
Cite this article as: Somogyi, F. A., Asztalos, M. "A Survey on Text-based Modeling in Model Evolution and Management", Periodica Polytechnica Electrical
Engineering and Computer Science, 63(1), pp. 51–65, 2019. https://doi.org/10.3311/PPee.12305

https://doi.org/10.3311/PPee.12305
Creative Commons Attribution b |51

Periodica Polytechnica Electrical Engineering and Computer Science, 63(1), pp. 51–65, 2019

A Survey on Text-based Modeling in Model Evolution and
Management

Ferenc A. Somogyi1*, Mark Asztalos1

1	Department of Automation and Applied Informatics, Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics, H-1117 Budapest, Magyar Tudósok krt. 2., Hungary

*	Corresponding author, e-mail: Somogyi.Ferenc@aut.bme.hu

Received: 05 April 2018, Accepted: 02 December 2018, Published online: 13 February 2019

Abstract

Model-driven software engineering methodologies like model-driven engineering aim to improve the productivity of software

development by using graph-based models as the main artifacts during development, and generating the source code from these

models. The models are usually displayed and edited using a graphical notation. However, they can also be described using a textual

notation. This has some advantages and disadvantages compared to the graphical approach. For example, while editing the model,

we can better focus on the details instead of a broad overview. Similarly to source code, models evolve rapidly during development.

Handling and managing the evolution of models is an important task in model-driven methodologies and is an active research area

today. However, there exist few research on text-based modeling approaches, compared to graph-based ones. This paper introduces

the text-based modeling research field based on existing literature, and presents the state-of-the-art of the field related to model

evolution and management. Our goal is to identify challenges and directions for future research in this field. The main topics covered

are model differencing and merging, and the synchronization of the textual and graphical notations.

Keywords

review, survey, model-driven engineering, model-driven development, model-based engineering, domain-specific modeling, model

evolution, model management, text-based modeling

1 Introduction
In this section, we briefly introduce text-based modeling,
along with the main artifacts and processes involved in
it. We also introduce some research fields related to text-
based modeling, and summarize the goals and structure
of this paper.

1.1 Introduction to text-based modeling
Model-driven software engineering methodologies [1, 2]
like model-driven engineering (MDE) [3] aim to improve
productivity by using graph-based models as the main
artifacts during development. The models typically have
a graph-like structure, containing nodes, edges, and other
conventional model elements. They describe the prob-
lem at a higher level of abstraction, and aim to represent
the target domain as accurately as possible. The mod-
els are usually defined in the context of a metamodel [4].
Metamodels are on a higher abstraction level than instance
models. They describe the elements that the instance mod-
els can contain. Metamodels also define constraints that

the instance models have to conform to. In this paper, we
are focusing on MDE, but text-based modeling can also
be applied to other model-driven methodologies that use
graph-based models as the main artifacts.

The models can be manipulated in different ways, most
often by using model transformations [5, 6]. There are
various existing proposals with industrial applications,
like VIATRA [7, 8] or ATL [9]. In most cases (with some
exceptions, e.g. simulating the model), the goal is to gen-
erate a large percent of the source code from the models.
Thus, MDE aims to improve traditional software devel-
opment by requiring less effort and less attention to code
details during the implementation of a software or a sys-
tem. It aims to improve maintainability by using models
that describe the problem at a higher level of abstraction.
The automatic code generation also reduces the number of
code defects during the development [1, 2, 10].

Displaying and editing the models in MDE is often per-
formed by using a graphical (visual) notation, also known as

https://doi.org/10.3311/PPee.12305
https://doi.org/10.3311/PPee.12305
mailto:Somogyi.Ferenc@aut.bme.hu

52|Somogyi and Asztalos
Period. Polytech. Elec. Eng. Comp. Sci., 63(1), pp. 51–65, 2019

the concrete syntax [1, 2] of the model. However, using a tex-
tual notation for displaying and editing the models also has
some advantages. What we consider the main advantages of
the graphical and textual notations are illustrated in Table 1.
The work by Grönniger et al. [11] was one of the earliest
works on text-based modeling, and it details some of these
advantages. Outside of the context of modeling, the assumed
superiority of graphical notations over textual notations was
questioned by many researchers over time [12-14].

Many argue that using the textual and graphical nota-
tions in conjunction is the ideal solution, as we can keep
the advantages of both [11, 15]. Although not directly
related to MDE, successful industrial applications of
using both a graphical and a textual notation in UI devel-
opment also support this statement (e.g. WPF [16], Qt [17]
and JavaFX [18]). However, using both notations together
raises important questions regarding model evolution and
management, most notably, the synchronization of the dif-
ferent notations. It is worth mentioning that while there
are some approaches that embed textual information into
the graphical notation [19], our focus is on using the tex-
tual notation as a stand-alone notation.

1.2 Processes and artifacts in text-based modeling
Using the textual notation for displaying and editing the
models in practice is not as prevalent as using the graph-
ical notation. The textual notation is often used in defin-
ing model constraints (e.g. OCL [20]), offline storage
and model serialization (e.g. XMI [21]), or in the case of
behavioral models. In this subsection, we introduce our
definition of text-based modeling. We focus on the case
where the model itself is described and edited in a textual
form via a formal language [22]. The text is processed by
the parser of this language, based on the grammar. The
result of the parsing process is a parse tree or an abstract
syntax tree (AST [23]). The parsing process can be con-
sidered a text-to-model (T2M) transformation. In prac-
tice, the parser is usually generated from the grammar by
a parser generator, like ANTLR [24, 25], Bison [26], or
Yacc [27, 28]. The inverse of the T2M transformation is
the model-to-text (M2T) transformation [29, 30]. During
this process, we generate the textual notation from the
model. In this paper, we refer to the approach described in
this paragraph as text-based modeling.

Fig. 1 contains an overview of the most common artifacts
and processes used in text-based modeling. On Fig. 1, the
model is the main artifact. The generated artifacts repre-
sent the automatically generated source code. Updating the

model from the generated artifacts is not a common practice
in MDE, as it is a difficult task. This is usually referred to
as round-trip engineering [31]. The model and the graphi-
cal notation are usually in a two-way association relation-
ship, which means that they update each other when one of
them changes. In practice, this is usually done with the aid
of a view engine (like in VMTS [32-34], a visual and tex-
tual modeling framework), or another similar construct. We
choose to omit this concept here, as the details of this process
are not relevant to text-based modeling. The textual nota-
tion is processed by a parser, parsed into an AST, then, the
model is updated based on this AST. This is the T2M trans-
formation. Generating the textual notation from the model
is the M2T transformation. The M2T transformation can be
performed by directly generating the text, or by building an
AST first, and then generating the text from the AST. It is
worth noting that the relationship between the model and the
generated artifacts, and between the model and the graphical
notation are not exclusive to text-based modeling.

1.3 Research fields related to text-based modeling
We believe that the following research fields are the most
important that are closely related to text-based modeling,
and model evolution and management:

•	 Synchronization. Based on the overview in Fig.
1, we define two distinct synchronization-related
challenges that are relevant to text-based modeling.
It is worth mentioning that there are some similar-
ities between the synchronization between the tex-
tual notation and the model, and the synchronization

Table 1 Graphical and textual notations in domain-specific modeling

Graphical notation Textual notation

Broad overview Detailed view

Good readability Good writability

Domain expert preference Developer preference

Simulation support Scalability (~model size)

Fig. 1 Common processes and artifacts in text-based modeling

Somogyi and Asztalos
Period. Polytech. Elec. Eng. Comp. Sci., 63(1), pp. 51–65, 2019|53

between the generated artifacts (source code) and the
model. Namely, both the textual notation and the gen-
erated code are in a textual form. Thus, results in this
field can possibly be applied to the field of incremen-
tal code generation as well. We examine the follow-
ing synchronization problems in detail in Section 3:
•	 	Synchronizing the graphical and textual notations

so that they are always consistent with each other.
•	 Synchronizing the textual notation and the model,

after the model was edited via another approach
(e.g. direct edit, editing via graphical notation).

•	 Model differencing and merging (MDM).
Another issue that is relevant to model evolution
and management is the differencing and merging
of the graph-based models. This is different from
source code differencing and merging, as our main
artifacts are graph-based models instead of text-
based source code. The most important application
of MDM is model-based version control systems.
We examine existing MDM approaches, and discuss
the relevance and role of text-based modeling in this
research field in Section 2.

•	 Language workbench development. Language work-
benches – a term popularized by Martin Fowler [35]
– are software development tools designed to build
software using multiple, integrated domain-specific
languages [36-38]. Most language workbenches are
designed with the single goal of supporting language
oriented programming [39]. Some tools, however, are
more related to MDE, as the language they provide can
be mapped to models. For example, Xtext [40, 41] lan-
guages are mapped to EMF [42, 43] models, or Fujaba
[44, 45] maps Java code to UML [46] models. Some
of these tools are closely related to text-based model-
ing, since they share the same scanner-parser approach
[47]. Therefore, some challenges related to language
workbenches are also related to text-based modeling.
These challenges deal with the creation and evolution
of domain-specific languages. The work published by
the Language Workbench Challenge (LWC) commu-
nity summarizes the open questions and challenges
related to language workbench development [48, 49].
In Section 4, we further discuss this topic.

1.4 Goals and structure of the paper
This paper introduces the text-based modeling research
field related to model evolution and management, and pres-
ents the state-of-the-art in this field. The main research

topics covered are MDM approaches and synchronization.
As models evolve, version control systems can be used to
keep track of different versions of the models. Differencing
and merging is an essential task in version control sys-
tems, and there exist little research on text-based MDM
algorithms. During model evolution, it is also important
to keep the different notations of the model synchronized
with each other. The goal of this paper is to describe the
text-based modeling research field regarding model evolu-
tion and management, and to identify challenges and open
questions in this field. Another goal of the paper is to pres-
ent our previous work in this research field, along with our
research plans for the future.

The paper is structured as follows. In Section 2, we
examine graph-based and text-based MDM approaches
and their categorization, and identify directions for
research in this field. Section 3 deals with the problem of
synchronization in text-based modeling, where we iden-
tify some open questions related to synchronization. In
Section 4, we discuss the main challenges in language
workbench development. We present our own previous
work in this research field in Section 5, and outline our
main research plans for the future. Finally, Section 6 con-
cludes the paper, highlighting our main findings.

2 Model differencing and merging (MDM)
In this section, we first give a brief introduction to MDM,
and reason why it is needed. Afterwards, we outline the
main motivations behind text-based MDM, and how it is
different from graph-based MDM. Finally, we review the
state of graph-based and text-based MDM algorithms in
existing research.

2.1 Introduction to MDM
In traditional, source code-based software development,
the code is in constant change. Similarly, models in MDE
also undergo a lot of changes during their lifecycle. This
process is called model evolution [50]. In order to handle
the constantly changing source code, we use version con-
trol systems (VCS [51]) – like Git [52] or Subversion [53]
– to manage the different versions of the same code. An
important task in version control systems is the differenc-
ing and merging of different versions of the same code.

The concept of version control can also be applied to
model-based methodologies [54, 55]. Using version con-
trol systems greatly improves the efficiency of team-
work in software development. However, differencing
and merging text-based source code is different than

54|Somogyi and Asztalos
Period. Polytech. Elec. Eng. Comp. Sci., 63(1), pp. 51–65, 2019

differencing and merging graph-based models. In source
code differencing, it is difficult to use the semantics of
the code during the process, as the code is usually split
into multiple files. Even if the code is physically located in
one file, semantically analyzing source code is not a triv-
ial task [56]. Thus, it is difficult to judge that the code is
semantically correct. By building an AST from the code,
we can use some of the semantics of the code, but in most
cases, the user of the VCS is still restricted to raw text dif-
ferencing and merging [57]. During model differencing,
the structure of the model holds most of the information.
Differencing and merging graph-based models requires
a different approach than source code differencing and
merging. Although we can apply raw text differencing to
the serialized form of the model (like XMI [21]), it is dif-
ficult to locate the precise differences between the two.
In text-based modeling, there is a third option: differenc-
ing and merging the textual notations of the models. Text-
based MDM shares similarities with both raw text-based
and graph-based approaches. The characteristics of the
main MDM problems are summarized in Fig. 2.

Text-based MDM can be considered a relatively new
research field, as there are few existing algorithms. Text-
based MDM approaches use text-based artifacts – similar
to source code differencing – in addition to graph-based
artifacts, which are usually the trees (AST) parsed from
the texts. By using the AST, more semantic information
can be extracted as opposed to using raw text differencing.
This, of course, requires using the parser in order to get
the tracing between the AST and the model. Since most
modeling environments do not support saving incorrect
models, it is also reasonable to demand that the textual
notations – and the trees parsed from them – are syntacti-
cally and semantically correct. This means that the seman-
tic information we extract from the trees is always correct.

In addition to being used in version control, MDM
approaches can also be applied to other areas as well, like
model transformation testing [58, 59]. This process con-
sists of checking the result of the model transformation by
using model differencing to compare it with the expected
result. The expected result can then be constructed manu-
ally or automatically. It is also worth mentioning that there
is research focusing on semantic model differencing [60].
These approaches are not solely dependent on the syntac-
tic structure of the models, as they also use semantic diff
witnesses to determine the differences.

2.2 Motivations behind text-based MDM
Although text-based MDM algorithms share similarities
with other approaches, they also have some differences.
We have summarized the main differences when using
text-based MDM, compared to raw text differencing and
merging, and graph-based MDM methods. These differ-
ences also serve as motivation behind researching text-
based MDM. They are as follows:

•	 Advantages over raw text differencing. If we use
a traditional text differencing and merging tool
(e. g. KDiff [57]), we cannot recognize the differ-
ences between the models on a semantic level. We
can recognize them on the level of the raw text, but
not on the level of the model elements. This can
result in confusing difference reports. By using a
text-based MDM algorithm, and using the abstract
syntax trees during the process, we can associate
the differences with semantic meaning, for exam-
ple, when two nodes are in a different order. Thus,
using a text-based MDM algorithm is usually better
than using raw text differencing and merging. This
is illustrated in Fig. 3 and Fig. 4. In the example, we
have the textual representations of two library meta-
models. While raw differencing highlights the dif-
ferences in the text, it is difficult to assign semantics
to them. For example, it is difficult to notice that the
Title attribute of the BookMeta node has changed.
By using a text-based MDM algorithm (and using
the AST parsed from the text), we can have a more
accurate result.

•	 Serialization support. We can use the textual rep-
resentations instead of a standard XML-like format
like XMI [21] to serialize our models. This results
in better readability of the text, especially during
version control. Using a text-based MDM algorithm
further supports this process.Fig. 2 The main diff / merge problems related to text-based modeling

Somogyi and Asztalos
Period. Polytech. Elec. Eng. Comp. Sci., 63(1), pp. 51–65, 2019|55

•	 Synchronization support. Text-based MDM algo-
rithms can support synchronization by recogniz-
ing changes that occurred between two editing ses-
sions. The changes can occur in different ways, e.g.
directly editing the model, or editing it via the graph-
ical notation. A text-based MDM algorithm can rec-
ognize differences between the newly generated rep-
resentation, and the previously edited one. We are
discussing synchronization in detail in Section 3.

•	 Preserving non-semantic information. It is bene-
ficial to preserve the non-semantic information (e.g.
comments, white space) in the textual representations
between editing sessions. Text-based MDM methods

support this, as we can use them to differentiate
between semantic and non-semantic differences.

•	 Fallback plan. If for some reason, a text-based MDM
algorithm fails to discover differences accurately, we
can fall back to raw text differencing tools, like KDiff
[57]. Some reasons for the failure are user error, con-
figuration error, or some other unforeseen circum-
stances. By falling back to raw text differencing, the
differences will not be accurately recognized, but the
user is always informed of them. In our opinion, this
is a very important advantage, as this makes text-
based approaches less error-prone than graph-based
approaches. It is more difficult to develop a fallback
plan for graph-based approaches, as there is no easy
way to compare two graph-based models based on a
specific technology. Therefore, reaching 100 % accu-
racy is usually a difficult task. By using this fall-
back plan, we can reliably discover every difference,
although this comes at the cost of comprehensibility
and ease of use, as the differences would have to be
interpreted and merged manually by the user.

2.3 Survey of existing approaches
The works by Alanen and Porres [61, 62] are considered by
many to be the start of the MDM research field. They were
among the first to propose a solution for the differencing
and merging of graph-based models. The authors defined
the difference and union (and thus, the merge) of two mod-
els based on MOF [63, 64] metamodels. Their approach uses
operations (e.g. add, delete) to represent changes between
two versions of a model. Future research directions men-
tioned in the paper include the need for more metamod-
el-specific solutions, and support for automatic merge con-
flict resolution. In addition, since the algorithm presented
by the authors is dependent on MOF, at that time, there was
also a need for more metamodel-independent approaches.

Graph-based model differencing and merging can be
approached in numerous ways. The work presented in the
paper by Kolovos et al. [65] focuses on the differencing
in the MDM process. The first phase of differencing in
MDM is matching the model elements in the two models
based on some criteria. Their categorization of matching
approaches covers the different matching strategies during
the differencing process in a general way. The authors split
model matching approaches into the following categories:

•	 Static identity-based matching. The matching is
done based on static identifiers that must be unique
for every model element. This approach can only be

Fig. 3 Raw text differencing textual notations

Fig. 4 Differencing textual notations using their AST

56|Somogyi and Asztalos
Period. Polytech. Elec. Eng. Comp. Sci., 63(1), pp. 51–65, 2019

used in simple cases, and the identifiers have to be
maintained at all times. However, if it can be used, it
is accurate and easy to implement.

•	 Signature-based matching. Similarly to static iden-
tity-based matching, these approaches also compare
identifiers and give a true / false answer. However,
the identifiers in this case are dynamic, as they can
be a combination of the features of the model ele-
ments. This must be configured by a user-defined
function, which increases the effort of implementing
these approaches. The function has to be configured
properly in order to achieve high accuracy.

•	 Similarity-based matching. The result of these
matching approaches is not a true / false value, but
a number that represents the similarity between the
two model elements. If the number is above a cer-
tain threshold, the elements are considered to be
matching. The similarity metric is calculated from
the features of the model elements. The different
features are weighted differently. The challenge in
implementing this approach is finding the correct
weight functions for the method in order to achieve
high accuracy. This approach has the advantage of
being generic (modeling language-independent), and
if configured properly, it can achieve better accuracy
than signature-based methods.

•	 Custom language-specific matching algorithms.
These approaches are tailored to a specific modeling
language in order to use the precise semantics of that
language. Thus, they are very accurate, but are not
general, and are usually difficult to implement.

Graph-based model differencing approaches usually fall
into one (or in some cases, more) of these categories. We note
that the differences between the different approaches can be
measured in a trade-off between the following metrics:

•	 Accuracy. The percentage of correctly identified
differences between the two versions.

•	 Generality. The number of modeling languages that
the approach can be applied to.

•	 Effort. The time and effort required to implement
the approach.

•	 Performance. The runtime performance of the
algorithm.

Kolovos et al. [65] mention the difficulty of objectively
and formally comparing the different approaches, which
tends to be a recurring problem in this research field.

Altmanninger et al. [66] focused on the merging in the
MDM process, and raised open questions that are still rel-
evant today. The paper examines three-way (model) merg-
ing methods [67, 68]. The authors formalize the MDM
process by splitting it into three distinct phases:

•	 Change detection. In this phase, the changes
between the ancestor model V0 and the two modified
versions V0’ and V0’’ are calculated. The detection
can be done in a state-based (only the final states
are considered) or in an operation-based (the model
editor tracks the changes as operations) way [69, 70].
The authors differentiate between generic atomic
(model independent operations like add), specific
atomic (model dependent operations like rename),
and specific composite (model dependent, complex
operations, like refactor) changes. Detecting more
complex changes improve the quality of the merged
model.

•	 Conflict detection. Based on the result of the change
detection phase, conflicting changes are identified.
The authors differentiate between two conflict types:
equivalent and contradicting conflicts. Equivalent
conflicts (e.g. two distinct add operations) can be
merged automatically, while contradicting conflicts
(e.g. update and delete on the same model element)
cannot be merged automatically in most cases.

•	 Inconsistency detection. This phase focuses on the
inconsistencies between the merged model (after the
conflict detection) and the metamodel. The authors
categorize these inconsistencies into syntactic and
semantic problems. Syntactic problems (e.g. cyclic
inheritance) can be automatically detected based on
the metamodel, while semantic problems (e.g. same
concept implemented twice in the merged mode) are
very difficult to detect automatically.

After evaluating four versioning systems (Subversion,
IBM RSA [71], EMF Compare [72] and Unicase [73]), the
authors defined key areas, where future research can be
done. Most of these are still relevant today. They are as
follows:

•	 Benchmark availability. There is a lack of detailed
(formal) requirements and well-defined, expected
run-time behavior of model versioning systems. In
addition, there are no test cases for testing different
capabilities of these systems. There have been some
proposals since then, but there is still research to be
done in this area [74].

Somogyi and Asztalos
Period. Polytech. Elec. Eng. Comp. Sci., 63(1), pp. 51–65, 2019|57

•	 Unreliable conflict detection. There amount of
false positives and false negatives during conflict
detection in existing approaches is too high. There
is a need for reliable (accurate) conflict detection
approaches, especially in the case of model-indepen-
dent (general) solutions.

•	 Confusing difference report. Differences are dis-
played differently in every tool. Moreover, they are
usually not displayed in the concrete syntax of the
model, but rather in an abstract tree or list represen-
tation. This results in worse readability.

•	 Single diagram support. Model-independent (gen-
eral) model version tools are needed. While there are
more general approaches now than before, they are
still not very prevalent in practice.

•	 Unreliable conflict resolution. Automatic conflict
resolution support for the existing tools is low. This
issue still exists today, albeit to a lower degree.

Text-based MDM can be considered a young research
field. We have mentioned that it shares similarities with
source code differencing and merging, and graph-based
MDM approaches. Since there is little existing research in
this area, there is little information on what we can gain
(e.g. performance, accuracy and generality) by using text-
based approaches over graph-based ones. While we have
outlined the main differences compared to graph-based
MDM approaches in this section, there is still a need for
more studies on this subject.

Van Rozen and van der Storm proposed TMDIFF [75,
76], a differencing approach for textual modeling lan-
guages. In the problem described by the authors, the mod-
els are created from the textual languages. Instead of the
M2T transformation, origin tracking (a form of traceability
[77]) is used to map the model to the text. Textual artifacts
are the main artifacts instead of the model. Therefore, this
problem is somewhat different from the text-based model-
ing we defined in this paper.

Finally, we would like to note that there are many exist-
ing approaches and solutions in MDM for different mod-
eling languages. There are proposals for various UML
diagrams [78-80], specific modeling environments [72],
or ones introducing new approaches, like design-space
exploration [81]. According to our experience, the number
of graph-based approaches heavily outweighs the number
of text-based approaches. Our future goal is to conduct a
systematic literature review to prove this conjecture.

2.4 Open questions
Based on the ideas presented in this section, we identify the
following research directions related to text-based MDM:

•	 Objective comparison and benchmarking. A
recurrent problem in research related to MDM is
objectively comparing and classifying different algo-
rithms. Objective comparison also calls for formal-
ization. Moreover, there is a lack of benchmarking
to use. This topic is not strictly related to text-based
modeling, as these problems exist for graph-based
MDM approaches as well. A difficult task is decid-
ing what metrics we can apply to achieve an objective
comparison. In addition, lots of MDM approaches
are designed for one modeling language, making an
objective, technology-independent classification a
challenging task.

•	 Adapting existing research. A direction that is
specific to text-based modeling is the adaptation of
existing research for text-based MDM approaches.
The main question is if key concepts and methods
from research on graph-based MDM can be applied
to research on text-based MDM. Since an AST can
also be considered a graph, some of these concepts
could – in theory – be applied. For example, applying
similarity-based comparison on the trees parsed from
the textual notations might make the algorithm more
general, at the cost of reduced accuracy. Text-based
MDM is still the ideal choice for text-based model-
ing, as most advantages it brings that we discussed
before (e.g. preserving the non-semantic information
in the text) during the differencing process greatly
benefits text-based modeling. We consider a thor-
ough examination of the pros and cons of applying
these concepts a possible research direction.

•	 General text-based MDM algorithms. An import-
ant question is if a general text-based MDM algo-
rithm can be developed. Developing a general text-
based MDM algorithm is difficult, as we also have
to tailor our approach to handle as many textual
languages as possible. It can also be worthwhile to
examine how the trade-offs are comparable to gen-
eral graph-based MDM methods.

•	 Evolution of the language. Models evolving during
development are one of the main motivations for
research behind MDM. However, in text-based
modeling, the language that describes the textual
notation can also change over time. An interesting
research direction would be to develop an algorithm

58|Somogyi and Asztalos
Period. Polytech. Elec. Eng. Comp. Sci., 63(1), pp. 51–65, 2019

that adapts to these changes as much as possible. For
example, if the syntax of our language changes, we
want our algorithm to be compatible with the older
textual notations as well. However, the semantics
of the language can also change over time. Another
interesting question is if we can define metrics in
order to measure the flexibility that our algorithm
has in this regard.

These are the main directions that we consider to be
the most promising in this field. One of our main motiva-
tions behind researching text-based MDM is to examine
how they compare to graph-based MDM. Two of the main
research directions we listed above are closely related to
this problem:

1.	 objective comparison and classification is needed in
order to compare the algorithms, and

2.	 the adaptation of existing research might close the
gap between graph-based and text-based MDM
approaches.

3 Synchronization in text-based modeling
As models evolve, it is important to keep the different
notations of the model up-to-date, or synchronized with
each other. In this section, we propose two categories of
synchronization problems in text-based modeling. We
also examine existing solutions for synchronization, and
identify areas where future research can be done.

3.1 Categorization of synchronization
During the examination of the processes and artifacts in
text-based modeling in Section 1, we have identified two
forms of synchronization:

•	 Between the textual notation and the model. The
model and textual notation has to be updated when
one of them changes. This can be done by the M2T
and T2M transformations we discussed before. We
also have to decide whether we want to continuously
synchronize every change, or use a push-pull model
instead. In some cases, the overhead in performance
is not worth keeping the artifacts constantly synchro-
nized. It is worth mentioning that the graphical nota-
tion also needs to be synchronized with the model,
but the focus of our paper is on text-based modeling.

•	 Between the graphical and textual notations. When
the content of one of the notations changes, the other
one needs to be updated in order for the displayed
information to remain consistent. Fig. 1 shows that

the graphical and textual notations are usually inde-
pendent of each other. This means that the model
also has to be updated. Thus, this form of synchroni-
zation includes the previous one.

We would like to note that we mentioned incremental
code generation before, which can be considered the syn-
chronization process between the model and the generated
source code. If it is two-ways, it is usually called round-
trip engineering [31]. In this paper, we are not focusing
on incremental code generation, though the results in this
field could also be applied to the field of incremental code
generation as well.

In this paper, and in our research, synchronization
between the textual notation and the model is our focus, as
it is most relevant to text-based modeling. We propose the
(informal) definitions for two types of synchronization,
depending on when and how often do we need to synchro-
nize the textual notation and the model. They are illus-
trated in Fig. 5 and are as follows:

•	 Online synchronization. Changes that occur in the
model or the textual notation need to be immediately
reflected in the other. For example, when we are edit-
ing and updating the model using a textual editor.

•	 Offline synchronization. Changes that occurred
between the model and the textual notation over
an extended period of time have to be detected. For
example, when we are opening the textual notation
after the model changed through other means like
direct editing, or editing via the graphical notation.

Offline synchronization is similar to state-based dif-
ferencing [69, 70] in MDM. This means that we have to
detect an unknown amount of changes that occurred over
an unknown period of time. In online synchronization, we
know exactly what changes occurred and in what order.
It can be argued that complex operations in a textual edi-
tor (e.g. cutting and pasting a large chunk of text) counts

Fig. 5 Online and offline synchronization

Somogyi and Asztalos
Period. Polytech. Elec. Eng. Comp. Sci., 63(1), pp. 51–65, 2019|59

as offline synchronization. Thus, the line between the two
categories is not always clear.

3.2 Survey of existing approaches
Fairmichael and Kiniry [82] formalized the relation-
ship between the textual and graphical notations of the
Business Object Notation [83] modeling language. The
textual and graphical notations are often loosely con-
nected, or not connected at all, so formalizing the rela-
tionship between the two can be very helpful for future
research. The authors state that this is a research direction
where more research can be done. They also mention that
one of the main applications for their approach is in MDM.

There are many existing proposals for the online and
offline synchronization problems we defined [84-87]. In
this paper, we are examining two of them, to represent
each category.

Oskar van Rest et al. [88] proposed a solution for the
online synchronization of the graphical and textual nota-
tions. Their approach recovers from errors during syn-
chronization and preserves the layout of both notations.
It was implemented to synchronize textual editors gen-
erated by Spoofax [89], and graphical editors generated
by GMF [90]. They use model-to-tree transformations
instead of the model-to-text transformations that we dis-
cussed previously.

Angyal et al. [91, 92] proposed an approach for the
offline synchronization of the textual notation and the
model, and thus, the textual and graphical notations. They
implemented their prototype in the VMTS framework.
The textual notation and the parser are generated by a
metamodel-based approach. For every model element, the
template attribute that maps a textual representation to the
element has to be filled out. The synchronization is a three-
way merge process, with the common ancestor being the
stored textual notation. The differences are handled as edit
scripts, thus, this is an operation-based approach.

3.3 Open questions
As opposed to online synchronization, offline synchroni-
zation tends to be less accurate and more reliant on the
user. The reason for this is because offline synchroniza-
tion is closely related to MDM. Offline synchronization
and state-based model differencing are very similar, since
in both cases:

1.	 differencing and merging is needed, and
2.	 an unknown amount of changes occur over an

unknown period of time.

Thus, they share some problems that we discussed in
Section 2, of which what we consider the most important
are as follows:

•	 Automatic conflict resolution. It is not trivial to
automatically solve conflicts that occur during the
synchronization. This is mostly due to the inherent
differences between the different notations.

•	 General synchronization approaches. Similarly to
MDM, developing general algorithms for synchroni-
zation is a difficult task. Having such general algo-
rithms is beneficial, since we do not have to develop
a new algorithm for a new language.

•	 Feedback and user involvement. Similarly to ver-
sion control systems, the result of the automatic syn-
chronization is usually displayed for user supervision.
The form of display and the ease of user involvement
are areas where future research can be done.

4 Challenges in language workbench development
This section briefly reviews the state of language work-
benches, and their relevance to text-based modeling. We
also take a look at recent challenges in this research area.
We consider some of these problems important to text-
based modeling, as they deal with the editing and manage-
ment of the textual notation.

Language workbenches (LW) are tools that spe-
cialize in building software using multiple, integrated
domain-specific languages [35, 37]. The focus is on defin-
ing, processing and using these languages during software
development.

Language workbenches are usually sorted [49] into one
of the following categories:

•	 Graphical workbenches support languages that use
the graphical notation. Some examples are VMTS
[32-34], MetaEdit+ [93] and GME [94].

•	 Textual workbenches support textual languages. In
this case, the DSL is defined and processed by a for-
mal language. This is often referred to as the scanner /
parser approach. Textual language workbenches often
make use of advances in IDE and editor technology,
as editors are usually generated along with the parser.
Some examples are Xtext [40, 41] and Spoofax [89].

•	 Projectional workbenches move away from the scan-
ner / parser approach by using syntax-directed projec-
tional editors. Using these editors, the user can directly
edit the abstract syntax, and define the concrete syntax
separately. This is a more language-oriented approach,
and enables the mix of textual and non-textual

60|Somogyi and Asztalos
Period. Polytech. Elec. Eng. Comp. Sci., 63(1), pp. 51–65, 2019

notations. Some examples are JetBrains MPS [95] and
the Intentional Domain Workbench [96].

In text-based modeling, we often use formal languages
to describe and process the textual notation during the
M2T and T2M transformations. Due to the use of the
scanner / parser approach, textual language workbenches
have much in common with text-based modeling. It is
worth mentioning that some of these workbenches (like
Xtext) also map the language to a domain-specific model.
Therefore, advances in textual language workbenches –
and consequently, IDE and editor technologies – are also
beneficial to text-based modeling. Thus, we consider some
of the challenges and open questions in this field to be rel-
evant to text-based modeling.

The annual Language Workbench Challenge (LWC)
was launched in 2011 to allow researchers in this field to
compare their approaches [48]. The first four challenges
were issued to solve specific problems related to lan-
guage workbenches by implementing a different language
each year. They also proposed a feature model aimed to
describe the features a workbench can have. These fea-
tures are split into categories like notation, semantics, edi-
tor, validation, or composability.

In 2015, the LWC community defined benchmark prob-
lems for language workbenches and called for solutions
for these problems [49]. Briefly summarized, their catego-
rization is as follows:

•	 Notation. These problems address issues that are rel-
evant to the notation of languages. Some of the prob-
lems included here (but not limited to) are related to
metadata annotations, computed properties, optional
hiding. The most important problem related to text-
based modeling is the support for multiple notations.

•	 Evolution and reuse. These problems concern the
modular extension and the evolution of languages
over time. The evolution of the formal language is
a relevant problem in text-based modeling as well.
Moreover, keeping the new version as compatible as
possible with older textual notations can be useful
during the MDM process.

•	 Editing. These problems are related to the editor
of the language. Solving these problems advances
IDE and editor technology as well. Some examples
mentioned here are editing incomplete programs (or
the textual notation in the case of text-based mod-
eling), referencing missing items, restructuring, and
formatting preservations. Making the editor of the

textual notation as user-friendly as possible greatly
increases the ease of use of text-based modeling.

Out of the challenges mentioned by the LWC, we con-
sider the following to be the most relevant to text-based
modeling:

•	 Supporting multiple notations. By supporting the
graphical and textual notations as equivalent and
views of the model, synchronization issues can be
solved more easily. However, offline synchronization
would still remain an issue as we could still modify
the model directly through its persistent structure.

•	 Syntax migration. When the syntax of the language
changes (e.g. changing a keyword), we would like
our old textual notations to be as compatible as pos-
sible with the new syntax. This is related to one of
our open questions in Section 2.

•	 Structure migration. Similar to syntax migration,
but instead of the syntax, the underlying structure
of the AST is changed instead. The question is how
can existing textual notations be migrated to the new
representation and in what ways does this affect the
non-semantic information in the text.

•	 Editing problems. As we have discussed earlier,
solving problems related to the editor advances text-
based modeling. We believe the two most interesting
problems are formatting preservation and end-user
defined formatting. The former deals with refactor-
ing and quick-fixes; these should not alter the format-
ting of the textual notation. It is also something that
we strive for during offline synchronization and text-
based MDM. The latter specifies a need for format-
ters that the users can customize to their own needs.

5 Previous work and personal research plans
In this section, we present our own previous work in the
text-based modeling research field. After that, we briefly
present our research plans for the future, according to the
open questions discussed in this paper.

In previous work, we developed a text-based MDM
algorithm [97] that operates on the textual representations
of VMTS [32-34] models. The models are described by a
textual language called VMDL (Visual Model Definition
Language) that was also created by us. The synchroni-
zation between model and text is done in an offline way
(as described in Section 3), as they are synchronized
once the notation is saved. The mapping between model
and text is done by a formal language developed with

Somogyi and Asztalos
Period. Polytech. Elec. Eng. Comp. Sci., 63(1), pp. 51–65, 2019|61

ANTLR [24, 25]. We also formally verified the algorithm
based on certain aspects [98].

Currently, our algorithm works only with VMTS mod-
els, but can – in theory – support other modeling languages.
This is achieved by using the parser of the textual language
during the MDM process, namely, demanding certain
requirements from it. For example, when trying to match
two model elements with each other, we ask the parser if
they can be considered a match based on the AST. This is
considered to be a dynamic (signature-based) approach as
described by Kolovos et al. [65] and presented in Section 2.

Based on the research presented in this paper, we briefly
present our own research plans for the future:

•	 Systematic review. We plan to conduct a systematic
literature review (SLR) to further support the con-
clusions of this paper, especially regarding the ones
presented in Section 2.

•	 Comparing text-based and graph-based MDM.
Based on the reasoning presented in Section 2, our
goal is to provide a classification system that we can
use to compare the different MDM algorithms. We
aim to introduce a formal model that can be used as
a basis during the comparison.

•	 Develop a general text-based MDM method. We
aim to improve our text-based MDM algorithm to be
as general as possible. We also aim to examine the
trade-offs that we have to make, and compare it to
general graph-based MDM methods.

•	 Automatic conflict resolution. We intend to
improve our algorithm so that it can automatically
discover and resolve most conflicts that arise during
the MDM process. Achieving this greatly improves
the usability of an MDM algorithm, provided that
the automatic conflict detection and resolution are
proven to be correct at all times. Otherwise, the user
intervention effort can even be higher than without
automatic conflict resolution.

6 Conclusion
In this paper, we introduced the text-based modeling
research field, and presented the state-of-the-art related to
this field. We focused on two areas relevant to text-based
modeling: model differencing and merging (MDM), and
synchronization. We also discussed that challenges in
language workbench development can have some in text-
based modeling as well.

We discussed that text-based MDM is a relatively new
direction in the field of MDM. We showed how text-based
MDM is different from raw text differencing and merg-
ing, and from graph-based MDM. We outlined our main
motivations behind researching text-based MDM. We con-
cluded that the lack of objective comparison and bench-
marking are a recurring problem in this field, and identified
several directions where future research can be done.

In model evolution, keeping the textual and graphi-
cal notations and the model synchronized is an import-
ant task. We categorized synchronization problems into
two distinct categories: online and offline synchroniza-
tion. We concluded that offline synchronization is very
similar to state-based MDM, and thus, they share some
open questions as well.

We presented the state-of-the-art of, and identified the
main challenges in language workbench development,
based on the work of the Language Workbench Challenge
(LWC) community. Language workbenches are related
to text-based modelling, as the two fields have common
challenges that deal with the editing and management of
the textual notation.

Finally, we presented our previous work in this
research field and outlined our main plans for the future.
These plans are closely related to the open questions we
discussed earlier.

References
[1]	 Beydeda, S., Book, M., Gruhn, V. "Model-Driven Software

Development", 1st ed., Springer-Verlag, Berlin, Germany, 2005.
	 https://doi.org/10.1007/3-540-28554-7
[2]	 Kelly, S., Tolvanen, J.-P. "Domain-Specific Modeling: Enabling

Full Code Generation", 1st ed., Wiley-IEEE Computer Society
Press, Los Alamitos, USA, 2007.

	 https://doi.org/10.1002/9780470249260

[3]	 Schmidt, D. C. "Guest Editor’s Introduction: Model-Driven
Engineering", Computer, 39(2), pp. 25–31, 2006.

	 https://doi.org/10.1109/MC.2006.58
[4]	 Paige, R. F., Kolovos, D. S., Polack, F. A. C. "A tutorial on meta-

modelling for grammar researchers", Science of Computer
Programming, 96(4), pp. 396–416, 2014.

	 https://doi.org/10.1016/j.scico.2014.05.007

https://doi.org/10.1007/3-540-28554-7
https://doi.org/10.1002/9780470249260
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1016/j.scico.2014.05.007

62|Somogyi and Asztalos
Period. Polytech. Elec. Eng. Comp. Sci., 63(1), pp. 51–65, 2019

[5]	 Ehrig, H., Ehrig, K., Prange, U., Taentzer, G. "Fundamentals
of Algebraic Graph Transformation", 1st ed., Springer-Verlag,
Berlin, Germany, 2006.

	 https://doi.org/10.1007/3-540-31188-2
[6]	 Sendall, S., Kozaczynski, W. "Model transformation: The heart

and soul of model-driven software development"”, IEEE Software,
20(5), pp. 42–45, 2003.

	 https://doi.org/10.1109/MS.2003.1231150
[7]	 Bergmann, G., Dávid, I., Hegedüs, Á., Horváth, Á., Ráth, I.,

Ujhelyi, Z., Varró, D. "VIATRA 3: A Reactive Model
Transformation Platform", In: 8th International Conference on
Theory and Practice of Model Transformations, L’Aquila, Italy,
2015, pp. 101–110.

	 https://doi.org/10.1007/978-3-319-21155-8_8
[8]	 Eclipse Foundation, “VIATRA”, [online] Available at: http://www.

eclipse.org/viatra/ [Accessed: 03 April 2018]
[9]	 Jouault, F., Kurtev, I. "Transforming Models with ATL", In:

MoDELS 2005 International Workshops Doctoral Symposium,
Educators Symposium, Montego Bay, Jamaica, 2005, pp. 128–138.

	 https://doi.org/10.1007/11663430_14
[10]	 Selic, B. "The pragmatics of model-driven development", IEEE

Software, 20(5), pp. 19–25, 2003.
	 https://doi.org/10.1109/MS.2003.1231146
[11]	 Grönninger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.

"Textbased Modeling", presented at 4th International Workshop on
Software Language Engineering, Nashville, USA, Oct. 2007.

[12]	 Green, T. R. G., Petre, M., Bellamy, R. K. E. "Comprehensibility
of Visual and Textual Programs: A Test of Superlativism Against
the ‘Match-Mismatch’ Conjecture", In: Koenemann-Belliveau,
J., Moher, T. G., Robertson, S. P. (eds.) Proceedings of the
Fourth Annual Workshop on Empirical Studies of Programmers,
91(743), 1991, pp. 121–146. [online] Available at: https://www.
researchgate.net/publication/238987815_Comprehensibility_
of_visual_and_textual_ programs_A_test_of_superlat iv-
i sm _ aga i ns t _ the_%27match-m ismatch%27_conjec t u re
[Accessed: 03 April 2018]

[13]	 Petre, M. "Why looking isn’t always seeing: readership skills and
graphical programming", Communications of the ACM, 38(6),
pp. 33–44, 1995.

	 https://doi.org/10.1145/203241.203251
[14]	 Green, T. R. G., Petre, M. "When Visual Programs are Harder

to Read than Textual Programs", In: 6th European Conference on
Cognitive Ergonomics, Balatonfüred, Hungary, 1992, pp. 167–180.
[online] Available at: http://citeseerx.ist.psu.edu/viewdoc/summa-
ry?doi=10.1.1.57.1633 [Accessed: 03 April 2018]

[15]	 Pérez Andrés, F., de Lara, J., Guerra, E. "Domain Specific
Languages with Graphical and Textual Views", In: Third
International Symposium, Kassel, Germany, 2007, pp. 82–97.

	 https://doi.org/10.1007/978-3-540-89020-1_7
[16]	 Jones, A., Freeman, A. "Windows Presentation Foundation", In:

Visual C# 2010 Recipes, 1st ed., Apress, New York City, USA,
2010, pp. 789–904.

	 https://doi.org/10.1007/978-1-4302-2526-3_17
[17]	 The Qt Company "Qt", [online] Available at: https://www.qt.io/

[Accessed: 03 April 2018]

[18]	 Topley, K. "JavaFX Developer's Guide", 1st ed., Addison-Wesley,
Boston, USA, 2010.

[19]	 Scheidgen, M. "Textual Modelling Embedded into Graphical
Modelling", In: 4th European Conference on Model Driven
Architecture - Foundations and Applications, Berlin, Germany,
2008, pp. 153–168.

	 https://doi.org/10.1007/978-3-540-69100-6_11
[20]	 Warmer, J. B., Kleppe, A. G. "The Object Constraint Language:

Precise Modelling with UML", 1st ed., Addison-Wesley, Boston,
USA, 1998.

[21]	 Object Management Group (OMG), "About the XML
Metadata Interchange Specification Version 2.1.1", 2007.
[online] Available at: https://www.omg.org/spec/XMI/2.1.1/About-
XMI/ [Accessed: 03 April 2018]

[22]	 Moll, R. N., Arbib, M. A., Kfoury, A. J. "An Introduction to Formal
Language Theory", 1st ed., Springer-Verlag, New York, USA, 1988.
https://doi.org/10.1007/978-1-4613-9595-9

[23]	 Aho, A. V., Lam, M. S., Sethi, R., Ullman, J. D. "Compilers:
Principles, Techniques, and Tools", 2nd ed., Addison-Wesley,
Boston, USA, 2006.

[24]	 Parr, T. "The Definite ANTLR 4 Reference", 2nd. ed., Pragmatic
Bookshelf, Raleigh, USA, 2013.

[25]	 Parr, T. "ANTLR", 2014. [online] Available at: http://www.antlr.
org/ [Accessed: 03 April 2018]

[26]	 Donnelly, C., Stallman, R. "GNU Bison - The Yacc-compatible
Parser Generator", Free Software Foundation, Cambridge, 2015.
[online] Available at: https://www.gnu.org/software/bison/man-
ual/ [Accessed: 03 April 2018]

[27]	 Merrill, G. H. "Parsing Non-LR (k) grammars with yacc",
Software: Practice and Experience, 23(8), pp. 829–850, 1993.

	 https://doi.org/10.1002/spe.4380230803
[28]	 Johnson, S. C. "Yacc: Yet Another Compiler-Compiler",

[online] Available at: http://dinosaur.compilertools.net/yacc/
[Accessed: 03 April 2018]

[29]	 Czarnecki, K., Helsen, S. "Classification of Model Transformation
Approaches (2003)", In: OOPSLA’03 Workshop on Generative
Techniques in the Context of Model-Driven Architecture,
Anaheim, USA, 2003, pp. 1–17. [online] Available at: http://citese-
erx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.8124 [Accessed:
03 April 2018]

[30]	 Rose, L. M., Matragkas, N., Kolovos, D. S., Paige, R. F. "A fea-
ture model for model-to-text transformation languages", In: 4th
International Workshop on Modeling in Software Engineering
(MISE), Zurich, Switzerland, 2012, pp. 57–63.

	 https://doi.org/10.1109/MISE.2012.6226015
[31]	 Hettel, T., Lawley, M., Raymond, K. "Model Synchronisation:

Definitions for Round-Trip Engineering", In: 1st International
Conference on Theory and Practice of Model Transformations,
Zurich, Switzerland, 2008, pp. 31–45.

	 https://doi.org/10.1007/978-3-540-69927-9_3
[32]	 Levendovszky, T., Lengyel, L., Mezei, G., Charaf, H.

"A Systematic Approach to Metamodeling Environments and
Model Transformation Systems in VMTS", Electronic Notes in
Theoretical Computer Science, 127(1), pp. 65–75, 2005.

	 https://doi.org/10.1016/j.entcs.2004.12.040

https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1109/MS.2003.1231150
https://doi.org/10.1007/978-3-319-21155-8_8
http://www.eclipse.org/viatra/
http://www.eclipse.org/viatra/
https://doi.org/10.1007/11663430_14
https://doi.org/10.1109/MS.2003.1231146
https://www.researchgate.net/publication/238987815_Comprehensibility_of_visual_and_textual_programs_A_test_of_superlativism_against_the_%27match-mismatch%27_conjecture
https://www.researchgate.net/publication/238987815_Comprehensibility_of_visual_and_textual_programs_A_test_of_superlativism_against_the_%27match-mismatch%27_conjecture
https://www.researchgate.net/publication/238987815_Comprehensibility_of_visual_and_textual_programs_A_test_of_superlativism_against_the_%27match-mismatch%27_conjecture
https://www.researchgate.net/publication/238987815_Comprehensibility_of_visual_and_textual_programs_A_test_of_superlativism_against_the_%27match-mismatch%27_conjecture
https://doi.org/10.1145/203241.203251
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.1633
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.1633
https://doi.org/10.1007/978-3-540-89020-1_7
https://doi.org/10.1007/978-1-4302-2526-3_17
https://www.qt.io/
https://doi.org/10.1007/978-3-540-69100-6_11
https://www.omg.org/spec/XMI/2.1.1/About-XMI/
https://www.omg.org/spec/XMI/2.1.1/About-XMI/
https://doi.org/10.1007/978-1-4613-9595-9
http://www.antlr.org/
http://www.antlr.org/
https://www.gnu.org/software/bison/manual/
https://www.gnu.org/software/bison/manual/
https://doi.org/10.1002/spe.4380230803
http://dinosaur.compilertools.net/yacc/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.8124
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.122.8124
https://doi.org/10.1109/MISE.2012.6226015
https://doi.org/10.1007/978-3-540-69927-9_3
https://doi.org/10.1016/j.entcs.2004.12.040

Somogyi and Asztalos
Period. Polytech. Elec. Eng. Comp. Sci., 63(1), pp. 51–65, 2019|63

[33]	 Angyal, L., Asztalos, M., Lengyel, L., Levendovszky, T.,
Madari, I., Mezei, G., Mészáros, T., Siroki, L., Vajk, T. "Towards
a Fast, Efficient and Customizable Domain-Specific Modeling
Framework", In: IASTED International Conference on Software
Engineering, Innsbruck, Austria, 2009, pp. 11–16. [online]
Available at: https://www.actapress.com/Abstract.aspx?pa-
perId=34623 [Accessed: 03 April 2018]

[34]	 Visual Modeling Group "Visual Modeling and Transformation
System", [online] Available at: http://vmts.aut.bme.hu
[Accessed: 03 April 2018]

[35]	 Fowler, M. "Language Workbenches: The Killer-App for Domain
Specific Languages?", 2005. [online] Available at: http://www.
martinfowler.com/articles/languageWorkbench.html [Accessed:
03 April 2018]

[36]	 van Deursen, A., Klint, P., Visser, J. "Domain-specific languages:
an annotated bibliography", ACM SIGPLAN Notices, 35(6),
pp. 26–36, 2000.

	 https://doi.org/10.1145/352029.352035
[37]	 Mernik, M., Heering, J., Sloane, A. M. "When and how to develop

domain-specific languages", ACM Computing Surveys (CSUR),
37(4), pp. 316–344, 2005.

	 https://doi.org/10.1145/1118890.1118892
[38]	 Kosar, T., Bohra, S., Mernik, M. "Domain-Specific Languages:

A Systematic Mapping Study", Information and Software
Technology, 71, pp. 77–91, 2016.

	 https://doi.org/10.1016/j.infsof.2015.11.001
[39]	 Ward, M. P. "Language-Oriented Programming",

Software-Concepts and Tools, 15(4), pp. 147–161, 1994.
[online] Available at: https://www.researchgate.net/pub-
l icat ion /234125675_Lang uage_Or iented _Prog ram ming
[Accessed: 03 April 2018]

[40]	 Eysholdt, M., Behrens, H. "Xtext: implement your language
faster than the quick and dirty way", In: International Conference
Companion on Object Oriented Programming Systems Languages
and Applications Companion (OOPSLA ‘10), Reno/Tahoe,
Nevada, USA, 2010, pp. 307–309.

	 https://doi.org/10.1145/1869542.1869625
[41]	 Eclipse Foundation "Xtext", [online] Available at: https://eclipse.

org/Xtext/ [Accessed: 03 April 2018]
[42]	 Steinberg, D., Budinsky, F., Paternostro, M., Merks, E. "EMF:

Eclipse Modeling Framework", 2nd ed., Addison-Wesley, Boston,
USA, 2008.

[43]	 Eclipse Foundation "Eclipse Modeling Framework (EMF)",
[online] Available at: https://eclipse.org/modeling/emf
[Accessed: 03 April 2018]

[44]	 Nickel, U., Niere, J., Zündorf, A. "The FUJABA environment", In:
International Conference on Software Engineering, ICSE 2000,
Limerick, Ireland, 2000, pp. 742–745.

	 https://doi.org/10.1145/337180.337620
[45]	 Fujaba Core Development Group "Fujaba", 2012. [online] Available

at: http://www.fujaba.de/ [Accessed: 03 April 2018]
[46]	 Fowler, M. "UML Distilled: A Brief Guide to the Standard Object

Modeling Language", 3rd ed., Addison-Wesley, Boston, USA,
2003.

[47]	 Merkle, B. "Textual Modeling Tools: Overview and Comparison of
Language Workbenches", In: International Conference Companion
on Object Oriented Programming Systems Languages and
Applications Companion (OOPSLA ‘10), Reno/Tahoe, Nevada,
USA, 2010, pp. 139–148.

	 https://doi.org/10.1145/1869542.1869564
[48]	 Erdweg, S., van der Storm, T., Völter, M., Boersma, M.,

Bosman, R., Cook, W. R., Gerritsen, A., Hulshout, A., Kelly, S.,
Loh, A., Konat, G., Molina, P. J., Palatnik, M., Pohjonen, R.,
Schindler, E., Schindler, K., Solmi, R., Vergu, V., Visser, E., van
der Vlist, K., Wachsmuth, G., van der Woning, J. “The State of the
Art in Language Workbenches: Conclusions from the Language
Workbench Challenge", In: 6th International Conference on
Software Language Engineering (SLE 2013), Indianapolis, IN,
USA, 2013, pp. 197–217.

	 https://doi.org/10.1007/978-3-319-02654-1_11
[49]	 Erdweg, S., van der Storm, T., Völter, M., Tratt, L., Bosman, R.,

Cook, W. R., Gerritsen, A., Hulshout, A., Kelly, S., Loh, A.,
Konat G., Molina, P. J., Palatnik, M., Pohjonen, R., Schindler, E.,
Schindler, K., Solmi, R., Vergu, V., Visser, E., van der Vlist, K.,
Wachsmuth, G., van der Woning, J. "Evaluating and comparing
language workbenches: Existing results and benchmarks for the
future", Computer Languages, Systems and Structures, 44(A),
pp. 24–47, 2015.

	 https://doi.org/10.1016/j.cl.2015.08.007
[50]	 Paige, R. F., Matragkas, N., Rose, L. M. "Evolving models in

Model-Driven Engineering: State-of-the-art and future chal-
lenges", Journal of Systems and Software, 111, pp. 272–280, 2016.

	 https://doi.org/10.1016/j.jss.2015.08.047
[51]	 Spinellis, D. "Version control systems", IEEE Software, 22(5),

pp. 108–109, 2005.
	 https://doi.org/10.1109/MS.2005.140
[52]	 GIT "GIT", [online] Available at: https://git-scm.com/

[Accessed: 03 April 2018]
[53]	 Collins-Sussman, B., Fitzpatrick, B. W., Pilato, C. M. "Version

Control with Subversion - The Official Guide and Reference
Manual", 2nd ed., CreateSpace, Paramount, CA, USA, 2009.

[54]	 Brosch, P., Kappel, G., Langer, P., Seidl, M., Wieland, K., Wimmer,
M. "An Introduction to Model Versioning", In: 12th International
School on Formal Methods for the Design of Computer,
Communication and Software Systems (SFM 2012), Bertinoro,
Italy, 2012, pp. 336–398.

	 https://doi.org/10.1007/978-3-642-30982-3_10
[55]	 Brosch, P., Langer, P., Seidl, M., Wieland, K., Wimmer, M.,

Kappel, G. "The Past, Present, and Future of Model Versioning",
In: Rech, J., Bunse, C. (eds.) Emerging Technologies for the
Evolution and Maintenance of Software Models, 1st ed., IGI
Global, Hershey, PA, USA, 2012, pp. 410–443.

	 https://doi.org/10.4018/978-1-61350-438-3.ch015
[56]	 Falleri, J.-R., Morandat, F., Blanc, X., Martinez, M., Monperrus, M.

"Fine-grained and accurate source code differencing", In: 29th
International Conference on Automated Software Engineering
(ASE ’14), Vasteras, Sweden, 2014, pp. 313–324.

	 https://doi.org/10.1145/2642937.2642982

https://www.actapress.com/Abstract.aspx?paperId=34623
https://www.actapress.com/Abstract.aspx?paperId=34623
http://vmts.aut.bme.hu
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html
https://doi.org/10.1145/352029.352035
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1016/j.infsof.2015.11.001
https://www.researchgate.net/publication/234125675_Language_Oriented_Programming
https://www.researchgate.net/publication/234125675_Language_Oriented_Programming
https://doi.org/10.1145/1869542.1869625
https://eclipse.org/Xtext/
https://eclipse.org/Xtext/
https://eclipse.org/modeling/emf
https://doi.org/10.1145/337180.337620
http://www.fujaba.de/
https://doi.org/10.1145/1869542.1869564
https://doi.org/10.1007/978-3-319-02654-1_11
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.1016/j.jss.2015.08.047
https://doi.org/10.1109/MS.2005.140
https://git-scm.com/
https://doi.org/10.1007/978-3-642-30982-3_10
https://doi.org/10.4018/978-1-61350-438-3.ch015
https://doi.org/10.1145/2642937.2642982

64|Somogyi and Asztalos
Period. Polytech. Elec. Eng. Comp. Sci., 63(1), pp. 51–65, 2019

[57]	 Eibl J. "KDiff3", 2014. [online] Available at: http://kdiff3.source-
forge.net/ [Accessed: 03 April 2018]

[58]	 Lin, Y., Zhang, J., Gray, J. "Model comparison: A key challenge for
transformation testing and version control in model driven soft-
ware development (2004)", In: OOPSLA/GPCE Workshop on Best
Practices for Model-Driven Software Development, Vancouver,
Canada, 2004, pp. 219–236. [online] Available at: http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.91.5709 [Accessed: 03
April 2018]

[59]	 Kolovos, D. S., Paige, R. F., Polack, F. A. C. "Model Comparison:
A Foundation for Model Composition and Model Transformation
Testing", In: International Workshop on Global Integrated Model
Management (GaMMa ’06), Sanghai, China, 2006, pp. 13–20.

	 https://doi.org/10.1145/1138304.1138308
[60]	 Maoz, S., Ringert, J. O., Rumpe, B. "A Manifesto for Semantic

Model Differencing", In: International Conference on Model
Driven Engineering Languages and Systems (MODELS 2010),
Oslo, Norway, 2010, pp. 194–203.

	 https://doi.org/10.1007/978-3-642-21210-9_19
[61]	 Alanen, M., Porres, I. "Difference and Union of Models", In:

International Conference on the Unified Modeling Language
(UML 2003), San Francisco, CA, USA, 2003, pp. 2–17.

	 https://doi.org/10.1007/978-3-540-45221-8_2
[62]	 Porres, I. "Union and Difference of Models, 10 years later", In: 16th

International Conference on Model Driven Engineering Languages
and Systems (MODELS 2013), Miami, USA, 2013, pp. 1–5.
[online] Available at: http://ceur-ws.org/Vol-1115/talk1.pdf
[Accessed: 03 April 2018]

[63]	 Tang, W. "Meta Object Facility", In: Liu, L., Özsu, M. T. (eds.)
Encyclopedia of Database Systems, 1st ed., Springer, Boston, MA,
USA, 2009.

	 https://doi.org/10.1007/978-0-387-39940-9_914
[64]	 Object Management Group (OMG) "Meta-Object Facility", [online]

Available at: http://www.omg.org/mof [Accessed: 03 April 2018]
[65]	 Kolovos, D. S., Di Ruscio, D., Pierantonio, A., Paige, R. F.

"Different models for model matching: An analysis of approaches
to support model differencing", In: 2009 ICSE Workshop on
Comparison and Versioning of Software Models, Vancouver, BC,
USA, 2009, pp. 1–6.

	 https://doi.org/10.1109/CVSM.2009.5071714
[66]	 Altmanninger, K., Brosch, P., Kappel, G., Langer, P., Seidl, M.,

Wieland, K., Wimmer, M. "Why Model Versioning Research is
Needed!? An Experience Report (2009)", In: MoDSE-MCCM
Workshop in MoDELS, Denver, Colorado, USA, 2009, pp. 1–12.
[online] Available at: http://citeseerx.ist.psu.edu/viewdoc/summa-
ry?doi=10.1.1.514.424 [Accessed: 03 April 2018]

[67]	 Mens, T. "A state-of-the-art survey on software merging", IEEE
Transactions on Software Engineering, 28(5), pp. 449–462, 2002.

	 https://doi.org/10.1109/TSE.2002.1000449
[68]	 Westfechtel, B. "A formal approach to three-way merging of EMF

models", In: 1st International Workshop on Model Comparison in
Practice (IWMCP 2010), Malaga, Spain, 2010, pp. 31–41.

	 https://doi.org/10.1145/1826147.1826155

[69]	 Koegel, M., Herrmannsdoerfer, M., Helming, J., Li, Y. "State-
based vs. Operation-based Change Tracking", In: Joint
MODELS '09 Workshop on ModelDriven Software Evolution
(MoDSE) and Model CoEvolution and Consistency Management
(MCCM), Denver, Colorado, USA, 2009, pp. 132–141. [online]
Available at: http://citeseerx.ist.psu.edu/viewdoc/download?-
doi=10.1.1.460.5090&rep=rep1&type=pdf [Accessed: 03 April
2018]

[70]	 Koegel, M., Herrmannsdoerfer, M., Li, Y., Helming, J., David, J.
"Comparing State- and Operation-Based Change Tracking on
Models", In: 14th IEEE International Enterprise Distributed Object
Computing Conference, Vitoria, Brazil, 2010, pp. 163–172.

	 https://doi.org/10.1109/EDOC.2010.15
[71]	 IBM "IBM Rational Software Architect Designer", [online]

Available at: https://www.ibm.com/developerworks/downloads/r/
architect/ [Accessed: 03 April 2018]

[72]	 Eclipse Foundation "EMF Compare", [online] Available at: https://
www.eclipse.org/emf/compare/ [Accessed: 03 April 2018]

[73]	 Koegel, M., Helming, J., Seyboth, S. "Operation-based con-
flict detection and resolution", In: 2009 ICSE Workshop on
Comparison and Versioning of Software Models, Vancouver, BC,
USA, 2009, pp. 43–48.

	 https://doi.org/10.1109/CVSM.2009.5071721
[74]	 Pietsch, P., Yazdi, H. S., Kelter, U., Kehrer, T. "Assessing the

Quality of Model Differencing Engines", Softwaretechnik-Trends,
32(4), pp. 47–48, 2012. [online] Available at: http://pi.informatik.
uni-siegen.de/stt/32_4/08_Sonderteil_Positionspapiere/cvsm2012_
pietsch.pdf [Accessed: 03 April 2018]

[75]	 van Rozen, R., van der Storm, T. “"Model Differencing for Textual
DSLs", In: BENEVOL 2014 - Belgian-Netherlands Evoluation
Workshop, Amsterdam, Netherlands, 2014. [online] Available at:
https://hal.inria.fr/hal-01110856 [Accessed: 03 April 2018]

[76]	 van Rozen, R., van der Storm, T. "Origin Tracking + Text
Differencing = Textual Model Differencing", In: 8th International
Conference on Theory and Practice of Model Transformations
(ICMT 2015), L’Aquila, Italy, 2015, pp. 18–33.

	 https://doi.org/10.1007/978-3-319-21155-8_2
[77]	 Olsen, G. K., Oldevik, J. "Scenarios of Traceability in Model to

Text Transformations", In: 3rd European Conference on Model
Driven Architecture - Foundations and Applications (ECMDA-FA
2007), Haifa, Israel, 2007, pp. 144–156.

	 https://doi.org/10.1007/978-3-540-72901-3_11
[78]	 Xing, Z., Stroulia, E. "UMLDiff: An Algorithm for Object-

Oriented Desing Differencing", In: 20th International Conference
on Automated Software Engineering (ASE ’05), Long Beach, CA,
USA, 2005, pp. 54–65.

	 https://doi.org/10.1145/1101908.1101919
[79]	 Kelter, U., Wehren, J., Niere, J. "A Generic Difference Algorithm

for UML Models", In: Software Engineering 2005, Fachtagung
des GI-Fachbereichs Softwaretechnik, Essen, Germany, 2005,
pp. 105–116. [online] Available at: https://www.researchgate.net/
publication/221232282_A_Generic_Difference_Algorithm_for_
UML_Models [Accessed: 03 April 2018]

http://kdiff3.sourceforge.net/
http://kdiff3.sourceforge.net/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.5709
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.91.5709
https://doi.org/10.1145/1138304.1138308
https://doi.org/10.1007/978-3-642-21210-9_19
https://doi.org/10.1007/978-3-540-45221-8_2
http://ceur-ws.org/Vol-1115/talk1.pdf
https://doi.org/10.1007/978-0-387-39940-9_914
http://www.omg.org/mof
https://doi.org/10.1109/CVSM.2009.5071714
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.514.424
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.514.424
https://doi.org/10.1109/TSE.2002.1000449
https://doi.org/10.1145/1826147.1826155
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.5090&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.460.5090&rep=rep1&type=pdf
https://doi.org/10.1109/EDOC.2010.15
https://www.ibm.com/developerworks/downloads/r/architect/
https://www.ibm.com/developerworks/downloads/r/architect/
https://www.eclipse.org/emf/compare/
https://www.eclipse.org/emf/compare/
https://doi.org/10.1109/CVSM.2009.5071721
http://pi.informatik.uni-siegen.de/stt/32_4/08_Sonderteil_Positionspapiere/cvsm2012_pietsch.pdf
http://pi.informatik.uni-siegen.de/stt/32_4/08_Sonderteil_Positionspapiere/cvsm2012_pietsch.pdf
http://pi.informatik.uni-siegen.de/stt/32_4/08_Sonderteil_Positionspapiere/cvsm2012_pietsch.pdf
https://hal.inria.fr/hal-01110856
https://doi.org/10.1007/978-3-319-21155-8_2
https://doi.org/10.1007/978-3-540-72901-3_11
https://doi.org/10.1145/1101908.1101919
https://www.researchgate.net/publication/221232282_A_Generic_Difference_Algorithm_for_UML_Models
https://www.researchgate.net/publication/221232282_A_Generic_Difference_Algorithm_for_UML_Models
https://www.researchgate.net/publication/221232282_A_Generic_Difference_Algorithm_for_UML_Models

Somogyi and Asztalos
Period. Polytech. Elec. Eng. Comp. Sci., 63(1), pp. 51–65, 2019|65

[80]	 Brosch, P., Seidl, M., Widl, M. "Semantics-Aware Versioning
Challenge: Merging Sequence Diagrams along with State Machine
Diagrams", Softwaretechnik-Trends, 33(2), pp. 84–86, 2013.

	 https://doi.org/10.1007/s40568-013-0058-5
[81]	 Debreceni, C., Ráth, I., Varró, D., De Carlos, X., Mendialdua, X.,

Trujillo, S. "Automated Model Merge by Design Space
Exploration", In: 19th International Conference on Fundamental
Approaches to Software Engineering (FASE 2016), Eindhoven,
The Netherlands, 2016, pp. 104–121.

	 https://doi.org/10.1007/978-3-662-49665-7_7
[82]	 Fairmichael, F., Kiniry, J. R. "Verified Visualisation of Textual

Modelling Languages", Electronic Communications of the EASST,
36, pp. 1–18, 2010.

	 https://doi.org/10.14279/tuj.eceasst.36.446.431
[83]	 Nerson, J.-M. "Applying Object-Oriented Analysis and Design",

Communications of the ACM, Special Issue on Analysis and
Modeling in Software Development, 35(9), pp. 63–74, 1992.

	 https://doi.org/10.1145/130994.130997
[84]	 Giese, H., Hildebrandt, S., Neumann, S. "Model Synchronization

at Work: Keeping SysML and AUTOSAR Models Consistent",
In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A.,
Westfechtel, B. (eds.) Graph Transformations and Model-Driven
Engineering: Essays Dedicated to Manfred Nagl on the Occasion
of his 65th Birthday, Springer, Berlin, Heidelberg, Germany,
pp. 555–579, 2010.

	 https://doi.org/10.1007/978-3-642-17322-6_24
[85]	 Giese, H., Wagner, R. "From model transformation to incremen-

tal bidirectional model synchronization", Software and Systems
Modeling, 8(1), pp. 21–43, 2009.

	 https://doi.org/10.1007/s10270-008-0089-9
[86]	 Giese, H., Wagner, R. "Incremental Model Synchronization with

Triple Graph Grammars", In: 9th International Conference on
Model Driven Engineering Languages and Systems (MODELS
2006), Genova, Italy, 2006, pp. 543–557.

	 https://doi.org/10.1007/11880240_38
[87]	 Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H. "Towards

Automatic Model Synchronization from Model Transformations",
In: 22nd International Conference on Automated Software
Engineering (ASE ‘07), Atlanta, Georgia, USA, 2007, pp. 164–173.

	 https://doi.org/10.1145/1321631.1321657
[88]	 van Rest, O., Wachsmuth, G., Steel, J. R. H., Süß, J. G., Visser, E.

"Robust Real-Time Synchronization between Textual and
Graphical Editors", In: 6th International Conference on Theory
and Practice of Model Transformations (ICMT 2013), Budapest,
Hungary, 2013, pp. 92–107.

	 https://doi.org/10.1007/978-3-642-38883-5_11
[89]	 Kats, L. C. L., Visser, E. "The Spoofax Language Workbench:

Rules for Declarative Specification of Languages and IDEs", ACM
SIGPLAN Notices - OOPSLA ‘10, 45(10), pp. 444–463, 2010.

	 https://doi.org/10.1145/1932682.1869497

[90]	 Eclipse Foundation "Graphical Modeling Framework", [online]
Available at: https://www.eclipse.org/modeling/gmp/ [Accessed:
03 April 2018]

[91]	 Angyal, L., Lengyel, L., Charaf, H. "A Synchronizing Technique
for Syntactic Model-Code Round-Trip Engineering", In: 15th
Annual IEEE International Conference and Workshop on the
Engineering of Computer Based Systems (ECBS 2008), Belfast,
UK, 2008, pp. 463–472.

	 https://doi.org/10.1109/ECBS.2008.33
[92]	 Angyal, L., Lengyel, L. "Synchronization of textual and visual

representations of evolving information in the context of model-
based development", In: IEEE Eurocon 2009, Saint Petersburg,
Russia, 2009, pp. 420–425.

	 https://doi.org/10.1109/EURCON.2009.5167666
[93]	 Kelly, S., Lyytinen, K., Rossi, M. "MetaEdit+ A fully config-

urable multi-user and multi-tool CASE and CAME environ-
ment", In: 8th International Conference on Advanced Information
System Engineering (CAiSE 1996), Heraklion, Crete, Greece,
1996, pp. 1–21.

	 https://doi.org/10.1007/3-540-61292-0_1
[94]	 Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J.,

Thomason, C., Nordstrom, G., Sprinkle, J., Volgyesi, P.
"The generic modeling environment", In: Workshop on
Intelligent Signal Processing, Budapest, Hungary, 2001.
[online] Available at: https://www.researchgate.net/publi-
cat ion /233757687_The_Gener ic_Modeling _Environment
[Accessed: 03 April 2018]

[95]	 Voelter, M., Pech, V. "Language modularity with the MPS lan-
guage workbench", In: 34th International Conference on Software
Engineering (ICSE), Zurich, Switzerland, 2012, pp. 1449–1450.

	 https://doi.org/10.1109/ICSE.2012.6227070
[96]	 Simonyi, C., Christerson, M., Clifford, S. "Intentional software",

ACM SIGPLAN Notices, 41(10), pp. 451–464, 2006.
	 https://doi.org/10.1145/1167515.1167511
[97]	 Somogyi, F., Asztalos, M. "Merging textual representations of

software models - a practical approach", In: XVIII KKIO Software
Engineering Conference, Wroclaw, Poland, 2016, pp. 113–128.
[online] Available at: http://www.dbc.wroc.pl/dlibra/docmeta-
data?id=36511&from=publication [Accessed: 03 April 2018]

[98]	 Somogyi, F. A., Asztalos, M. "Formal Description and Verification
of a Text-based Model Differencing and Merging Method",
In: 6th International Conference on Model-Driven Engineering and
Software Development, Madeira, Portugal, 2018, pp. 657–667.

	 https://doi.org/10.5220/0006728006570667

https://doi.org/10.1007/s40568-013-0058-5
https://doi.org/10.1007/978-3-662-49665-7_7
https://doi.org/10.14279/tuj.eceasst.36.446.431
https://doi.org/10.1145/130994.130997
https://doi.org/10.1007/978-3-642-17322-6_24
https://doi.org/10.1007/s10270-008-0089-9
https://doi.org/10.1007/11880240_38
https://doi.org/10.1145/1321631.1321657
https://doi.org/10.1007/978-3-642-38883-5_11
https://doi.org/10.1145/1932682.1869497
https://www.eclipse.org/modeling/gmp/
https://doi.org/10.1109/ECBS.2008.33
https://doi.org/10.1109/EURCON.2009.5167666
https://doi.org/10.1007/3-540-61292-0_1
https://www.researchgate.net/publication/233757687_The_Generic_Modeling_Environment
https://www.researchgate.net/publication/233757687_The_Generic_Modeling_Environment
https://doi.org/10.1109/ICSE.2012.6227070
https://doi.org/10.1145/1167515.1167511
http://www.dbc.wroc.pl/dlibra/docmetadata?id=36511&from=publication
http://www.dbc.wroc.pl/dlibra/docmetadata?id=36511&from=publication
https://doi.org/10.5220/0006728006570667

	1 Introduction
	1.1 Introduction to text-based modeling
	1.2 Processes and artifacts in text-based modeling
	1.3 Research fields related to text-based modeling
	1.4 Goals and structure of the paper

	2 Model differencing and merging (MDM)
	2.1 Introduction to MDM
	2.2 Motivations behind text-based MDM
	2.3 Survey of existing approaches
	2.4 Open questions

	3 Synchronization in text-based modeling
	3.1 Categorization of synchronization
	3.2 Survey of existing approaches
	3.3 Open questions

	4 Challenges in language workbench development
	5 Previous work and personal research plans
	6 Conclusion
	References

