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Abstract

The subject of this paper is an unusual approach to artificial game playing. Our main goal is to replace exhaustive game tree search 

with incremental pattern extraction and recognition, thus greatly reducing computation time. This is achieved using search with 

a depth of 3, together with pattern matching and pattern-based heuristic functions, where patterns are learned through play. We 

examine the efficiency and efficacy of this method regarding the game Gomoku, also known as Five-in-a-row. To evaluate our agent, 

we implement two basic reference agents and also incorporate a strong open-source AI called "Carbon" into our environment. 
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1 Introduction
Game intelligence has always been a widely researched 
area because it is an easily described environment that pro-
vides great challenges for artificial intelligence. It allows 
researchers to develop AI techniques capable of making 
strategic decisions. The main element of a game playing 
program, or agent, is usually tree search, most commonly 
an alpha-beta minimax search [1]. However, many other 
basic methods have been developed throughout the past 
decades, such as proof number search, dependency-based 
search [2], pn2-search, proof set search [3], Monte Carlo 
tree search [4]. Recently, learning agents receive the most 
attention. Learning how to play also ranges widely, from 
using genetic algorithms [5, 6], supervised training of 
neural networks [7-9] to the most popular reinforcement 
learning method [9-12]. The most recent advance in this 
field isthe result of deep convolutional [8, 9, 13], or resid-
ual networks [11]. Another interesting aspect of such pro-
grams is their ability to learn play completely without 
human help, that is, with only the rules and field informa-
tion of the game provided. Google DeepMind's newest AI, 
AlphaGO Zero achieved this in the game Go [11], which 
is considered the most challenging board game for arti-
ficial intelligence. Even so, research in this field has not 
stopped; faster, more efficient algorithms are still to find. 

Deep tree searches can be very effective, but also very 
slow. We aim to develop an agent capable of fast, effec-
tive learning and playing by exchanging search depth for 
pattern recognition. We implement a simple, but feasible 
pattern-based heuristic function and create an algorithm 
that extracts winning patterns while playing, called pat-
tern backpropagation. 

The pattern extraction based agent uses a search 
method with limited depth and breadth combined with 
pattern recognition. Limiting search depth is a widely 
used method [1], while reducing breadth is similar 
to conducting a policy based search as in [4, 13]. 
The evaluation function at the leaves and the policy 
function are given by our proposed heuristic measure. 
The heuristics are based on the same patterns as the 
recognition, thus both hard and soft pattern recognition 
is realized. Our field for testing this approach is Gomoku, 
which is suitable in several aspects.

Section 2 describes the game Gomoku and why it is 
suitable for our research. In Section 3 we specify the heu-
ristic function and the reference agents used to evaluate 
our method. In Section 4 the pattern extraction based 
agent is introduced, detailed. Section 5 shows test results; 
conclusion is discussed in Section 6. 
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2 Gomoku
This section is based on [14]. First, we describe the basic 
rules of Gomoku, then address the issue of the game being 
solved and explain why it is still a suitable research field. 
Lastly, we introduce threat methodology, usually used by 
agents developed to play Gomoku. 

In the original Gomoku game, two players take turns 
placing black and white stones on either a Go board or 
a similar, 15-by-15 board, on an empty intersection or 
square, starting with black. The first player to place their 
stones in five consecutive squares (horizontally, vertically, 
or diagonally) wins. The stones placed down will stay 
there until the end of the game. When there are no valid 
moves left, meaning the board is filled, the game results 
in a draw. Gomoku is also popular in schools among stu-
dents, as it can be played on a grid sheet with two pen-
cils, drawing x's and circles representing black and white 
stones. Freestyle Gomoku is the variant where a winning 
line does not strictly have to be five squares long, six or 
more consecutive occupied fields also win. We consider 
freestyle Gomoku from here on. An example playout is 
shown in Fig. 1. 

It has been known for decades, that through optimal 
play, the first player always wins. With a proper search 
method, a database has already been constructed, which 
contains all the necessary information on how to win [2]. In 
tournaments, black's advantage is compensated by playing 
different colors alternately and with opening rules such as 
"pro" or "swap", or even special restrictions for black, like 
in the professional version of Gomoku, Renju. However, an 
agent that plays optimally either requires an unaffordable 
amount of computation time or great storage capacity. AIs 
which depend on neither are still up for research.

We chose Gomoku as the environment for our method 
for several reasons. It is a two-player, zero-sum, non-triv-
ial and well-known game, requiring considerable skill 
for playing on an expert level. Also, it provides perfect 
information, is deterministic and a sudden death game, 
which are crucial in recognizing, and for the existence 
of winning patterns. Other game properties according to 
Allis [2] are complexity and convergence, which are less 
important in our case. An additional aspect is to be con-
sidered: our algorithm in its current form only works for 
monotone games, where a change made to the game field 
is never reverted. 

When aiming to have a deeper understanding of the 
game Gomoku, one has to be familiar with threats and 
threat sequences. A threat is a pattern on the board, which, 

if unaddressed, leads to a win. Threats have descriptive 
names: a four is an occupied line of four stones, with one 
open end, a straight four has both ends open, etc. For a 
more detailed description, see [14]. It is clear that each 
threat must be blocked immediately. To win the game, 
one has to create a double threat, which the opponent is 
unable to counter. This usually happens at the end of a 
threat sequence, which means a series of turns where an 
attacking player creates threats in each turn, forcing their 
opponent on blocking moves. These sequences can be bro-
ken when a defensive move also creates a counter-threat. 

3 Reference agents
3.1 Simplified threat space evaluation
When developing reference agents for measuring the per-
formance of our pattern-extraction algorithm, we con-
structed a heuristic evaluation function. This measure is 
based on and is similar to the threat space approach in 
some ways, but it is much more general. The key idea 
behind it is that fours and threes are incomplete fives, and 
open fours are basically two fours. By specifying how 
value scales with the incompleteness, we assign values to 
different patterns relative to the final pattern (five). More 
complex patterns can also be derived from fives. This way 
we get a general, simple and feasible method. It also raises 
the possibility to create a method which works consider-
ably well for different games. This question will be further 
discussed later. 

Following our method, every line of five squares on the 
board adds the value m n∗  to each of the five squares 
when there are  n stones of one player and no stones of the 
other (thus giving five minus  n  empty squares), where  

Fig. 1 An example game, where x has won.
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m  is a multiplier. The value of  m  can be chosen by con-
sidering how many weaker patterns should weigh out a 
stronger one - which contains one more stone of the player. 
Through playing with a purely heuristic agent, this was 
tuned to 10, which implies a greedy strategy: the agent 
prefers fewer, more complete patterns. In Gomoku, it is 
sensible to account for the opponent's moves similarly, 
as blocking a potentially good move is also considered 
advantageous. The easiest way to do so is to simply take 
the sum of own and enemy values. This way, computing 
the given multiplications for each line on the board, the 
values assigned to empty squares represent how beneficial 
it would be to put a stone there. 

The value of an empty square considering the vertical 
direction, with only own moves can be calculated as 
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Where  F  is a matrix with the size of the board, containing 
ones for empty squares, zeros for the enemy's stones and  a  
and  b  represent coordinates. Horizontal and the two diag-
onal directions and values given by the opponent's moves 
should be calculated similarly and then added. 

We created an agent which only uses this measure 
to choose its move, which we will refer to as "constant" 
agent. The pattern extraction based agent uses a gener-
alized version of this measure, where multiplications are 
not done along straight lines, but along patterns learned 
through play - practically stored as a vector of coordinates. 

3.2 Alpha-beta pruning agent
As a reference, we created an agent that uses classical 
alpha-beta pruning with two heuristic functions based on 
the previously described evaluation. 

Firstly, the branching factor is greatly reduced by keep-
ing track of possible moves with the biggest potential - 
given by our heuristic function as an a priori move value -, 
and only evaluating a fixed number of them. This method 
also results in a sensible ordering of the move options, 
which increases the efficiency of alpha-beta search [2]. 
Secondly, the evaluating function at the leaves is also 
based on this method. 

Running these calculations at every node of every 
search would be time-consuming, but updating the val-
ues can be done incrementally. This means that the value 
of an empty square only changes when the last move is 
aligned with it and closer than five squares. These incre-
mental changes are done at each ply of the tree search. 

It is only possible when a move's potential is symmetri-
cal regarding the players. When selecting sensible moves 
and thus reducing branching, this is acceptable. However, 
a move's value is better represented by giving more weight 
to the patterns of the playing agent. Therefore, the also 
incrementally changing game value is not modified by the 
a priori value of the selected move, but the subtraction of 
the a priori value from a new value calculated with the 
same method, but with the move in question already made. 
This new value is only based on the stones of the playing 
agent, since every multiplication of the opponent would 
contain at least one zero, the current move; it is also con-
ceivable that this value is  m  times the player's part of the 
a priori value. 

3.3 Carbon AI
In order to fairly evaluate our agents, we searched for an 
open-source AI of known skill. Among the contestant pro-
grams for the Gomocup, a worldwide Gomoku artificial 
intelligence tournament [15], "Carbon" was available as 
source code. In order to incorporate given C++ code in the 
MATLAB environment, certain changes had to be made: 
the "main" function was exchanged with "mexFunction" 
with appropriate in- and output arguments, and some data-
types had to be modified. With help of the MATLAB com-
piler, we built a MATLAB-specific executable containing 
the given algorithm. 

Carbon AI is a really strong advanced artificial intel-
ligence algorithm using some state of the art meth-
ods: special evaluation function, minimax with cut offs, 
alpha-beta pruning, transposition table, situation signa-
tures, candidate generating, expert knowledge and further 
enhancements [16]. In the 2017 Gomocup Carbon placed 
9. in freestyle and 7. in fast game categories, thus it can 
be considered one of the strongest algorithms in the field. 

4 Pattern extraction based agent
4.1 General method
Approaching Gomoku with the classical search methods 
is infeasible, as the branching factor is very high. Even 
with the sensible criterion that only squares with occupied 
neighbors are considered, it can go up to multiple doz-
ens. Computing possible plays to the ending is evidently 
impossible, but also applying moderate depth limit would 
need an unacceptable amount of computing time. Depth 
limit in searches comes with the need of evaluation func-
tions at leaves, which is at least non-trivial. The easiest 
way to deal with these issues is using heuristic functions. 
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We use heuristics both to reduce branching - by select-
ing candidate moves - and to evaluate leaves. The basic 
method for these will be described later. 

When using heuristic functions, however, we risk that 
our agent could make wrong moves in states that are clear 
to a human player. We call states where moves leading 
to certain win or lose exist, critical states. In some sud-
den-death games like Gomoku or chess, these states con-
tain certain patterns - an example is shown in Fig 2. By 
incorporating pattern recognition into the heuristic-based 
search, we get an algorithm that plays intuitively, effec-
tively, and still acts appropriately in critical situations. 
Learning of these patterns works simultaneously in the 
search procedure, through a specially developed pattern 
extraction algorithm. 

Our pattern extraction algorithm is based on the obser-
vation that for some – sudden death – games when a final, 
winning pattern is inevitable in the near future, it can 
be deduced from the current state only. More precisely, 
by finding a predecessor pattern on the board. A simple 
example of this is an open four in Gomoku: the next stone 
put will form a five and win, regardless of the opponent's 
move – except if that is already a winning move for the 
opponent. It is clear, that while an open four is also a win-
ning pattern, we must keep track of the number of moves 
necessary for the win, as an opposing pattern with fewer 
moves annihilates a weaker one: it simply leads to an ear-
lier win. We define pattern tiers as follows: a (winning) 
pattern belongsto tier "n", if and only if it can lead to a win 
in "n" moves, while no proper defensive moves are played. 
In Gomoku, this is equivalent to considering the longest 
consecutive occupied line in the pattern: a five leads to a 
win in zero moves, a four can lead to a win in one move, 
two open threes lead to a win in two moves, thus belong-
ing to tier 2. The importance of this notion is explained 
in Fig. 3: here, a tier 1 pattern found a half-ply deeper 
outweighs the opponent's current, tier 2 pattern. In other 
words, the agent can ignore the opponent’s threat when it 
can create a winning pattern earlier. 

Higher tier patterns exist, but appear seldom – or rather, 
are rarely recognized. We note, that there is one obvious 
tier 4 pattern in Gomoku: an empty board with only one 
black stone, as theoretically it leads to a certain win. It 
would not be beneficial to store it though, because it obvi-
ously appears, and without knowing proper tier 3 and 2 
patterns, our agent wouldn't know optimal play from there. 

Another important addition to the classic threat defini-
tion is that we also consider large patterns which represent 

threat sequences ending in a double threat, as threats. The 
example in Fig. 2 is of tier 1 as it contains a four; although 
in practice, it would usually lead to a win in two moves (of 
the attacker) because defensive moves would be played. 

In our approach, matching patterns add to the heuris-
tic game value, which is computed similarly to that of the 
alpha-beta agent. Obviously, exact pattern matches are 
more valuable than the heuristics; this is implemented such 
that the former values are greater of 3-4 orders. Concretely, 
heuristic values range around 100-1000 depending on the 
multiplicator parameter, whereas a winning pattern has 
the value 1000000. Patterns of tier 1, tier 2, etc. have their 
value scaled down exponentially with a factor 2. This 

Fig. 2 An example pattern which leads to a win in four moves 
(two for each player). It is considered a tier 1 pattern.

Fig. 3 Importance of tiers: the agent (X) considers pattern tiers to 
choose an offensive move in presence of an enemy pattern, and wins
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means that an open four has the value 500000, two open 
threes are valued 250000, etc. Basically, these values rep-
resent how many turns it takes to win given the patterns 
when defensive moves are not played. This measure can be 
further enhanced by scaling pattern values down with size, 
which causes longer threat sequences to be less favorable, 
reducing the risk of an unexpected counterattack. We note 
that the value of the exponential factor alters gameplay 
only in unhandled situations where one player has multi-
ple independent active threats, which only occurs through 
suboptimal play. Otherwise, the only purpose of this fac-
tor is to separate tiers, for which the value of 2 is feasible. 

4.2 Pattern extraction algorithm
The main functionality of the method is pattern-backprop-
agation. This means that when somewhere in the search 
tree a known pattern occurs, its value and relevant fields 
are passed up to the caller node, which then, accord-
ing to its minimax strategy, either stores or neglects it. 
Correspondingly to proof number search, when an agent 
at a specific ply of the search tree discovers a winning pat-
tern at one of the successor states, it will choose it and 
only store the relevant fields to that one pattern, regardless 
if there were other, less valuable or even negative valued 
patterns discovered. However, if all its choices lead to pat-
tern matching for the other player, it has to store the com-
bination of all patterns matched in lower levels, because 
it's eventual loss is inevitable only if all those patterns are 
possible. In Gomoku, this means the union of the relevant 
fields. Such a combined pattern will be on tier  n +1 – 
where the most valuable selected sub-pattern is at tier  n – 
and have according value. 

Algorithm 1 and 2 describe the pattern extraction algo-
rithm. Algorithm 1 shows the lop-level of the search, move 
selection and decision on which patterns will be learned. 
Algorithm 2 describes the recursive search function 
enhanced with pattern backpropagation. The last lines of 
code describe a functionality which decides whether low-
er-level patterns should be considered. If pattern matches 
found in deeper plies do not outweigh match value at the 
current level by at least 1.5, they should be neglected. This 
means that for example, when two patterns of the same tier 
are found, only the one formed earlier counts. On the other 
hand, more valuable patterns found in the deeper search 
have to be considered. Multiplication of propagated values 
with a parameter between 0 and 1 makes the earlier more 
valuable of two patterns of the same tier. This parameter 
is kept close to 1, to not have any other, unwanted effect 

on pattern weights. To summarize pattern weighing: tiers 
influence value largely, whereas pattern size and the depth 
at which they are found have a small effect on it as both 
only intend to make earlier win preferable. Explanatory 
flowchart of the algorithm is shown in Fig. 4. 

Our pattern extraction method is related to conven-
tional reinforcement learning techniques. One can find 
some similarity with temporal difference learning - TD(0) 
in particular [17] -, in the sense that the value of a former 
state is derived from that of a later state. However, there 
are fundamental differences: in pattern backpropagation, 
one has to consider all possible (in practice, all potentially 
chosen) preceding states simultaneously. The extracted 
value is assigned to the pattern instead of the state and is 
definite - therefore, no iterative learning is needed. 

It is important to state that this pattern extraction algo-
rithm works for Gomoku because the game is monotone, 
and future patterns are located exactly on the fields of their 
predecessors. However, we propose a potential method for 
future research regarding the monotony of feasible games. 
In some games, future patterns can be deducted from pres-
ent patterns, although they do not explicitly contain the 
latter like in Gomoku. Initial patterns may even contain 
more fields than their successors. If this is the case, rele-
vant fields cannot be determined as easily. Pattern back-
propagation must be modified such that for each poten-
tially relevant field in the initial state, their values have 

Algorithm 1 Move selection and pattern learning

  1: procedure selectMove(board)
  2:      options  ←  best n moves (board)
  3:      for i = 1 to n do
  4:           [optionValues(i), patternMatches(i)]  ←
      patternSearch(options(i))
  5:      [best, bestIndex] ← max(optionValues)
  6:      if best <= −patternLimit then          losing
      pattern is inevitable
  7:           newPattern. fields                               ←
      union of all patternMaches. fields
  8:           newPattern. value                               ←
      max of patternMaches:values
  9:           learnPattern(newPattern)
10:       if best  >  patternLimit then          winning
      pattern found
11:            newPattern  ←  patternMaches(bestIndex)
12:            learnPattern(newPattern)
13:       return options(bestIndex)
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to be changed one at a time, and for every modified state 
the same search has to be conducted. This way, when the 
modification prevents future patterns, the modified field 
belongs to the relevant set. 

4.3 Pattern based agent, heuristic functions, 
applicability to different games
So far we have introduced patterns and how to acquire them 
but did not state why. The computational advantage comes 
from the search depth of our agent: only a 3-ply search 
is necessary (considering nodes for both players belong-
ing to separate plies). Theoretically, starting with only the 
final patterns, the agent incrementally learns to recognize 

patterns which lead to the game's ending in more moves. 
The 3 plies are sufficient to deduce tier 1 patterns from tier 0 
– final – patterns, and inductively, tier n + 1 or tier n patterns 
from tier n patterns. Two plies are enough to detect patterns 
achieved by the opponent, the third is necessary to extract 
own future patterns. Also, a tier 1, two-step threat chain can 
be deducted from a tier 1, one-step threat. Practically, there 
are too many patterns to store and check all of them, so the 
database of the agent is limited by maximizing pattern size: 
this means neglecting long threat sequences. We will fur-
ther discuss this issue in the conclusion. 

Besides checking for exact patterns, "pattern" agent uses 
the same heuristic branch reduction and evaluation at the 

Make move

Match patterns

Yes

No

Final pattern

Search best options

Gather patterns

Combine values

Heuristic leaf function

No

Yes
Max depth

Return

Return

Fig. 4 Flowchart of Algorithm 2.

Algorithm 2 Search function

  1: procedure patternSearch(board, move)
  2:      board ← makeMove(board, move)
  3:      currentMatch  
      patternMatch(board, move)
  4:      if  match found then
  5:           currentValue  
      value of currentMatch
  6:      if  currentMatch is a final pattern then
  7:           return currentValue, currentMatch
  8:      if  searchDepth  >  maxDepth then
  9:           value  ←  heuristicValue(board)
10:      else
11:           options  ←  best n moves (board)
12:           for  i = 1 to n do
13:                 [optionValues(i), patternMatches(i)]  ← 
      patternSearch(options(i))
                       Pattern extraction showed for the agent, 
      works similarly for the opponent
14:           [searchValue, maxIndex]  ←  max(optionValues)
15:           if  searchValue  >  0 then
16:                newPattern  ←  patternMatches(maxIndex)
17:           else
18:                newPattern. fields                                ←  
      union of all patternMaches. fields
19:                newPattern.value                                 ←  
      max of patternMaches.values
20:      if  |searchValue|  >  |currentValue|  then
21:            value  ←  0.99  * � searchValue  +  currentValue
22:      else             search results are neglected
23:            newPattern  ←  currentMatch
24:            value  ←  currentValue
25:      return value, newPattern
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leaves as our alpha-beta agent, but the already mentioned 
pattern-based generalized version. This way, it can be eas-
ily altered by changing the patterns along which the heu-
ristic values are calculated. When using only tier 0 patterns 
it is the same as the basic heuristic, but there's an option to 
use higher tier patterns in either the branching or the eval-
uation heuristic. Our experiments showed that this mod-
ification results in less improvement than it is increasing 
computation time. Still, using patterns instead of straight 
lines is preferable, as it makes the algorithm more general. 

When choosing the maximum branching parameter, 
we have to consider that the pattern recognition algorithm 
assumes that every sensible move is evaluated. With the 
branching factor set too low, false deductions happen, lead-
ing to critical errors. This is analogical to neglecting pos-
sibly but not probably true children of an "or" node in an 
and-or tree. Our experiment showed that a branching factor 
of 5 is already applicable if occasional mistakes are admit-
ted. These mistakes can, however, lead to learning false 
patterns, which is unacceptable. With the branching factor 
set to 6, we never experienced this, but we propose a more 
sophisticated solution. Our planned method is to repeat the 
search with considerably larger branching factor every time 
a new pattern is to be learned, thus verifying it. Even in a 
strictly timed tournament, losing due to violating time lim-
its is preferable to risking an incorrect pattern. This proving 
search has however not yet been implemented.

4.4 Further details
When using higher tier patterns in the branching heuris-
tic, we used a preliminary pruning, further lowering the 
branching factor. In practice, this means that if the heu-
ristic value of the next move to be evaluated is lower than 
half of the previously evaluated move, it can be neglected. 
Since in this case, the heuristic is more reliable, this lead 
to a minimal decrease in efficacy, and improved speed. 
This kind of pruning is only permitted when not in a crit-
ical state, meaning the algorithm has not discovered a 
matching pattern so far. 

When the algorithm returns with a potential new pat-
tern similarity check and symmetrical pattern calcu-
lations occur. These are highly Gomoku-specific parts 
of our method. First, we check if there exists a pattern 
which is equal to or part of the newly found candidate. 
One winning pattern being a subset of another means in 
Gomoku that the larger one is redundant since only a part 
of it already leads to victory. If the candidate is accepted, 
it is mirrored and rotated multiple times, creating all its 

symmetrical versions, which are then checked one by one 
and stored. Storing all symmetrical patterns is not mem-
ory efficient, but this way we compute them only once and 
not at every evaluation. Also, we avoid using symmetrical 
patterns twice or four times. 

5 Evaluation
5.1 Evaluation framework, rules
To evaluate, we implemented our algorithm in MATLAB. 
Choice of the programming language was based merely on 
former experience with the environment and greater possi-
ble speed of development. MATLAB supports object-ori-
entated programming, which is essentialin programming 
game playing agents. It also enables the developer to inte-
grate codes written in Fortran, C, C++, which was of great 
importance in our project. 

Our main goal was reducing computation time in play-
ing games. Therefore, when examining the performance 
of our agents, we set up a rather strict timing rule: each 
player has got at most five seconds to act in each turn. 
Time limit for the whole match was set to two minutes. 
Time limit for our agents was set practically by tuning 
depth and breadth parameters. 

5.2 Evaluating pattern recognition and learning
First, we compared our agent with a "constant" and an  
"α − β" agent. The main agent is set to use only top-tier 
patterns, therefore all three agents are based on the same 
heuristic measure. Agent “constant” uses no search, only 
the heuristic function. The second opponent uses a naive  
α − β  search with branching reduction, whose depth and 
branching parameters are tuned for keeping time limits. 
Playing against this agent represents the dominance of 
pattern recognition over traditional search. 

In both cases, the testing process was following: the 
pattern extracting agent started with zero known patterns. 
The opponent played first in every second match. We 
monitored the cumulative win percentage of our agent and 
known patterns in each round. Draws were accounted for 
as 0.5. In theory, our agent learns a new pattern every time 
it loses and ultimately knows all possible patterns, thus 
ensuring victory. In practice, this is limited by disabling 
learning of big patterns to stop the patterns database from 
growing unlimitedly. Our assumption was that when 
the majority of allowed patterns are learned win chance 
becomes constant, meaning that the cumulative win per-
centage approaches this value. On Figs. 5 and 6 cumula-
tive win percentage can be seen along with the gathering 
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of patterns. Playing against a weaker opponent results in 
learning fewer patterns: in 200 matches against "constant", 
our agent learned 516 patterns as opposed to learning 696 
against "α − β", although there is at most slight improve-
ment after 300. This implies, that when playing against 
weaker agents, complex patterns - indicating longer threat 
sequences - are unnecessary. It is also an interesting attri-
bute of the heuristic function that enhancing it with 5-ply 
deep search does not lead to significant improvement; per-
centage limits are similar in both cases (84% and 79%). 
When playing against each other, "α − β" only beat "con-
stant" in 63 out of 100 games, with 8 draws. 

5.3 Play against independent reference agents
Next, we tested the overall efficiency of our agent against 
the 2017. Gomocup-contestant CarbonAI. Test setting 
was similar to the previous tests. Since "carbon" is a sig-
nificantly stronger opponent we expected that the win 
percentage limit would be reached later, through more 
rounds. This would be because against a stronger oppo-
nent, more complicated patterns are still crucial to know, 
which would be learned after more matches. Test results of 
1000 rounds are shown in Fig. 7. 

The results have a surprising tendency: above a cer-
tain level, more known patterns do not improve play. Also, 
learning of patterns became slower than against the simpler 
agents. The latter can be explained with "carbon's" abil-
ity to construct longer threat sequences than our size-lim-
ited patterns can handle, causing that from the majority 
of lost games our agent can not learn. The former is sup-
posedly due to not handling counterattacks (mentioned in 
Section 2) which break threat sequences. This means that 
while larger patterns imply smarter planning, they are less 
sure to result in a win. At such low percentages, discrete-
ness makes the curve rough, which makes it harder to draw 
conclusions, but the win percentage would supposedly stay 
between 3 and 4 percent. Our agent won 36 out of 1000 
matches during the evaluation. There were no draws.

Additionally, we compared our agent with 104 patterns 
to some of the other Gomocup contestants. These tests were 
run manually, with a human operator linking the two differ-
ent game environments; therefore they were not thorough, 
serve only as an approximation of the strength of our agent. 
We will be referencing these testing agents with numbers 
according to their place in the 2017 Gomocup competition. 
Our agent scored 2-0 against numbers 37,32,29; 1-1 against 
39,33,27,26,21; and 0-2 against 31, 19 and below. Repeated 
matches were played the same in most cases. This result 

makes us believe that if implemented in the appropriate 
programming language our agent could prove as a consid-
erable contestant in the competition. 

Fig. 5 Cumulative win percentage of the patterns extraction based agent 
and number of patterns learned against agent "const".

Fig. 6 Cumulative win percentage of the patterns extraction based agent 
and number of patterns learned against agent "α − β".

Fig. 7 Cumulative win percentage of the patterns extraction based agent 
and number of patterns learned against agent "carbon".
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We conclude that while the described pattern extraction 
algorithm works as planned, it succumbs to the methods 
more sophisticated Gomoku AIs are using - transposition 
tables for example. This is mostly because their search 
is considerably deeper, even considering the depth 
embedded in patterns.

6 Conclusion
In this paper, we presented our pattern extraction based 
Gomoku agent. The two main contributions of this work 
are a limitedly general pattern based heuristic and the pat-
tern extraction algorithm. The algorithm works for mono-
tone sudden death games with no topological differences 
between fields of the game. These differences may also 
be taken into consideration with proper extensions of the 
structure of the patterns, but that is not our research goal. 

One main disadvantage of our developed method is 
that the agent has to build a large database of patterns in 
order to avoid every possible double threat, let alone those 

at the end of a threat sequence. When playing against a 
simpler opponent with a constant strategy, the number of 
occurring patterns is limited and they can be all learnt 
until the agent is sure to win. In general, however, we 
would like to create an agent capable of playing against 
any opponent. For greater efficiency, one would want an 
algorithm capable of recognizing unseen patterns as com-
binations of its known patterns, somehow having a deeper 
understanding of the game. Even for Gomoku, this ques-
tion leads very far and even if a solution was available, it 
could probably not be extendedfor other games. 
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