were prepared by GATE 
simulation, where more complex physical effects like scat-
tering were switched off. 

4.1 Low activity phantom
The proposed methods are compared with non-paramet-
ric reconstruction using a low activity phantom, of resolu-
tion  128 × 128 × 64 . The linear size of the voxel is 0.4 mm. 
Unless otherwise indicated, the number of time frames 
is 10 and the number of iterations is 50. We observed 

voxel

Detector
module 2

Detector
module 1

vr

1zr
2zr

Fig. 5 A single computational thread of the output-driven back 
projection updates a single voxel considering all LORs crossing it.
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altogether 8 million LOR hits, which means in average 
0.004 hits per LOR per frame. 

Fig. 6 demonstrates the differences between paramet-
ric and non-parametric reconstructions while regulariza-
tion is turned off. It can be seen that the parametric recon-
struction results in significant image quality improvement 
compared to the non-parametric method. A similar effect 
can be observed in Fig. 7 when moderate anatomy based 
spatial regularization [15] is applied executing Gaussian 
filtering with standard deviation equal to the half of the 
linear size of the voxel. The filter built in the reconstruc-
tion loop reduced the noise. Fig. 8 compares the errors 
of the non-parametric versus parametric and non-regular-
ized versus regularized reconstructions.

Figs. 9 and 10 show the TAC functions after 30 itera-
tions for the non-regularized and regularized reconstruc-
tions, respectively. Fig. 11 presents the computed Binding 
Potentials.

Fig. 6 Comparison of non-parametric and parametric reconstructions 
with no regularization in frame  F = 8 .

Fig. 7 Comparison of non-parametric and parametric reconstructions 
with spatial regularization in frame  F = 10 .

Fig. 8 Comparison of the errors of non-parametric/parametric and non-
regularized/regularized reconstructions.

Fig. 9 TAC curves obtained by parametric reconstruction.

Fig. 10 TAC curves obtained by parametric reconstruction using also 
spatial regularization.
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4.2 High activity phantom
We have also examined a high activity phantom. The 
number of frames is 5 demonstrating that the algorithm 
is robust even if the number of frames is very small. As 
the reconstruction time is proportional to the number of 
frames, this is an important advantage. The total number of 
hits is 350 million, the average number of hits per LOR per 
frame is 0.4. The reconstructed activity in frame 1 and the 
computed Binding Potentials are shown by Figs. 12 and 13.

4.3 Running times
The running times of the GPU based 3D reconstruction 
are shown by Table 1. LOR binning, parameter evaluation 
and forward and back projections are executed in every 
frame in an iteration. Parameter fitting, on the other hand, 
needs to be computed only once per iteration. The cost of 
LOR binning is independent of the voxel resolution, while 
other steps depend roughly linearly on the number of vox-
els. The bottleneck of the method is the execution of the 
forward and back projections. 

5 Conclusions
In this paper we investigated the problem of dynamic PET 
reconstruction when the total activity in a region of inter-
est needs to be reconstructed as a function of time, and 
presented a set of efficient algorithms suitable for GPU 
execution.
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Fig. 11 Binding potentials (BP) using weak and strong spatial 
regularizations corresponding to 34.57 and 3.61 error levels, 

respectively.

Fig. 12 Reconstructed activity (right) and reference (left) in the first 
frame.

Fig. 13 Reconstructed Binding Potential (right) and its reference (left).

Table 1 Running times in seconds for different voxel grid resolutions

Style name: 64×64×32 128×128×64 256×256×128

LOR binning: 0.8 0.8 0.8

Evaluation 0.001 0.01 0.08

Forward projection 1.2 2.5 6.2

Back projection 7.2 40.3 259.8

Curve fitting 0.12 0.9 1.3
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