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Abstract

Measuring and providing efficiency of educational applications is a serious, open problem, which impacts the future of this expanding 

industry greatly. Reaching player engagement is a complex challenge, as it also depends on the given task and the mental state of the 

player. Researches answer this by using adaptive educational games. To reach the goal, however, knowledge about more parameters 

is required about the game tasks, the abilities of the player, his actual physiological state and performance as well. In this paper we 

present our results, which use a biofeedback based adaptive algorithm, and based on this, an innovative psychometric model to take 

a step towards maximizing user engagement.
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1 Introduction
People like doing something if they are enjoying it. Many 
activities, especially playing games can reach a point when 
the subjects are engaged and want to perform the activity 
continuously. Nowadays, in video games, things like visual 
effects, the reward system or the instant feedback over the 
performance can achieve this engagement easily. Players 
can learn moves or methods during the gameplay. This could 
make the games ideal candidates for educational purposes, if 
we can achieve the same easy learning effect. These games, 
that have educational purposes beside the entertainment, are 
called serious games [1]. Motivating the users during serious 
games is a key problem [2]. If the motivation is high, and the 
user enjoys the game, it can lead to longer and more effec-
tive playing sessions. For the most suitable gameplay, beside 
the ergonomic aspects, the appropriate level of difficulty is 
extremely important. It affects the mental state of the user, 
which, in turn, affects the performance. The theory of Flow 
[3] describes this approach. Typically, at least three relevant 
mental states are identified, based on Csíkszentmihályi's the-
ory: boredom, frustration and engagement. The user is in the 
state of boredom if the level of the task is lower than the skill 
of the user. Frustration is defined as a state, where the task 
demands are higher than the skill of the user. Engagement 
is the ideal state, where the level of the task and the skill of 

the user meet. This state leads to the Flow experience, where 
the efficiency is maximized. Many studies aim to introduce 
adaptive difficulty management in serious games [4]. The 
adaptiveness of these systems are based on the performance 
of the user in most cases, but for the ideal learning efficiency, 
the mental state of the user should also be considered.

To create an adaptive experience, adjusting the game 
difficulty based on the abilities and mental state of the 
player is found to be of key importance. In many games, 
gameplay can be divided into several well-defined tasks 
(steps or milestones). Each of these tasks has a difficulty 
level from which the difficulty of gameplay is determined. 
By giving the appropriate tasks for each player, their per-
formance can be maximized, which enables more efficient 
learning and provides motivation.

In case the abilities of players can be measured, math-
ematical models can be used to estimate the probabil-
ity that a player solves a given game task correctly. Item 
Response Theory (IRT) is particularly useful for this pur-
pose [5-9]. In an educational game, each game task cor-
responds to a test item and each player corresponds to a 
subject in an IRT model.

In some cases, no estimate is available for the difficulty of 
game tasks. Fortunately, IRT models, being mathematical, 
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can be estimated in a lot of ways. Using model estima-
tion, we can approximately measure the parameters of IRT 
items, which means, the difficulty of game tasks can be 
estimated using data from the responses of players.

By our theory, item parameter estimation can be sim-
plified if we determine the ability of players via alternate 
means. One such method is by measuring a person's intel-
ligence, based on the Multiple Intelligence Theory of H. 
Gardner. In his theory, Gardner states that intelligence 
can be differentiated into many inter-correlated modal-
ities, rather than one single overlaying construct [19]. 
These modalities are defined as 9 individually describ-
able and measurable intelligence fields. In this paper, we 
present an automated process to measure a number of the 
areas. We use the result of these automated measurement 
as the input of the IRT calculations.

We also provide a simplified method for estimating 
the difficulty of game tasks when the ability of players is 
treated as known. Our approach uses a modified version 
of IRT model estimation. Furthermore, we also propose 
an extension of simple IRT models, which can take the 
mental effort of subjects into account when determining 
the probability of solving a specific task by a specific user. 
Based on that information, we can manipulate the game-
play in order to keep the player in the state of Flow.

The rest of this paper provides a deeper insight into our 
system. The next section describes the related work and 
the theories, which our solution is based on. In the fol-
lowing chapter, the classification-based mental effort mea-
surements are presented. After this, we show how cogni-
tive games can be used to measure the ability of someone. 
The following chapters of this section describe the IRT 
model which uses mental effort and ability calculated by 
these cognitive games as parameters. A summary of our 
results and future works conclude our paper.

2 Related work
2.1 Measuring mental effort
The mental effort or cognitive workload of the user could 
be concluded from physiological parameters [10]. In our 
research, we measure mental effort through two physio-
logical value: the hearth rate variability and the EEG data.

2.1.1 Heart rate
Heart rate is influenced by the activity of both the sympa-
thetic and parasympathetic branch of the autonomic ner-
vous system. An increase in sympathetic activity raises the 
hearth rate, while an increase in parasympathetic activity 

lowers it. High mental effort levels cause increased heart 
rate, and decreased heart rate variability. Both time- and 
frequency domain-based analysis can be used to infer the 
mental effort of the user [11]. A parametric auto regression 
(AR) based power spectral density estimation and a mov-
ing average (MA) based time domain approach are pri-
mary used in the analysis.

We use the Low frequency (0.07-0.15 Hz) component as 
a measure of the mental effort [12]. Compared to a base-
line value, a lower ratio would mean parasympathetic, 
while a higher would signal sympathetic dominance [13]. 
The aim of the MA method is to catch any changes in fre-
quency (RR intervals).

2.1.2 Electroencephalography
EEG measures brain activity based on electric changes 
elicited by neurons. These, 10-100 µV signals can be mea-
sured with electrodes on the scalp [13]. In the last years, 
EEG became very common in human-computer interac-
tion [15, 16]. There are many metrics to measure the men-
tal workload based on EEG. Most studies use the power 
estimates of certain frequency bands (alpha, beta, delta or 
theta) [17]. Higher levels of load are accompanied by lower 
overall alpha power over activated cortical areas [18].

2.2 Item Response Theory
2.2.1 Basic concepts
Item Response Theory (IRT) [5-9] is a method for design-
ing and scoring tests that consist of simple questions, 
which are called test items. The term item is generic: it 
can be used for a variety of question types, including mul-
tiple choice and open-ended questions. However, for an 
item, it should be easily determinable whether a given 
subject answered correctly.

IRT can be used to measure the ability of subjects tak-
ing the test. Ability is a latent trait, which means it is not a 
directly measurable characteristic of subjects. According 
to IRT, the test performance of subjects can be predicted 
or explained based on their ability level. Thus, ability is 
defined as a parameter of subjects that correlates with 
their performance on the test. Generally speaking, higher 
ability means higher probability that the subject gives a 
correct answer to the test item.

IRT defines mathematical models which are called 
item response models. Unidimensional IRT models, 
which are the most commonly used ones in practice, con-
sider a single trait for subjects, the aforementioned ability. 
Another way to categorize IRT models is whether their 
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test items each have a single correct answer or not. In the 
first case, the items are called dichotomous. In the latter 
case, responses each have (a different) score value, mean-
ing the items are polytomous [9, 19].

The common in all IRT models is that they define a 
function for each test item that is called the item response 
function (IRF). In unidimensional models, subject ability 
is the single input variable of this function. Most com-
monly, the IRF is a modified logistic function. In this 
case, the model is called a logistic model. An alternative 
formulation uses the cumulative distribution function 
(CDF) of the normal distribution. These models are some-
times called normal ogive models. Nevertheless, in each 
case, the plot of the IRF (the item characteristic curve, 
ICC) is of a sigmoid shape.

IRT models differ in that how many factors they con-
sider when characterizing test items. [20] The one param-
eter logistic model (1PL, sometimes also called the Rasch 
model [21]) defines a single parameter for items: the item 
difficulty, which determines at which ability value the 
midpoint of the ICC (the mean of the value for the lower 
and the higher asymptotes) is located.

The two parameter logistic model (2PL) adds dis-
crimination as an item parameter, which characterizes 
the degree the item discriminates between subjects with 
different ability levels. Mathematically, discrimination 
is the slope for the tangent of the curve at its midpoint. 
1PL assumes this degree is equivalent for all test items. 
Moreover, 1PL and 2PL do not consider that a subject can 
determine the correct answer for an item purely by guess-
ing: in these models, guessing is part of the ability. The 
three parameter logistic model (3PL) takes guessing into 
account as the lower asymptote of the ICC.

For the 3PL, the probability of the correct response for 
a given dichotomous item can be given with the following 
formula: [9]
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−

+ − −( )
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1

.     (1)

Here, θ denotes the ability of the subject solving the 
item, a denotes discrimination, b is the difficulty of the 
item [21], and c is the guessing parameter [23].

Additionally, a fourth parameter can be defined if one 
considers that even subjects with very high ability will have 
a probability of not answering an item correctly. In this case, 
the ICC of each item also has a variable upper asymptote. 
This version is rarely used in practice today, but it plays an 
important role in our research, as we will describe it later.

2.2.2 Estimating parameters of IRT models
When considering the traditional applications of IRT mod-
els in practice, the item and subject parameters are usually 
unknown at some stage of the model specification. When 
specifying the model, the item parameters need to be esti-
mated. Typically, a random calibration sample from a tar-
get population is used for this purpose, where item and 
subject parameters are estimated simultaneously [5-7].

This estimation can be done with a variety of methods. 
In each case, the item and subject parameters are unob-
servable, thus a problem of indeterminacy arises. This is 
formally called the identification problem. Simply speak-
ing, this means that certain transformations leave the IRF 
invariant when estimating two and three parameter mod-
els. In these cases, either the subject abilities or the item 
difficulties are fixed so that their mean is 0 and their stan-
dard deviation is 1.

One of the methods used for simultaneous parameter 
estimation is called joint maximum likelihood estimation 
(JMLE). Using JMLE, the values of item parameters and 
subject parameters need to be estimated in a way that they 
jointly maximize the value of the logarithm of the likeli-
hood function. Variants of the iterative Newton-Raphson 
procedure or an alternative procedure, called Fisher's 
method of scoring can be used when performing this kind 
of estimation.

Other methods include conditional maximum likeli-
hood estimation (CMLE) that can be used when sufficient 
statistics are available for the subject parameters which is 
only true in case of the one parameter model. Marginal 
maximum likelihood estimation (MMLE) [23] of the item 
parameters is carried out by integrating or summing over 
with respect to the subject parameters, and the function to 
be maximized is named the marginal likelihood function 
in this case. Two and three parameter models can also be 
estimated using MMLE. Finally, Bayesian methods can 
also be used for estimation.

After the item parameters are estimated from the cal-
ibration sample, they are treated as known in subsequent 
applications and item banks are constructed. The task is 
then to estimate the ability of subjects taking a test made 
from the items of the item bank. Simple maximum likeli-
hood estimation (MLE) is most commonly used for this 
purpose. [5-7] Maximum likelihood estimators have some 
particularly useful properties like asymptotic normality 
and consistency. The standard error for the ability estimate 
can also be obtained using MLE which enables approx-
imate confidence intervals to be calculated. In case of a 
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perfect or zero score, MLE fails. Bayesian methods can 
be considered as an alternative solution when this prob-
lem arises. Bayes estimators have smaller standard errors 
but require the specification of a prior belief regarding the 
ability of subjects.

2.3 Multiple Intelligence Theory
In his multiple intelligence theory, Gardner states that 
intelligence can be differentiated into many inter-cor-
related modalities, rather than one single overlaying 
construct [19]. He specifies nine fields of intelligence: 
musical-rhythmic, visual-spatial, verbal-linguistic, logi-
cal-mathematical, bodily-kinesthetic, interpersonal, intra-
personal, naturalistic and existential [26].

There are existing methods to measure cognitive abil-
ities. One example is the Map of Interest Method, cre-
ated by Eva Gyarmathy [27]. Based on the same Multiple 
Intelligence theory of Gardner, it uses questionnaires and 
self-evaluation to measure abilities. The subjects have to 
classify how much they agree with a given statement on a 
scale of 1 to 5, where the statements represent one of the 
9 intelligence fields. The results can be used to determine 
the strengths and weaknesses of the individual where tal-
ent may manifest itself [28].

There are several other measurement methods based on 
the Multiple Intelligence Theory.

Profiling questionnaires are provided by other 
researches to measure multiple intelligence. In their 
research, Tirri, Nokelainen and Komulainen argue that 
sensitivities is a better word to call what Gardner calls 
intelligences [29]. Their analysis concludes that "there is 
no definite answer to the basic question, whether the mul-
tiple intelligences model can be confirmed in self-evalu-
ated intelligence".

When comparing a learning strategy based on Gardners 
MI theory to a classic learning strategy, Mazaheri and 
Fatemis measurement shows that higher results can be 
achieved, if we take the students' preferred intelligence 
fields in account [30]. They conclude, "that e-learning 
strategy based on multiple intelligences helps students 
gain a basic understanding of scientific concepts since 
has been offered the curriculum in a meaningful and 
personalized manner for students were not adaptable in 
compared with traditional learning methods. MI has also 
been integrated to the learning system, with promising 
results" [31]. According to Hafidi and Lamia's research [32], 
"Experimental results show that the proposed system can 
precisely provide personalized activity recommendations 

on-line based on learner abilities and responses, and more-
over can accelerate learner learning efficiency and effec-
tiveness." Learning Styles is another theory, which can be 
applied to enhance personalized learning. Denig's research 
suggests, that if we also want to impact the way which the 
students learn, applying Learning Styles can lead to better 
learning results [33].

As compared to these solutions, this paper presents a 
more universal and more automated approach by using a 
framework to design games. This creates the possibility 
to self-standardize the results and create a flexible and 
adaptive set of data.

Our solution uses the AdaptEd Framework [34-38]. The 
framework is based on a loopback model, which uses the 
live physiological signals and calculated values to finetune 
the running gameplay and optimize learning efficiency 
and performance. The framework takes care of data col-
lection from the sensors, and it also processes the results, 
to provide useful and analyzable data.

It has four main components, as presented on Fig. 1:
1. The framework and the games run on the device of 

the player. These are individual applications, they 
can run separately. The framework runs in the back-
ground. It collects data, sent by the games, and sends 
messages to control the games.

2. The supervisor application runs on the device of the 
teacher. It is used not just to monitor, but to manipu-
late the gameplay. The teacher is able to start, pause, 
restart, mute, change the level or topic of the game-
play remotely. Moreover, she is able to modify the 
training set of the running algorithm.

3. The sensors provide the biofeedback data to the 
framework. They are typically wireless devices, 
connected by Bluetooth.

4. The server side stores the biofeedback and gameplay 
data, uploaded by the framework. Multiple visual-
izations are available about the data. The stored his-
torical data can help in observing the development 
of a student.

3 Classification in mental effort measurement
We compare different classifiers on the measured heart 
rate and EEG data. The role of the algorithms is to iden-
tify the mental effort of the user. Based on this informa-
tion, we would be able to tell, based on the IRT model, 
that the resolved task was easy or hard for the user, and 
can make recommendation to choose a harder or easier 
task from the item bank next. [37]
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3.1 Procedure
8 adult subjects participated in our study at the Department 
of Ergonomics and Psychology in Budapest University 
of Technology and Economics. All participants reported 
healthy. None of them had any diagnosed cardiovascu-
lar disorders. They were asked to not take any stimu-
lants (energy drinks, coffee, cigarettes) or alcohol 8 hours 
before the tests.

Each recording began with a 2-minute-long relaxation 
phase. This data was the baseline for every physiologi-
cal channel. After this phase, the participants got tetris, 
arithmetical and n-back tasks with multiple, predefined 
difficulty levels. We used these type of tasks, because it 
is easy to specify their difficulty with simple parameter 
changes. A session on one difficulty level took 2 minutes. 
Between the sessions, there were 1 minute long relaxation 
phases. During the tetris tasks, the participants had to 
play tetris with three different difficulty levels. The dif-
ference between the levels was the speed of the elements.

The N-back tests are widely used in cognitive neuro-
science, for testing mental workload [16]. In this task, 
participants are presented with a sequence of letters, one 
at a time. One character was shown per second. They are 
asked to compare the current letter to one presented n 
items prior in the sequence. An exception is the 0-back 
test, where the user has to focus only on one letter pre-
sented in the beginning of the test. This is the target, and 
the stimulus is when it is matched with any letters of the 
sequence. During the 3-back, the current stimulus is a 
target when it matches the letter presented three letters 
ago. During the n-back test, the participants got 0-back, 
1-back, 2-back and 3-back tasks.

3.2 Data preparation
ECG (heart rate variability) was recorded with an HxM 
BT heart rate monitor. EEG data was recorded by an 
Emotiv Epoc EEG headset. The measurements were made 
with one second accuracy, but started at different time. To 
be able to use the measured physiological data, we needed 
to synchronize and transform them. We cleared the first 
few records from the data, until the start of the first relax-
ation phase. Every data was normalized with the base-
line data, measured under the relaxation phase. This way, 
we could compensate the great personal differences, and 
got a normalized dataset. First, we made linear interpola-
tion on the RR ECG data to be able to sample it once per 
1000 ms. We used Burg's algorithm and SDNN algorithm 
to create the necessary dimensions for the classification. 
The prepared data on the ECG dimensions are presented 
on Fig. 3. The axis X shows the normalized data after 
used Burg's algorithm on the raw data, the axis Y shows 

Fig. 1 System Architecture. — There are 4 main roles, which the 
architecture is divided into: the supervisor, the game, the framework 

and the server.

Fig. 2 Picture of an N-back gameplay: the red arrow shows the working 
classification (SVM) algorithm

Fig. 3 Visualization of the data.



Gazdi et al.
Period. Polytech. Elec. Eng. Comp. Sci., 62(3), pp. 90–105, 2018 |95

the normalized data after used SDNN algorithm. The dif-
ferent colors represent the different mental states. We can 
see, that the different mental states during the tasks can 
be separated well.

3.3 Algorithms
We used 10-fold cross validation for evaluating the data. 
The data set is separated to ten equal parts randomly. We 
used nine to train and one to test the algorithms. Every 
part and record is used nine times for training and once 
for testing. With this method, we could avoid any dispro-
portion, that can be caused by the random choosing of 
training and test set.

We evaluated each training with a confusion matrix, 
and summarized the results. From the matrix, we were 
able to see all of the correct and false classifications. The 
whole procedure was repeated ten times from the begin-
ning, the random separation of the data. This is necessary, 
in order to completely avoid any kind of influence of the 
random selection. So we used the 10-fold cross valida-
tion ten times on the data set, but always with a differ-
ent indexing. (We marked the nth indexing of the data set 
with IDSn.) We take the average of the result in order to 
avoid the extreme high or low rates, that can be caused by 
a single selection.

We tested both classification algorithms capable and 
non-capable of multi-class classification. The multi-class 
classification can be created from binary-class classifica-
tion, with the one-versus-one method. The algorithms clas-
sify the vectors, and they vote for the label. Every vector 
gets the label with the most vote. In our measurements, we 
tested classification algorithms for binary use, however, 
some of them are capable for multiclass classification. We 
chose the 0-back and 3-back state for our data to classify.

3.3.1 Support Vector Machine
A support vector machine constructs a hyperplane in the 
space, which is used to separate the two classes, with the 
biggest margin. We tested a linear, a quadratic, a poly-
nomial and a Gaussian Radial Basis Function kernel to 
decide, which works best for our dataset.

3.3.2 K-Nearest Neighbor
The K-Nearest Neighbor algorithm first measures the dis-
tances of the k nearest vector from the new vector, and based 
on a rule, decides the class of the actual point. We used the 
Eucledian distance as the distance metric. As the assignment 
rule we tested the nearest and the consensus rule.

3.3.3 Logistic regression
The logistic regression is used to model the relationship 
between the dependent variable and the independent vari-
able. In our case, the class of the vector was the dependent 
value. The EEG data and heart rate variability were the 
independent values.

3.4 Results
We evaluated the data 10 times, separately on IDS1, IDS2, 
… IDS10. The differences were small between the data sets, 
so we present the average of these, as the overall results.

The confusion matrix of the summarized results with lin-
ear support vector machine is shown at Table 1. We can see, 
that 1160 times from 1200 (96.67 %) the 1-back, and 1340 
times from 1360 (98.53 %) the 3-back classification was cor-
rect. The 1-back recognition was false at 0.017 % (20/1160). 
The false recognition rate at 3back is 0.029 % (40/1380).

We also tested the support vector machine with qua-
dratic, polynomial and radial basis function kernel. The 
results are presented at Table 2. Each two rows represent 
a confusion matrix of the specified classifier. From the 
results, we can see, that none of the three classifiers per-
formed better, than the linear SVM. The performances are 
very close, but it is worse at all three classifiers. The qua-
dratic reached 0.9715, the polynomial reached 0.9555, the 
rbf reached 0.9547, while the linear svm was able to reach 
0.9766 accuracy.

We tested the K Nearest Neighbor algorithms, based 
on the number of neighbors and the assignment rule. 
We used the Euclidian distance to specify the distance of 
two points. At first, we tested the algorithm with 'nearest' 

Table 1 Confusion matrix of classification with Linear SVM.

Linear SVM
Actual

1-back 3-back

Recognized
1-back 1160 20

3-back 40 1340

Table 2 Confusion matrix of classification with Quadratic, Polynomial 
and RBF SVM.

Actual

1-back 3-back

Quadratic Recognized
1-back 1160 33

3-back 40 1327

Polynomial Recognized
1-back 1152 66

3-back 48 1294

RBF Recognized
1-back 1112 28

3-back 88 1332
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assignment rule. This means, that the nearest neighbor 
decides, when the number of deciding neighbors are equal 
for the two classes.

The results are shown on Fig. 4. We can see, that the 
1NN and 2NN performed the best. They are the same, 
because in the 2NN case, there is an equality, where the 
nearest vector decides. With the raising of K, the algo-
rithms performed worse. The confusion matrix of the 
1NN classification is shown at Table 3. The accuracy of 
the 1NN algorithm with nearest rule is 0.7637 (1955/2560). 
We can see, that this rate is much lower than any from the 
support vector machines.

In order to raise the rate, we tried K Nearest Neighbor 
algorithm with 'consensus' rule. At this rule, the K near-
est vectors must belong to the same class. If there are vec-
tors from multiple classes, the algorithm will not decide. 
The results from K = 1 to K = 10 are shown on Fig. 5. We 
can see, at K = 1 the result is the same as the nearest rule, 
because at one vector, there is always a consensus. With 
the raising of the K, the accuracy also raises. From K = 
7, it nearly reaches the performance of the support vec-
tor machines. But because of the consensus rule, the algo-
rithms do not always classify a vector.

Fig. 6 shows the number of classified vectors depending 
on the K. Here, we can see, that up to K = 5 there were less 
than 1000 vectors from 2560 classified. At K = 10, just 538 
vectors were classified. If we see the accuracy at the whole 
dataset, it is just 0.1984 (508/2560). This consensus rule 
can only work in cases, when we have lot of data, and we 
have lot of time to decide. In that case, this small number 
of decisions can be enough.

We tested linear regression on our data set as well. 
The results are presented in Table 4. The accuracy is very 
close to the linear svm, it is 0.9742 (2494/2560). The sup-
port vector machine with linear kernel classified 6 more 
vectors correctly than the linear regression.

We tested three different algorithms with various 
parameters in our study. From the results, we can see, 
that there are algorithms, that are capable of classify-
ing the vectors, created from physiological data, to infer 
mental state.

The K Nearest Neighbor algorithm performed best at 
K = 1. Here it was able to reach 76.37 % accuracy. From 
the Support Vector Machines, the linear svm performed 
the best, with 97.66 % accuracy, while the linear regres-
sion algorithm reached 97.42 %. With our experiments, we 
prove, that we are capable for infer the mental state from 
physiological data, with a high success.

Table 3 Confusion matrix of classification with 1NN with nearest rule.

1NN Nearest
Actual

1-back 3-back

Recognized
1-back 889 294

3-back 311 1066

Fig. 4 Performance of the KNN algorithms with nearest rule

Fig. 5 Performance of the KNN algorithms with consensus rule

Fig. 6 Number of classified vectors based on K
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4 Cognitive Games
We can measure four areas of intelligence with cognitive 
games: Logical-mathematical (1), which measures logic, 
skill with numbers, abstractions and critical thinking. 
Verbal-linguistic (2), which relates to facility with words 
and languages. Musical-rhythmic (3), which provides 
information about sensitivity to sound music and rhythm. 
And lastly visual-spatial (4), which deals with spatial 
judgment and the ability to visualize.

The games measured fall into the following areas of 
intelligence [37]:

• mathematical-logical:
 ○ N-back with numbers: numbers are shown to the 

player, one by one. He has to enter the number n 
steps before the current one.

 ○ Pin Code: the player has to remember sequences 
of numbers displayed for a short time.

 ○ Counting: the player has to solve adding and 
subtracting problems using the results from 
previous calculations.

• verbal-linguistic
 ○ N-back with characters: similar to N-back with 

numbers, only with characters.
 ○ Master Mind: the player has to type in words with 

same length as the original one. After each one, he 
can see how many letters were correct and in the 
correct place, or correct but in a wrong position.

 ○ Cypher: letters of known short texts are coded with 
shapes. The player has to decode the characters.

 ○ Anagram: the player has to create words from the 
letters presented to him.

• visual-spatial:
 ○ N-back with shapes: similar to N-back with num-

bers, only with shapes.
 ○ Picture Memory: sequences of symbols are shown 

to the player, which later he has to put in order.
 ○ Short-term 2D visual memory: the player sees num-

bered objects on a background. After a short period 
of time, the objects disappear, and the player has to 
recall their correct placement in the right order.

 ○ Space Plane Relation: the player sees a 3D object, 
and is presented a number of 2D views, from 
which one is corresponding to the 3D object. He 
has to pick the correct one.

• musical-rhythmic:
 ○ N-back with sounds: similar to N-back with num-

bers, only with sounds.
 ○ Simon says: the player has to repeat an increasing 

series of voices and sounds by pressing the cor-
rect buttons.

As a more detailed example, the game called N-back 
with shapes has the following input parameters in Table 5.

The example is a 3-back game with an abstract symbol 
set. In the first 3 steps, the player cannot guess, since there 
was no step 3 steps before the current one.

On the 4th step, the player is shown a new picture, but 
also has to choose the one 3 steps before. This repeats until 
the full time or the total number of steps is reached.

At the end of the gameplay, the player is shown his 
score, and can choose a new game to play.

Fig. 7 N-back gameplay beginning

Fig. 8 N-back gameplay in progress

Table 4 Confusion matrix of classification with Linear Regression.

Linear Regression
Actual

1-back 3-back

Recognized
1-back 1157 23

3-back 43 1337
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4.1 Cognitive profile
With the help of these cognitive games, we are able to 
create a cognitive profile for each user. The profile con-
tains an ability number for each of the measurable intel-
ligence fields. This ability number has a similar concept 
to Intelligence Quotient (IQ), which means that a per-
son's intelligence on a certain field is put on a scale with 
mean 100 and standard deviation 15. In addition to this, 
the AdaptEd framework provides the opportunity to cre-
ate adaptive scales. This means that we can specify filters 
for the groups of people to put on the scale. For example, 
there is little use in comparing a person who has dyscal-
culia with a person who doesn't. We can compare his 
abilities with people with same disadvantages, or we can 
specify age groups to make our comparisons more accu-
rate. The cognitive profile does not only store the ability 
number for the multiple intelligence areas, but for each 
area, it stores the mental effort classification models sep-
arately. Since according to Gardner's MI theory, we can 
have very different scores on the different fields, it is nec-
essary to measure mental effort for each of them. This 
part of the profile is stored automatically in the frame-
work and is updated on each new model training. If the 
last training period was too long ago, the system automat-
ically prompts for a new one to be taken.

The output of the Interest Map method can be inte-
grated to the cognitive profile as well, for more com-
plex and accurate analysis. It creates the opportunity 
to compare the results of self-evaluation and automated 
measurements.

5 Using IRT
5.1 Item parameter estimation with previous 
ability estimates
As described in the previous section, various cognitive 
games can be used to measure the intelligence of players 
for different cognitive fields. These measurements in 
turn can be used to give an estimate for the ability (as 
used in an IRT model) of a given subject when playing an 
educational game.

We suppose that a typical educational game focuses on 
one or two cognitive fields. In this case, we can estimate 
the ability of a player by weighting the intelligence level 
of the player for the cognitive fields the game is aiming 
to develop. However, choosing the correct cognitive fields 
and weighting ratios are critical.

After this, we can treat the ability of players as known 
and estimate the parameters of the test items which each 
corresponds to a task in the educational game.

For this estimation, we first need to choose the type of 
IRT model we are going to use. The most detailed one is 3PL 
so we are going to focus on that for the rest of the paper.

First, we need to collect data consisting of player 
responses for the test items. Let N be the number of play-
ers and n be the number of items. Let the N times n-dimen-
sional vector u consist of the responses of the N players 
for the n items. Let θ be an N-dimensional vector contain-
ing the abilities of players which are already known from 
their intelligence levels.

The three n-dimensional vectors to be estimated are 
denoted with a, b and c, where a contains the discrimina-
tion, b contains the difficulty and c contains the guessing 
parameter for each item.

Maximum likelihood estimation is one of the methods 
which can be used in this case. Using MLE, the likelihood 
function L(u | a, b, c) can be expressed as:

L P Q
i

n

i
u

i
ui iu a,b,c| ,( ) =

=

−∏
1

1     (2)

where Pi is the probability function which gives the 
probability that a player answers correctly for item i 
and Qi = 1 – Pi .

Table 5 Input parameters

Input parameter name Details

showAnswerCorrect Option to show if previous answer was 
correct

showCorrectAnswer Option to show correct solution after 
incorrect answer

n The number of steps since the current 
guessed symbol

duration Duration of the game in ms

showDuration How long disks can be seen in ms

maxStepNumber Number of total rounds

paletteId Determines the symbol set

maxSymbol Size of the symbol set

availableSymbol The number of symbols from which the 
player has to identify the correct one

Table 6 Output parameters

Output parameter name Details

correctAnswers Number of correctly solved rounds

averageTime Average round time

correctRation Percentage of correctly solved rounds

attemptNumber Number of total attempts



Gazdi et al.
Period. Polytech. Elec. Eng. Comp. Sci., 62(3), pp. 90–105, 2018 |99

As it is standard when using MLE, the logarithm of the 
likelihood function can be used for maximization since 
it will take its maximum at the same point as the likeli-
hood function. Due to the nature of the function, numer-
ical procedures are to be used for this task, such as the 
Newton-Raphson procedure.

The method described above simplifies the estimation 
of item parameters. As opposed to estimating subject and 
item parameters simultaneously, in this case, the likeli-
hood function only depends on the item parameters.

5.2 Extending IRT models with mental effort
5.2.1 Extending the model
Current IRT models do not take the mental effort of subjects 
into account when estimating the probability of solving a 
given item correctly. In this section, we propose a modifi-
cation of simple IRT models which uses an extra parameter 
for subjects. This parameter, denoted with δ, describes the 
mental effort put by the given subject when solving the item.

When we add this extra parameter, the modified item 
response function for 3PL becomes the following:

p c c
e a b

θ δ
δ

θ
, .( ) = +

−

+ − −( )
1

    (3)

This is the same formula as which is used for the four-pa-
rameter logistic model (4PL), but in this case δ is considered 
to be a parameter of the subject rather than an item parame-
ter. This means that the value of the parameter δ influences 
the upper asymptote of the ICC (which in turn means it can-
not be greater than 1). Thus, a transformation of the value 
describing the mental effort of a subject can be used when 
we substitute in the formula above. Intuitively, this means 
that if subjects are in a bad mental state (fatigued, etc.), they 
will solve items correctly with lower probability.

When estimating these modified IRT models, the pro-
cess could get difficult because the model is no longer 
unidimensional: the subjects now have multiple parame-
ter values and the new parameter for a subject also varies 
from task to task. Because of this, we assume that the δ 
parameter is averaged out when a given subject solves a 
large number of items. We also assume that the value of 
this parameter does not vary considerably when the same 
subject solves different tasks and the average value is also 
more or less the same for different subjects. This can be 
guaranteed if we choose the function which transforms 
the mental effort value into the δ value appropriately. Due 
to these assumptions, we substitute δ with a constant value 
when estimating the item parameters of these models.

5.2.2 Validating the extended model
In order to check the validity of the IRT model extended 
with the mental effort parameter, we used simulation and 
took measurements of the performance and physiological 
signals (EEG, ECG) of subjects while playing a game con-
sisting of IRT test items. The simulation was needed to 
estimate the number of subjects needed for the measure-
ment, as well as to validate the convergence of the model.

For the measurements, we used the cognitive game 
named Counting which is introduced in Section 4. This 
game is available in both web and mobile environments, 
and can be used to measure mathematical-logical abil-
ity. It contains simple arithmetic calculations: addition 
and subtraction, the first operand of the operation always 
being the result of the previous one. Sometimes, abstract 
shapes take the place of numbers. In this case, the values 
of such shapes are always given to the player first, then 
they have to recall the values several steps later. If the 
player gives a wrong answer to a question, the next ques-
tion will "restart": both operands will be given once again 
with the values of shapes reset. The operands and results 
of the arithmetic operations are always nonnegative inte-
gers selected from a pre-determined, fixed interval (e.g. 0 
to 99). Players have to solve the tasks within a given time 
limit, without using any form of help (calculator, sheets of 
paper, etc.). The aim is to maximize the number of calcu-
lations solved while minimizing the number of mistakes.

The game described above corresponds to a test using the 
extended IRT model which includes mental effort. The abil-
ity measured corresponds to the mathematical-logical ability 
of the subject, while the mental effort can be calculated from 
the signals provided by the sensors described in Section 2.1. 
Each test item corresponds to an arithmetic operation (addi-
tion or subtraction). To simplify, we take multiple assump-
tions. First, each test item is assumed to have an unknown 
but equal difficulty (b) parameter, which holds only approx-
imately: it is possible that an operation with two particu-
lar operands is more difficult than another operation with 
different operands. Similar to the 2PL model, the discrim-
ination (a) parameter of each item is assumed to be 1. The 
guessing (c) parameter is approximated from the reciprocal 
of the number of possible answers which can be calculated 
by adding 1 to the length of the interval the result is taken 
from. The length of this interval is known to the player.

These simplifications have multiple reasons: first, it is 
often advisable to solve a relaxed problem first, where the 
original problem is replaced by an approximation which 
is easier to solve. Moreover, in order to estimate item 
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parameters, the algorithms described in Section 2.2.2 
need data from hundreds of subjects which was not avail-
able for the game we used.

The mapping described above is summarized in Table 7.

5.2.3 Simulating the extended model
To analyze the model before measurement, we created a 
simple simulation algorithm implemented in Python. We 
examined the amount of measurements needed to achieve 
results with relatively little noise and the effect of the fine 
tuning of the parameters on the model. The simulator uses 
the modified, bivariate item response function described 
in Section 5.2.1.

The simulator also takes multiple assumptions. First 
and foremost, the simulated subjects give correct answers 
with the exact probability described in the IRT model. 
Their ability parameter is a random, normally distributed 
value, which corresponds to reality quite well. The men-
tal effort of simulated subjects is characterized using the 
δ parameter which can be an arbitrary function of elapsed 
time. To simplify things, we used a decreasing linear 
function, which means that the probability of the correct 
answer is greater in the beginning than at the end. When 
simulating an answer, the time needed is taken from an 
exponential distribution for which the λ parameter is 
equal for each subject which means each subject will have 
the same average response time: the reciprocal of λ. All 
item parameters (difficulty, discrimination, guessing) are 
the same for each simulated item.

Next, we describe some simulation passes with the 
same fixed parameter values. The number of simulated 
subjects is increased tenfold for each pass from 1 to 1000 
which means there are four passes with 1, 10, 100 and 
1000 subjects, respectively. The parameter values are 
given in Table 8.

In each simulation pass, we looked at the averages 
of the data for the simulated subjects. For each pass, we 
examined the number of total and correctly solved test 
items and the percentage of correct answers summed over 
a moving, 3-minute period.

When simulating only one subject, the results are very 
noisy, but a decreasing trend for the performance is vis-
ible. Increasing the number of subjects and taking the 
average of data for each subject, the graphs are smoothen-
ing gradually, revealing the linear decrease we used, as 
seen in Fig. 9 and Fig. 10.

Fig. 9 Averages of answer count and correct answer count for different 
numbers of simulated subjects summed over a 3-minute moving period

Table 8 Example of parameter values for simulation

subject ability normal distribution, μ = 0, σ = 1

subject δ decreasing from 0.95 to 0.75

subject response time exponential distribution, λ =1 / 3

item difficulty –3

item discrimination 1

item guessing 1 / 100

simulated timespan 40 minutes

Table 7 Mapping the Counting game to an extended IRT model

ability mathematical-logical

mental effort calculated from EEG and ECG

test items arithmetic operations

difficulty equal

discrimination equal (1)

guessing 1 / (length of interval + 1)
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The simulation results show the convergence of the 
model, which means the shape of the function accord-
ing to the performance varies over time becomes gradu-
ally more clearly visible when the number of subjects is 
increased. The results also show that we should be able to 
obtain reasonably smooth data with the measurement of 
approximately 100 subjects.

5.2.4 Measurement of the extended model
11 adults (10 males, 1 female) aged 20 to 27 participated 
in the measurements. Every participant reported healthy 
with no diagnosed cardiovascular and neurological dis-
orders. Each participant was asked not to take any stim-
ulants (caffeine, cigarettes, alcohol, drugs, etc.) in the 
8 hours preceding the measurement. Each measurement 
began with a two-minute relaxation phase.

We conducted the measurements in two different arrange-
ments. Both arrangements used the cognitive game Counting 
as the basis of the extended IRT model, as described in 
Section 5.2.2. Furthermore, the input parameters of the gen-
erated questions were the same for both arrangements: the 
minimum and maximum accepted values for each operation 
were 0 and 99, respectively, the maximum number of sym-
bols to remember at a time was 2, and the probability of a 
symbol appearing in a question was 25 %.

In the first arrangement, the measurement consisted 
of 40 1 minute phases with short breaks in between. In 
each phase, we measured the number of total and correct 
answers and the percentage of correct answers (perfor-
mance). To measure mental effort, NeuroSky MindWave, a 
one-channel EEG headset was used. This device allowed 
us to measure two performance metrics calculated based 
on raw EEG signals: meditation and attention. Each value 
was outputted by the device as an integer ranging from 0 
to 100. We sampled the output every second, and then took 
the average of the values for each 1 minute phase. 5 out of 
11 subjects participated in this arrangement.

In the second arrangement, the measurement lasted 
40 minutes, uninterrupted. To measure cognitive per-
formance, we recorded every answer and summed the 
number of total and correct answers over a 5 minute 

Fig. 10 Averages of the performance for different numbers of simulated 
subjects taken over a 3-minute moving period

Fig. 11 Averages of the performance for different numbers of simulated 
subjects taken over a 3-minute moving period

Table 9 Input parameters for both arrangements

Minimum result 0

Maximum result 99

Number of symbols 2

Symbol probability 25 %
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moving period. We also calculated the percentage of cor-
rect answers over the same period (performance). Mental 
effort was measured using two devices in this arrange-
ment. Emotiv Insight, a five channel EEG headset provided 
six performance metrics calculated every second from raw 
EEG signals: interest, stress, focus, engagement, relax-
ation and excitement. Each of these values were outputted 
by the device as a floating point number between 0 and 1. 
ECG signals were also recorded using Zephyr HxM BT, a 
wireless heart rate monitor. From the raw heart rate val-
ues, we calculated heart rate variability using two meth-
ods: SDNN (standard deviation of peak-to-peak intervals) 
and Burg's algorithm. Each signal was averaged over the 
same 5 minute moving period as described above. The 
second arrangement was used on 6 out of 11 subjects.

When using the data from the first arrangement, the aver-
age of the values was taken from all measurements. The 
data shows an upward trend in the number of total answers 
with the number of correct answers remaining more or less 
constant, which means the percentage of correct answers 

decreases over time. The EEG performance metrics showed 
that meditation decreased over time with a slight increase 
in attention. It should be noted that both the answer count 
and EEG metrics smoothened when more measurements 

Fig. 12 Measured data in the first arrangement, taking 
the average of 5 subjects

Fig. 13 Measured data in the second arrangement, using a 5 minute 
moving period and taking the average of 6 subjects
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were averaged, which is another indication of convergence 
and that the EEG metrics can be used as the basis of the 
IRT model's δ parameter, however, more measurements are 
needed to determine their exact relationship.

When evaluating the results from the second arrange-
ment, we also took the average of values from all measure-
ments. The data shows the performance percentage first 
increases, then gradually decreases over time. Multiple 
explanations can be given for this phenomenon. For exam-
ple, when new participants first encounter the game, they 
need some time to familiarize themselves with the game 
mechanics. Thus, an approximately 10–15 minutes long 
learning phase should be incorporated before taking a 
measurement. An increasing trend can be seen on both the 
number of total and correct answers with the number of 
correct answers increasing more slowly, causing the per-
centage of correct answers to decrease. The faster increase 
in the beginning can be attributed to the player "getting the 
hang" of the game, as before. However, the answer count is 
still increasing at the end, perhaps indicating the growing 
impatience of the player: the idea of thinking less over a dif-
ficult question to increase the number of questions solved. 
The evaluation of the data provided by the EEG device 
shows that the interest value is averaging a constant value 
over time, with stress and relaxation slightly increasing. 
Excitement, engagement and focus show a more prominent 
decreasing trend, which can be attributed to getting bored 
with the repetitive task (in case of excitement) and having 
fatigue (in case of engagement and focus). The latter two 
also seem to be strongly correlated. The HRV values show 
a strong negative correlation with performance, lower val-
ues indicating better performance. The same statements 
can be made after evaluating the second arrangement: the 
metrics smoothened when taking averages of measure-
ment, which means the model converges, and that the met-
rics can be used for the calculation of δ, the exact nature of 
the relationship can again only be determined from more 
measurements. However, the three decreasing EEG values, 
especially focus, as well as the HRV value can all be strong 
indicators to the value of δ.

6 Conclusion
In this paper, we summarized our work regarding new and 
innovative methods used in education. We reviewed the main 
reasons why players need adaptive solutions when playing 
serious games. We presented a solution for adaptive gaming 
which utilizes a wide range of techniques from a variety of 
fields, including, but not limited to computer science, cogni-
tive psychology, psychometrics and mathematics.

We created a cognitive profile, which automatically 
measures and stores information about the most import-
ant cognitive abilities of the user. Both mental effort data 
and intelligence measurements are available for analysis 
as part of the profile. The numbers describing abilities are 
used as an input parameter for the IRT model.

We also discussed the fundamentals of IRT models, 
including the methods which can be used to estimate these 
models. Additionally, we described a new way to esti-
mate item parameters in IRT models in the case where the 
parameters of subjects are already known. We proposed an 
extension of the three parameter IRT model which is able 
to take mental state into account. We validated our new 
model using simulation and by conducting measurements 
using commercially available EEG and ECG devices. Both 
methods showed the convergence of the model.

In this paper, we showed that we are capable to infer the 
mental state from physiological data. With the use of clas-
sification algorithms, we can reach up to 97 % accuracy, 
when classifying data vectors to different mental states. 
With the use of this information, which has key role in 
the performance of the user during serious games, we can 
create an IRT model, which takes into account the current 
physiological state of the user as the fourth parameter.

As a combined result, a multifaceted and extensible sys-
tem was created, which can also be a starting point and 
tool for future researches.
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