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Abstract

The modeling of electric car charging stations is essential for determining the required number of chargers in order to ensure the 

required service quality. In this paper we propose a new estimation method for the stochastic modeling of electric car charging 

stations, based on Markov arrival process (MAP).

The input of the proposed model is empirical data for the arrival and service process of electric cars, given as histograms: the number of 

arriving cars during a fixed time slot (5 minutes in our case) and the histogram of service times (in 5 minutes granularity). The fact that 

observations on the continuous time process of car charging are available in discrete time steps poses a modeling challenge, which was 

not considered before. We propose a procedure to fit the observed data with a continuous time MAP of order 2 such that three moments 

and a correlation parameter of the discrete time observations are matched with three moments and the correlation parameter of the 

continuous time MAP for the given time interval. We implemented the fitting procedure in MATLAB and verified the obtained model of 

car charging station against simulation. As the MAP model of the arrival processes is reasonably close to the observations, the obtained 

MAP/G/c queue allows a more accurate dimensioning of car charging station than the previously applied ones.
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1 Introduction
Electric vehicles (EVs) require an adequate number of char-
gers at charging stations in order to have neither unwanted 
long queues at the station, nor a poorly utilized system due 
to idleness. Furthermore, without enough chargers the cus-
tomers will not buy EVs out of sheer fear of range anxiety 
(i.e. they will not find a charging station nearby where they 
can recharge their cars when needed), while if there are 
not enough EVs, there is no point in constructing charging 
stations. To cope with this problem, government or indus-
trial subsidies are required, both in promoting the dissem-
ination of EVs and in constructing charging stations. This 
paper intends to suggest a modeling procedure that would 
help in the charging station construction by determining 
the required number of chargers in a fast charging station. 
As this topic is highly relevant today, many papers deal 
with it. They can be classified into two sets: some papers 
use optimization algorithms to dimension a charging 

station: for example [1] proposes a multi-objective electric 
vehicle charging station planning method which can ensure 
charging service while reducing power losses and voltage 
deviations of distribution systems; authors of [2] study the 
EV charging station placement problem by finding the best 
locations to construct charging stations in a city in such a 
way, that they minimize the construction cost with cov-
erage extended to the whole city and they also study the 
complexity of the station placement problem; authors of [3] 
developed a mathematical model for the optimal sizing of 
EV charging stations with the minimization of total cost 
associated to these stations and solved it by a modified pri-
mal-dual interior point algorithm.

Other papers use stochastic models, with which system 
performance can be studied: the literature review shows that 
they almost exclusively use M/M/c queues for charging sta-
tion modeling, i.e., they assume the arrival and service process 
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of EVs to be Poisson-processes. In this sense [4] models the 
fast charging stations with the help of an M/G/S/K queue 
and incorporates a fast charging model (i.e. charging char-
acteristics show that charging power during fast charging is 
not constant) into the queuing analysis as well as the reve-
nue model of the charging station; the authors of [5] present 
a methodology of modeling the overall charging demand of 
plug-in hybrid electric vehicles (PHEVs) and employ queu-
ing theory (M/M/c model) to describe the behavior of mul-
tiple PHEVs; [6] uses a discrete-state, discrete-time Markov 
chain to define the states of all the EVs at each time step. 
Four states are considered in [6], depending on whether an 
EV is parked or not and on the parking location.

However, as [7] clearly states, most of the M/M/c models 
are based on some unrealistic assumptions without valida-
tion. [4] rejects the assumption that the service process can 
be modeled as a Poisson-process, as charging time depends 
on initial battery state of charge. This statement is supported 
by measurements made by the authors of [8], see Fig. 1. 
Furthermore, according to [9], sojourn times are in general 
not exponentially distributed. In fact, the assumption that 
EV charging can be modeled by M/M/c queues has to our 
best knowledge never really been justified in the literature.

Our aim in this paper is thus to create a model that can 
be used even if the arrival and service processes are not 
Poisson-processes. We propose a stochastic model based 
on Markov arrival processes (MAP) to capture the nature 
of electric car charging process. The only paper we found 
using MAP is [10], where the authors use a DMAP/PH/N/R 
model (where DMAP stands for discrete time MAP and 
PH for phase type distributed service time) to investigate 
a battery replacement strategy to increase the efficiency 
of chargers and save drivers' time at charging stations. 

However, our proposed approach is essentially different. 
We assume that cars arrive according to a continuous time 
stochastic process to which we have observations only in 
equidistance discrete time instances. This assumption is 
motivated by the way automatic traffic counting is con-
ducted: due to the large number of data, traffic counting is 
basically done in discrete time intervals, mainly in hourly 
resolution, but for design purposes, smaller intervals can 
also be used (see e.g. [11], where 20s resolution was also 
used). As no data is available regarding arrival times of 
EVs we take the input data from [12], where the motion of 
a taxi fleet composed of electric cars is simulated in 5 min 
long time periods. That is why we assume that the EV 
arrivals are known in every ∆ = 5 min long time periods. 
The fact that we need to fit a continuous time MAP to a 
set of discrete observation instances raises a new research 
challenge. To the best of our knowledge this problem is 
considered here for the first time. We would like to empha-
size, that the main contribution of our paper is the applied 
methodology, which has not been applied for EV model-
ling yet and contains the solution of a previously unavail-
able analysis step (MAP fitting based on restricted obser-
vations), the numerical example in Section 5 is presented 
to show the capabilities of the proposed approach.

We would also like to emphasize that the paper does 
not intend to extend the investigations to charger station 
location planning, nor is its aim to give a comprehensive 
model including EV drivers' decision model, charging sta-
tions' pricing model, etc.

Furthermore, the number of cars arriving during a cer-
tain time period is largely stochastic and is driven by var-
ious factors, such as time of day, day of week, weather, 
etc. We did not explicitly taken consideration about these 
factors, but they are included implicitly in the model: the 
empirical data regarding car arrivals carry information 
about them, as for example the number of cars arriving at 
once is higher during peak hours and lower during other 
times of the day: as the latter occurs more often during the 
day, it is represented by higher probabilities, hence larger 
values in the histogram (see Fig. 3).

The rest of the paper is structured as follows. Section 2 
summarizes the basics of MAP modeling. In Section 3 
we present the theoretical basis of restricted observation 
based MAP fitting and in Section 4 the procedure itself. In 
Section 5 simulation results are presented and discussed. 
The paper is concluded in Section 6.

Fig. 1 Distribution of battery pack SOC at the start of charging by 
charging location [8]
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2 Modeling with Markov arrival process
This section introduces the basic properties of MAPs.

2.1 Markov arrival processes
The Markov arrival process is a point process where the 
arrivals are governed by a background continuous time 
Markov chain (CTMC). A possible interpretation of MAP 
is through the joint stochastic process {(N(t), J(t)) :t ≥ 0} 
where N(t) denotes the number of arrivals in the time 
interval (0, t) and J(t) denotes the state of the background 
CTMC (commonly referred to as phase) at time t. J(t) is 
CTMC on the finite state space M, while N(t) is a stochas-
tic counting process depending on J(t). The (N(∙), J(∙)) joint 
stochastic process is a CTMC on the state space {(n, j) :n ≥ 
0,1 ≤ j ≤ M} with the infinitesimal generator matrix
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where
• D0 and D1 are M × M matrices,
• D1 ≥ 0 elementwise,
• [D0]i,j ≥ 0,1 ≤ i ≠ j ≤ M and [D0]i,i < 0,1 ≤ i ≤ M,
• and 
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where 1 is the column vector of ones of the appropriate size.
This means that a Markov arrival process is defined 

by the matrices D0 and D1, where the elements of 
D0 represent hidden transitions and elements of D1 
observable transitions.

We use second-order MAPs (denoted with MAP(2)) 
because they have significantly more modeling flexibil-
ity (e.g. correlated inter-arrival time) compared to Poisson 
processes while their computational complexity is still 
low. An important advantage of using MAP(2) is the avail-
ability of a canonical representation [13], which is a min-
imal unique Markovian representation for all members of 
the MAP(2) class. This means that M = 2, and both D0 and 
D1 are 2 × 2 matrices.

Depending on whether the correlation of consecutive 
inter-arrivals is positive or negative there are two different 
canonical forms [13]. Based on the properties of our data 
sets (which are discussed in Subsection 2.3) we use only 
the canonical form with positive correlation in this paper.

The D0 and D1 matrix representation of this canonical 
form is as follows:
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where λ1 and λ2 are rate parameters, a and b are probabili-
ties. The transition graph representation of this canonical 
form is depicted on Fig. 2.

The stationary distribution of the MAP arriv-
als in a ∆ long time interval is given by the following 
z-transform expression:

p z e D D z∆ ∆
, ,( ) = ⋅ ⋅+( )⋅⋅α 0 1 1     (4)
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 is the summation vector of size 2. α is 

obtained from the D0 and D1 matrix representation as the 
solution of the linear system of equations

α α⋅ +( ) = ⋅ =D D
0 1

0 1, ,1    (5)

and it is

α
λ

λ λ
λ

λ λ
=

−( ) ⋅
−( ) ⋅ + −( ) ⋅

−( ) ⋅
−( ) ⋅ + −( ) ⋅











1

1 1

1

1 1

2

1 2

1

1 2

b
a b

a
a b



.

2.2 Histogram of the empirical arrival process
The number of cars arriving to the charging station 
during a fixed time slot is depicted on Fig. 3 (the example 
obtained from [12]).

We form the following z-transform polynomial from 
the histogram:

A z p z
i

i
i( ) = ⋅∑ ,      (6)

Fig. 2 Markov chain of the canonical MAP(2) with positive correlation
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where pi is the probability that i cars arrive in a ∆ long 
time interval. The polynomial in our example (according 
to Fig. 3.) is the following:

A z
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We fit the number of arrivals of a MAP(2) in a ∆ long 

time interval, given in the form of Eq. (4), to this poly-
nomial. More precisely we set the first three factorial 
moments of this data set, which can be obtained from A(z) 
(as well as from the probabilities pi, but we use A(z) in 
order to exploit the similarity with the transform domain 
based computation of MAP(2) parameters) through its 
derivatives with respect to z, which are
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2.3 Correlation of the arrival data
The number of car arrivals in consecutive ∆ long time inter-
vals can be independent or dependent. We check the depen-
dence structure of the car arrival process by computing the 
experimental correlation of observation intervals k lags 
apart. Having N samples the lag-k correlation is computed 
between the first N − k observations: x1, x2, …, xN−k  and the 
next N − k observations  xk+1, xk+2, …, xN  according to the fol-
lowing expression [15]
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where x 1( )  is the experimental mean of the first N − k obser-
vations and x k+( )1  is the experimental mean of the last 
N − k observations.

The correlation of the data sample for arrivals can also 
be obtained by using MATLAB's autocorr function. The 
experimental lag-k correlation parameters are depicted in 
Fig. 4. The lag-1 correlation is  ρ1̂ = 0.2443.

To emphasize the applicability of the proposed method 
we note that the MAP(2) class can also represent the case 
when the correlation is zero. In that case parameter b equals 
to zero, thus the canonical form of MAP(2) simplifies to
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while D0 remains the same.

2.4 Moment matching procedure
The MAP(2) canonical form has four unknown param-
eters (a, b, λ1, λ2). We set these parameters such that the 
first three moments of the inter-arrival time distribution
m kk , , ,=( )1 2 3ˆ , and the lag-1 correlation of the experimen-

tal data ρ1( )ˆ  is matched. This procedure requires calculat-
ing these four parameters from both the empirical data and 
the MAP(2) canonical from. For the latter ones we need the 
first 3 derivatives of  p(∆, z)  with respect to  z  at  z = 1  and 
the lag-1 correlation from the double transform description 
of the number of car arrivals in consecutive intervals given 
in Eq. (23). Finally, we have to solve the obtained system of 
equation for the variables a, b, λ1 and λ2 .

3 Derivatives of  p(∆, z) and the correlation
Although theoretically the symbolic derivation of the 
p(∆, z) polynomial is possible, but it is computationally 
challenging. Instead of the direct, brute force solution, we 
apply some algebraic manipulations to make computations 
faster (and feasible).

Fig. 3 Histogram showing the number of cars arriving in a ∆ long time 
interval (example) Fig. 4 Correlation of the original dataset
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3.1 First moment
Only the part e D D z0 1+( )⋅⋅ ∆  contains the parameter z in Eq. (4), 
thus we have to calculate d
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⋅ ∆ . The Taylor-series 
expansion of the matrix exponential function is
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Due to the matrices in the series, the order of the parts 
matter this time. The calculation yields
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This means that we can simplify Eq. (12) further as 

follows:
d
dz
p z D

z
∆ ∆, .( ) = ⋅ ⋅ ⋅

=1 1
α 1    (13)

This formula gives the first moment.

3.2 Second moment
The calculation is similar to the first moment: we want to 
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After the Taylor-series expansion and the derivation of 
the first few parts we can see that the solution is
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After further simplifications using Eq. (1) and Eq. (5) 
we obtain
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Let's denote  D0 + D1  with D. This means that we can 
reformulate Eq. (16) as
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series expansion of the matrix exponential function eD∆. 
To obtain that formula, we have to alter Eq. (17) a little, 
but we cannot extend the formula by multiplying simply 
with D2 ∙ D−2, because D−2 does not exist as D is singular 
(see Eq. (1)). Instead, we have to do the extension using 
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2 2α α . If D is an irreducible Markov-

chain, then D − 1 ∙ α is not singular [15]. With further cal-
culations, utilizing Eq. (1) and Eq. (5), we can reformulate 
Eq. (17) as
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This is the second momentum of the number of arrivals 
in (0, ∆), where I denotes the 2 × 2 identity matrix.

3.3 Third moment
Based on our calculations regarding the first and the sec-
ond moment, we can determine the third one. We have seen 
that there was a single summation in the case of the first 
moment, a double summation in the second and here in the 
case of the third moment, a triple summation would come, 
with the argument being something like D D z k
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This one, however is hard to deal with, as not all of 
the factors disappear when we multiply with the vectors α 
and 1, so convolutions would appear. To make calculations 
easier, we can trace the summation back to matrix prod-
ucts: if we raise to powers the
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hyper matrix, we can obtain the factors in the aforemen-
tioned sums; they are given by the upper right block of the 
1  hyper matrix, so we have to multiply 1  with I

2 2
0[ ]
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2 × 2 identity matrix and 02 is the 2 × 2 zero matrix. Using the 
hyper matrix we can obtain the third momentum as follows:
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If we calculate the powers of the e  hyper matrix and 
substitute the obtained results into Eq. (20), we can see 
that the third moment is simplified:
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The inner hyper matrix can be rewritten into matrix 
exponential form utilizing the summation, so we can 
obtain the formula for the third moment:
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is the matrix exponential form of Eq. (22) without 
the inner hyper matrix and
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are the additional terms obtained from the inner hyper 
matrix. With this, the third moment is also given.

3.4 Correlation
The correlation is calculated from the joint probability dis-
tribution of the number of cars arrived in the first and the 
second 5 minute time step. Let P(z1 z2) denote the z-trans-
form of the joint probability, then

P z z e eD D z D D z
1 2

0 1 1 0 1 2( ) = ⋅ ⋅ ⋅+( )⋅ +( )⋅⋅ ⋅α ∆ ∆ 1.   (23)

From this probability we can calculate the expected 
value of these variables as follows:
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The correlation is obtained from the expected value 
as follows:
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where σ X1
 and σ X2

 are the variances of the random val-
ues x1 and x2. As x1 and x2 represent the number of arriv-
ing cars in the first and the second time slot, respectively, 
and the investigated process is assumed to be stationary, 
the variances are equal to each other and can be calculated 
from the moments as shown in Eq. (26):
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We have already calculated all the required parameters 
before (see Eqs. (13), (18) and (22)), so the correlation is
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      (27)

4 The matching procedure
We have obtained the symbolic forms of the first three 
moments of the p(∆, z) polynomial and the corr parameter. 
Now, we have to solve the system of non-linear equations
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for the variables a, b, λ1 , λ2 . Fortunately, the fsolve func-
tion of MATLAB managed to obtain the results thanks to 
the algebraic manipulations summarized in the previous 
section. Without those manipulations all of our attempts 
failed. For our data set the obtained solution was:

• a = 0.2971,
• b = 0.6762,
• λ1 = 0.3196,
• λ2 = 0.9861,

which gives a proper MAP(2) canonical form [13] with 
valid probability and rate values.

4.1 The service process
The service process can as well be modeled by a MAP(2) 
process: the fitting is done similarly, like before. In our 
example, however we constructed a simpler model for the 
service process as the histogram of the service time is 
much simpler, as depicted on Fig. 5.

It is clear from Fig. 5 that in this case the MAP(2) mod-
eling would be preposterous: all we have to do is to deter-
mine the probabilities of each option (i.e. charging lasts for 
5 or 6 time intervals) and raffle one of these numbers ran-
domly, using the obtained probabilities for weighting. This 
is why the service process is considered to be G (general) 
instead of MAP(2) in our example. We have to note that 
this service process obtained from [12] implicitly incor-
porates the initial battery state of charge (SOC) of cars. 
For further applications data regarding battery SOC is also 
needed to be able to model the service process properly.

5 Simulation of the electric car charging station
We simulated the whole process using MATLAB. Cars 
arrive to charge according to the MAP(2) process with the 
calculated parameters.

If there is any available charger, they connect to it 
and begin charging and the charger becomes occupied. 
Charging time is raffled according to the service pro-
cess as presented in Section 4.1. In every time step, the 
charging time left for a given car decreases and if it reaches 
0, the car is recharged, leaves the station and the charger 
becomes available again. If there is no available charger, 
the incoming cars have to wait, hence a waiting queue 
forms. The waiting queue has an FCFS discipline. For a 
given number of chargers we can determine the number of 
cars that have to wait (see Fig. 6 as an example). The aim 
is to have enough chargers in the charging station so that 
the probability of waiting is below a pre-defined threshold.

Running the simulation for 100 times we can deter-
mine the number of waiting cars for a given number of 
chargers (see Fig. 7).

To indicate the variance of the simulation we used 
MATLAB's boxplot function, where on each box, the 
central mark is the median, the edges of the box are the 
25th and 75th percentiles, the whiskers extend to the most 
extreme data points not considered outliers, and outliers 
are plotted individually.

Fig. 5 Histogram of service time duration obtained from [12]

Fig. 6 Number of cars that have to wait - example

Fig. 7 Number of cars that have to wait for given no. of chargers
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6 Conclusion
The problem of appropriately dimensioned recharging 
units for electric vehicles is as important as appropriately 
dimensioned fueling units for cars with internal com-
bustion engines. In this paper, exceeding the modeling 
restrictions of previously applied Poisson process based 
analyses, we addressed this dimensioning problem using 

continuous time MAPs assuming that only aggregate 
experimental data is available for time intervals of the 
same length. This limitation on the available data arises 
new modeling challenges for parameter matching of 
MAPs. We proposed a solution method using the canoni-
cal representation of MAP(2) processes.
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