
282|https://doi.org/10.3311/PPee.13305
Creative Commons Attribution b

Periodica Polytechnica Electrical Engineering and Computer Science, 63(4), pp. 282–294, 2019

Cite this article as: Kocsis, I., Pataricza, A. "Semantic Data Management in IT Service Performance Assurance", Periodica Polytechnica Electrical Engineering
and Computer Science, 63(4), pp. 282–294, 2019. https://doi.org/10.3311/PPee.13305

Semantic Data Management in IT Service Performance
Assurance

Imre Kocsis1*, András Pataricza1

1 Department of Measurement and Information Systems, Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics, H-1117 Budapest, Magyar tudósok krt. 2., Hungary

* Corresponding author, e-mail: ikocsis@mit.bme.hu

Received: 15 October 2018, Accepted: 19 April 2019, Published online: 25 July 2019

Abstract

In today's dynamic and highly composed environments, IT service performance and dependability assurance require efficient

reasoning about the performance and dependability effects of faults and the countermeasures to choose, using limited knowledge.

Model- and observation-based qualitative error propagation analysis methods can be applied to this end; however, providing support

for the human, as well as conceptually structured machine interpretation of sets of competing error propagation hypotheses is

an open problem. This paper proposes the application of Formal Concept Analysis (FCA) for these tasks. A natural way to represent

error propagation hypothesis sets as formal contexts is proposed, and the visual diagnostic exploration of formal context lattices is

introduced. On this basis, potential applications of FCA in performance and dependability assurance activities are characterized.

Keywords

error propagation analysis, formal concept analysis, system test and diagnosis

1 Introduction
The capacity of IT systems to provide services at the
agreed level of performance – commonly recorded
in legally binding Service Level Agreements (SLAs) [1] –
can diminish due to a range of factors. These include over-
load faults (spare capacity exhaustion), capacity reduc-
tion due to "hard" faults as node crashes, and performance
interferences of workloads in shared resource systems [2].

The local error state effects of faults can lead to com-
ponent failures; and these failures become external faults
of connected elements in composed systems. This way,
error modes that are initially local to specific components
can propagate across the topology, change their nature
depending on the failure response of components and may
lead to service failures.

This phenomenon of error propagation (see Fig. 1) is
a central concept in dependable computing [3]. To prevent,
mitigate, or at least to recover from service level failures,
error propagation in a system has to be analyzed at design
time and countermeasures have to be deployed in the sys-
tem. For performance failures, these mechanisms include
admission control points and continuously maintained
spare capacities. Active dependability mechanisms rely

on monitoring and diagnosing the system at runtime and
deciding on the appropriate action to take, based on poli-
cies that are derived from error propagation analysis.

In the general case, error propagation analysis prob-
lems entail a set of competing error propagation solution
hypotheses: a set of error propagation scenarios that are all
consistent with the underlying model. Multiple solutions
can arise due to:

1. limited observability,
2. nondeterministic manifestation of errors in distrib-

uted systems and
3. limited diagnosability of the system.

Component A Component B
EE E

External
fault

E

Input
error
state

Output
error
state

A: Failure
B: External

fault

E E

Active internal fault

Input
error
state

Fig. 1 The concept of error propagation in composed systems

https://doi.org/10.3311/PPee.13305
https://doi.org/10.3311/PPee.13305
mailto:ikocsis@mit.bme.hu

Kocsis and Pataricza
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 282–294, 2019 |283

The efficient expert assessment and iterative refine-
ment of error propagation hypothesis sets are largely
open problems.

This paper explores the novel application of Formal
Concept Analysis (FCA) [4] on error propagation hypothe-
sis sets. FCA is a mathematical approach to derive concept
hierarchies of objects, based on their shared properties;
in the proposed application, it is used to form hierarchies
of sets of faults, based on their commonalities in error
propagation effects.

The lattices of fault sets which FCA creates, ordered
by increasing / decreasing commonality in effects, enable
an expressive visualization of error propagation hypothe-
sis sets. Visualization interactions, as relation projections
and filterings, support visual exploration. FCA can pro-
vide a tool for:

1.  guided diagnostics,
2. assessing the need for additional observations and
3. hypothesis set refinements.

It will be shown that the core FCA concepts have direct
diagnostic interpretations. This way, on the one hand, it pro-
vides a common platform to assess the results of different
diagnostic inference approaches, and on the other hand,
FCA itself can directly deliver diagnostic inference rules.

FCA is a proven tool in ontology engineering, both
for creating and assessing ontologies. While the current
paper focuses on its direct application in design for depend-
ability, it carries the promise of creating a semantic bridge
between diagnostic inference and observations, and
dependability knowledge and requirement modeling.

As a simple example, the paper uses a business pro-
cess model, with inference over the propagation of per-
formance errors and task-activation errors. However, the
presented techniques are expected to efficiently support
the qualitative performance and dependability analysis
of Systems of Systems and Cyber-Physical Systems [5] –
two contemporary domains where error propagation anal-
ysis with limited knowledge are key challenges.

2 Error Propagation Analysis
System-level inference over error propagation classi-
cally used such standard methods as Fault Tree Analysis
(FTA) and Failure Mode and Effects Analysis (FMEA).
Today, so-called Error Propagation Analysis (EPA)
employs more sophisticated, highly automated techniques
that perform system-level inference using system mod-
els and component error propagation rules. The source of

the latter can be a formal analysis of system components,
domain expert knowledge as well as observations.

The fault (and failure) models used in EPA are typically
based on domain-specific, standard (either actual or de
facto) dictionaries. In composed computing systems, it is
customary to distinguish component service timing failures
(EARLY and LATE), value failures (SUBTLE and COARSE
– differentiated based on detectability) and so-called "pro-
vision" failures (OMISSION and COMMISSION) [6]. It is
also a standard technique to use multi-dimensional failure
modes by associating, for instance, a timing, value and pro-
vision aspect with failure modes at the same time ([7] estab-
lished the basic logic of such classifications).

Purpose-built languages exist to describe the way sys-
tem components may transform their "incoming" qualita-
tive error signals into "outgoing" ones in various internal
fault modes. The "Fault Propagation and Transformation
Calculus" (FPTC) [8] provides a practical formalism
in the form of (incoming pattern, outgoing pattern) com-
ponent error propagation rule clauses. The "Formalism
for Incompletion, Inconsistency, Interference and
Impermanence Failures" (FI4FA) [6] extends the above
outlined taxonomy with work unit processing related fail-
ure modes, and modifies FPTC to accommodate these.

Modern EPA approaches rely on system and service
models, reuse and compose rules describing component
error propagation characteristics and are highly automated.
The description of error propagation characteristics has
been formulated as a specialization of the UML MARTE
profile [9], partially inspired by [10]; can be consistently
expressed through "views" in SysML (see e.g. [11]); and
was standardized for the Architecture Analysis and Design
Language (AADL) [12]. In a broader context, [13] presents
an in-depth survey of the dependability modeling and anal-
ysis of software systems specified with UML. [14] defines
an intermediate model that is applicable for a range of
dependability analyses, including EPA.

Analytically, EPA can be approached in a number of
fundamentally different ways. Classic models as FTA sup-
port a combinational style of modeling, which is ill suited
for incorporating error propagation dynamics. Connected
automata of nominal and faulty behavior can be subjected
to model checking (as supported by, e.g., xSAP [15], and
the COMPASS Toolset [16]), with the obvious limitations.
One notable way for analytically resolving dynamics is
determining the maximum possible error / failure sets
on component connections as an EPA result, using fix-
point computations (see HiP-HOPS [17]).

284|Kocsis and Pataricza
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 282–294, 2019

3 Modern EPA and CSP-based analysis
This paper relies on the theoretical and analytical frame-
work established by [18] and [19]. In [18], a core idea is
that component behavior under external and internal
faults can be represented through categorizing the devi-
ations of "actual" component input and output behaviors
from the specified (system-wide fault-free) case. This way,
the dynamic description of error propagation in a system
can be performed through connected error automata.

For situations where the complexity of state-based
analysis would be prohibitive, or propagation char-
acteristics are simply not known at such a resolution,
this dynamic description can be compacted to so-called
syndromes – scalar temporal abstractions of the infinite
set of (potentially infinite) automaton input-output traces.
This replaces the component error automata with sim-
ple relations ("static syndrome relations"), what, in turn,
enables highly efficient analysis through finite-domain
Constraint Satisfaction Problem (CSP) solving.

Contemporary EPA is typically not purely forward or
backward diagnostic reasoning, as fault impact analysis and
fault diagnosis are at the conceptual level. Rather, the goal
is to characterize error propagation under a set of poten-
tially mixed fault and service failure constraints, optimal-
ity objectives and decision variables (see, e.g., [20]).

An important complex use case is determining
the dependability mechanisms that allow only a specified
worst failure on the output, under some fault activation pat-
tern. Dependability mechanisms as "watchdog", "fail-si-
lent" or "task replication" [21] can be modelled as addi-
tional decision variables switching "on" and "off" the effect
of their presence. CSP based analysis of EPA in the formu-
lation of [18] is able to solve for such problems [20].

However, especially in these cases, the set of error prop-
agation hypotheses can easily become unmanageable –
not necessarily technically, but in the sense that an analyst
will find it intractably hard to understand the logic struc-
ture and characteristics of the solution set.

As the set of all model-consistent error propagation
hypotheses is essentially a relation over the same set of
(component port error propagation) variables, solution sets
can be expressed in a number of ways, from a tabular form
to Multiple Decision Diagrams (MDD), a multi-valued
variant of Binary Decision Diagrams (BDD). As a mat-
ter of fact, constraint solving itself can be implemented
directly over MDDs [22]; [23] proposes using such a solver
in EPA to derive error propagation hypothesis sets, instead
of enumerating constraint problem solutions.

In general, these representations don't lend themselves
well to efficient human analysis. As a counterpart to
domain-specific visualization and assessment techniques
(as for instance qualitative error propagation covers [23]),
subjecting error propagation hypothesis sets to FCA is
proposed – after the minimal necessary introduction of
the diagnostic concepts that will be used.

4 Basic diagnostic concepts
The structural granularity of an EPA model, the cover-
age of error propagation on component connections and
the modeled resolution of faults / errors / failures all influ-
ence diagnostic resolution: the precision with which EPA
is capable to determine the location and nature of faults
from (the observation of) errors and failures. Too low
a resolution leads to the use of costly overprotective
dependability mechanisms in design and at runtime.
The core problem is the indistinguishability of faults that
require different treatment. At the same time, too high
a resolution wastes resources, too, by creating and exer-
cising a diagnostic logic that is far finer than what is
needed by the available corrective actions.

For the purposes of this paper, we define tests as mech-
anisms that binarily determine the presence or absence
of a specific error mode on a specific component-connec-
tion in a system (system failures are errors propagating
"out" from the system boundary). A test detects a fault,
if its positive outcome implies the presence of a fault.
In classic test theory, a fault jf is said to dominate another
fault if , if all tests for jf also detect if . When two faults
dominate each other, they are called equivalent [24, 25].
This way, tests and their combinations partition the set of
possible faults into equivalence classes: sets of faults that
are indistinguishable using a set of tests.

In system level diagnosis, selecting an optimal sub-
set of tests is a different problem for fault detection and
fault localization ("diagnosis"); as detection aims at only
determining that there is some active fault in a system,
while localization is the problem of determining the point
of manifestation of an active fault. Test sets can be static
as well as dynamic – in the former case, all tests are run
for each diagnosis, while in the latter, the outcomes of the
already-performed tests determine the next one to run.
For both cases, finding minimal-size optimal test sets is
NP-hard (see, e.g., [26]), but either explicit solution is trac-
table for rough-granular models, or good heuristics exist.

Kocsis and Pataricza
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 282–294, 2019 |285

5 Formal Concept Analysis
Formal Concept Analysis (FCA) is a field of mathematics
that is intimately connected to the fundamental philosoph-
ical question of "what concepts are" in human thinking and
communication; and what "relations between concepts"
constitute. FCA provides a formal mathematical theory of
concepts and their hierarchies; at the same time, its tools
and "knowledge representation" approaches are applica-
ble in a wide variety of domains. Its dominant practical
uses are increasing human understanding; communicat-
ing concept structures and various automated concept dis-
covery and simplification tasks. In its latter roles, it's also
a valuable tool in data mining and machine learning [27].

In FCA, a "concept" has two key parts: its extension –
the objects "belonging to" the concept; and its inten-
sion: the set of attributes that all objects belonging to the
concept have. Using the quasi-standard notation of the
seminal paper of Wille [28], a formal context is a triple
 = (, ,)G M I , where

• G is a set of objects (Gegenstände),
• M is a set of attributes or properties (Merkmale), and
• I (Inzidenz) is a binary relation over these sets,

expressing whether an object "has" an attribute or not.

Informally, a formal concept in such a formal context
is an (O, P) set-pair of O G⊆ and P M⊆ , for which the
object set is exactly the set of objects that share the speci-
fied properties; and conversely, the property set is exactly
the set of properties shared by the objects.

For our purposes, it is useful to also formulate the
notion of formal concepts in a somewhat more "object-ori-
ented" style. Based on I , let us introduce a property map-
ping: Π : 2 2G M→ , which maps each object set to the
properties common to the objects. This mapping unam-
biguously defines the property set for a concept-forming
object set. Then the C G⊆ 2 set of formal concept form-
ing sets contains such c Ci ∈ , where ∀ ∉ ∃ ∈o c m ci i i: ()Π ,
so that m oi∉Π() ; and ∀ ∈ ∀ ∉c C m cj i j: ()Π , it holds
that ∃ ∈ ∉o c m oj i: ()Π .

There is a natural subconcept-superconcept ordering
between the concepts, by intent (or dually, extent) inclusion:

c c c c

c c c c

c c c c

1 1 2 2

1 2 2 1

2 1 1

, () , ()

() ()

() ()

Π Π

Π Π

Π Π

() ≤ ()
⇔ ⊆ ⇒ ⊆()
∧ ⊆ ⇒ ⊆ 22().

 (1)

Informally, a subconcept is associated with a smaller
number of objects that share across themselves a larger set

of attributes. The set of all formal concepts for together
with this ordering is denoted B () .
B () is a complete lattice. (Note that a concept can

be empty: either object-, or attribute-wise.) Explicit der-
ivation of B () for a finite is supported by a num-
ber of algorithms. For large contexts, approaches such
as "Iceberg lattices" [29] are known to compute only the
uppermost level(s) and only concepts with a large enough
support (in the association mining sense).

The actual analysis of the formal concepts can involve
the following key activities:

• interactive, visual lattice exploration,
• structure-preserving simplifications,
• determining association and implication rules

between the attributes, and
• "attribute exploration".

Interactive exploration will be introduced using a simple,
hierarchical failure abstraction example in the next section.

In the original FCA theory, two lattice structure pre-
serving (up to isomorphism) simplification operations are
defined: clarification and reduction [30]. Clarification of
objects and attributes is simply replacing intent-equivalent
object sets with a single object and extent-equivalent attri-
bute sets with a single attribute, respectively.

An attribute is said to be reducible – can be eliminated
with preserving lattice structure – if it can be replaced
by a combination of other attributes; that is, there's a set of
attributes for which the set of objects having these common
attributes equals the set of objects having the attribute.
Objects can be reduced in a similar way; the context reached
after deleting all reducible objects and attributes is called
the standard context (the concept lattice of which is still
isomorphic to the concept lattice of the original context).

A minimal generator set – the Duquenne-Guigues set
of implications – can be automatically computed for the
deterministic attribute-implications of the formal context.
From this generator set, all valid implications can be enu-
merated using a set of rules.

Concept lattice computation on finite contexts may work
on a context that aims to be representative of a domain,
but is not necessarily complete in the sense that it con-
tains all examples necessary to discover the "true" lattice
structure valid for the whole domain. Attribute explora-
tion interactively poses a series of targeted questions to
ensure generalized (structural) validity. A domain expert
could answer that question with a simple "yes", or provide
a counterexample (which is incorporated into the relation).

286|Kocsis and Pataricza
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 282–294, 2019

6 Visual FCA by example: failure abstractions
The immediate utility of FCA, in the current domain
as well as in others, is a kind of intelligent "knowledge
exploration" through visual exploration, as we introduce
it on a hierarchical failure mode abstraction example.

Fig. 2 presents a portion of a cross table of compo-
nent failures and their associated "types" at multiple lev-
els of abstraction – as could be extracted, for instance,
from a bug tracker system. (CO denotes "COMMISSION
or OMISSION"). The lattice structures of formal contexts
are usually visualized using a so-called additive line dia-
gram, depicted for the cross table on Fig. 3. Each node of
the graph represents a formal concept of the context and
can be interpreted using two simple rules.

1. The intent of a node is the attribute(s) directly asso-
ciated with it plus all attributes that can be reached
from it through upwards leading paths.

2. The extent of a node is the object(s) that are directly
associated with it plus all objects from which the
node can be reached through an upward leading path.

At the top of the diagram, there's the concept with no
attributes and all objects; at the bottom, the concept
with maximal intent and empty extent. The full lower half
denotes whether a node "owns" any object; a full upper
half whether it "owns" an attribute. Note that there are
such unrealized concepts (no object introduced in the
node as part of the concept extent) that also don't "define"
an attribute directly (empty circles). In the mathematical
sense, these are (formal) concepts, too – their associated
extent and intent can be decoded using the above rules.

Very similarly to Exploratory Data Analysis
(EDA) [31, 32], visual inspection of such a graph leads
to useful observations and hypotheses. For instance,
the CO category is mutually exclusive with the others,
and type implications like EARLY TIMING_ERROR⇒
become apparent.

In general, the nodes (formal contexts) enable an easy
assessment of the failure instance coverage of each
abstract category, the trivial structural redundancies
in failure modes and types, and the complexity and mem-
ber-exclusivity of refinement hierarchies (trees versus
complex bipartite graph patterns, edges leading "out"
from a perceived hierarchy).

The main interactions with the diagram (e.g., in the
Concept Explorer tool [33]) are the following:

1. filtering the included objects and/or attributes; and
2. highlighting concept nodes and their up/down neigh-

bors (transitively; shown later).

Filtering enables discovering the impact of adding
and removing assumed failure modes as well as types.
Highlighting a concept node not only helps "reading off"
its object and property sets, but also emphasizes the mag-
nitude the subconcepts of the selected concept contribute
to other concepts, and the adequacy of the selected con-
cept to describe its superconcepts.

Such taxonomy analysis applications of FCA
are standard practice, for instance in ontology

Fig. 2 Cross table: component failure modes and attributes (abbrv.)

Fig. 3 Line diagram for the lattice of failure modes and attributes

Kocsis and Pataricza
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 282–294, 2019 |287

engineering [34]. However, in the EPA context these
techniques have direct diagnostic interpretations, too,
with diagnostic applications.

7 Diagnostic FCA
Error propagation hypothesis sets as relations encode
the admitted valuation-combinations of component error
propagation port decision variables for a system (including
fault activations). To apply FCA, objects and attributes have
to be identified – FCA directly over the relations is nigh
useless. The key idea here is to contrast a pair from the set
of core dependability aspects: faults, errors / failures, and
the application of dependability mechanisms. This paper
explores the case when faults are the objects, and errors /
failures / mechanism decisions the attributes; grouping
fault activations by their increasingly common effects, thus
enabling the diagnostic capability analysis of propagating
errors and failures as tests. Other configurations are also
meaningful; e.g., the faults as attributes and errors / fail-
ures as objects scoping would mainly support the evalua-
tion of fault impact magnitudes and their hierarchies.

The cross table and accompanying line graph pro-
vide a very simple example for the idea, if we assume the
objects to be the internal fault modes of a complex compos-
ite component, and the attributes the testable service fail-
ure modes of that component on a single output. The next
section will provide a more realistic, worked-out example
for system level analysis with tests defined on component
connections; however, the key insights remain the same.

Under this interpretation, the diagnostic semantics of
visual line graph exploration and FCA can be summarized
as presented by Table 1.

8 Theoretical justification of diagnostic FCA
Table 1 relies on equivalences between FCA and diagnos-
tic theory that require some basic justification. The current
section provides these arguments.

Let f F E I= (, ,) be a formal context, where F is
the set of fault-activations present in an error propagation
hypothesis set; E the set of possible error / failure valu-
ations on each component connection; and I the relation
encoding the errors / failures characteristic for the differ-
ent fault activations in the error propagation hypothesis
set. For the sake of simplicity, this section assumes that the
relation is deterministic for the fault activations. The set
of fault activations may, but is not required to, include the
fault-free case. In the following it is assumed that sets of
tests are evaluated as a conjunction for detecting faults.

Proposition 8.1. Each formal concept of f rep-
resents a test set and the set of equivalent faults for that
test set. The equivalence set of faults is complete for the
given test set, and the test set is maximal for the fault set
in the sense that adding any further tests can only shrink
the equivalence set covered.

The proposition does not require a formal proof, as it fol-
lows from the basic properties of formal concepts and the for-
mulation of the test notion used. For applications, some
care may need to be exercised: the fault-free case(s) may be
ordered in an equivalence set with "real" fault activations.

Table 1 Diagnostic interpretation of FCA visualization,
diagram interactions and algorithms

FCA Diagnostic interpretation

Line graph interpretation (concept hierarchy)

Objects on a downward path Dominance ordering of a set of
faults

Attributes on a downward path Increasing fault resolution of tests

Multiple objects belonging to
a concept node

Faults indistinguishable with the
currently visualized attributes

Multiple attributes belonging
to a concept node

Tests equivalent in fault detection
and fault resolution

Node upper and lower half full
Test directly detects one or more
faults (resolution depends on faults
in downward neighbors)

Only node upper half full,
antecedents of node with
objects don't have paths
leading up to this level or
higher

Test fault coverage is a combination
of more specific tests

Only node lower half full Fully specific determination of node
fault(s) requires combination of tests

Line graph interactions

Node selection and
highlighting of upward /
downward reachable nodes
(see later)

A maximal effect-equivalent
(upwards attributes) fault set
(downwards objects). Edges leading
out from selection inform on fault
uniqueness to tests and individual
test resolution for faults.

Adding / removing attributes Potentially increasing / decreasing
diagnostic resolution

Adding / removing objects Effects of changing fault model and
assumptions

FCA algorithms

Attribute reduction Minimal size test set without
reducing diagnostic resolution

Object reduction
Minimal size representative fault
set without eliminating propagating
effects

Implication set Generator set for deterministic error
propagation rules

Attribute exploration Methodical checking of hypothesis
set completeness

288|Kocsis and Pataricza
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 282–294, 2019

The concept order relation has an important diagnos-
tic interpretation: it directly translates to fault dominance.

Proposition 8.2. The order of B() f is a fault dom-
inance relation in the sense that ∀ ∈ <c c c ci j f i j, (),B
implies that the test set of ic is also a test set for all
faults in jc .

For the ordering to hold, the definition requires
the smaller concept to have attributes that are strictly
a subset of those of the larger one (and exactly reverse
for the objects). This means that the smaller concept dom-
inates the larger by detecting a larger set of faults, using
a common subset of test attributes.

The higher fault detection power of well-chosen,
smaller sets of attributes is entirely in line with the basic
logic of system level test and diagnosis [35]. Detecting the
mere presence of an otherwise unidentified fault activation
from a set of fault activations requires testing for the "most
common properties" of the fault activations. Conversely,
determining the location of the fault, up to the resolution
that is practical for repair actions, requires identifying
the "uncommon" (i.e., distinguishing) fault effect features
within a set of fault activations.

Proposition 8.3. Attribute reduction of clarified con-
texts creates a minimal test set for fault localization with
the maximum possible resolution.

As a proof, we can call on the dominance-interpretation
of the order relation to show that if a test set is minimal,
then it's a reduced attribute set; and if an attribute set is
reduced, then it defines a minimal test set.

Minimality of the test set means that taking away any of
the tests, at least two distinguishable faults would become
indistinguishable. In other words, taking away any attri-
bute creates a concept lattice where at least two objects
that previously were present at least in two different con-
cepts are now only elements of the same concepts.

Removal of an attribute from a context can only
force each existing concept to merge with others or stay
unchanged – no "new" concept will be formed, as a new
(not produced by mergers) concept would mean that
we now distinguish an object set with a maximum com-
mon attribute set that we did not distinguish before; and if
we only delete an attribute, then there's no reason for any
such concept not be present in the original context. And if
only mergers and non-changes are possible, two objects
previously elements of at least two different concepts
becoming part only of the same concepts means that
the number of concepts has to be smaller than originally.

But in this case, taking away an attribute cannot be done
without changing the lattice structure. As it is a property
of reducible attributes that their removal does not change
the lattice structure, there is none of them; meaning that
the lattice is not further attribute-reducible.

In the other direction, a reduced attribute set means that
no test is equivalent to a combination of other tests; there's
no test the fault equivalence set of which could be exactly
created as an intersection of the fault equivalence sets of
other tests. Any combination either includes further ele-
ments, and thus the test contributes additional fault local-
ization; or leaves one or more faults out, and thus the test
contributes fault detection.

Proposition 8.4. The minimal set of implications
(Duquenne-Guigues set of implications) acts as a gener-
ator set (using, e.g., the Armstrong rules) for the deter-
ministic error propagation rules and cross-input / output
port value combination correspondences in the system.
The implications have general validity for the fault acti-
vation set at hand.

Again, this proposition holds through a diagnos-
tic interpretation of the general-purpose FCA construct.
Due to the construction and meaning of the elements of
the formal context, any attribute implication either

1. describes direct or indirect forward propagation;
2. describes direct or indirect "backward propagation";
3. establishes implication in the input or the output port

set of some component; or
4. establishes an implication between two ports not

connected through error propagation.

As implications can be categorized mechanically based
on the error propagation component model, the rule-subset
membership of any base or derived implication is trivially
decidable. Multiple fault activations taken into account may
suppress otherwise deterministic propagation rules by mak-
ing propagation seemingly nondeterministic; in this repre-
sentation fault activation is encoded in the objects, so the
difference in output for a component port due to an activated
internal fault will manifest through the absence of certain
attribute implications due to outcome-ambiguity.

However, FCA is not expected to directly support error
propagation reasoning by creating propagation rules or
minimalizing propagation characteristics at the system
level. Rather, it may prove to be a useful tool for experts
to check the validity of propagation rules, especially when
performed for components fault mode-wise.

Kocsis and Pataricza
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 282–294, 2019 |289

9 A business process EPA example
For demonstration purposes, a simple business process
example using the EPA approach of [18] is presented.

The modeling and analytic method has a number of direct
antecedents. Based on [36], [18] describes mathematically
precise, data flow network based EPA of business processes,
using early modeling notations. [37] refined the approach for
Business Process Model and Notation (BMPN 2) [38] mod-
els. [39] introduced a problem modularization approach for
EPA that the example applies at the implementation level.
Relatedly, [40] discusses the impact of error refinement and
nondeterminism elimination on the specificity and level of
pessimistic overabstraction of the analysis results.

While this work focuses on the qualitative evaluation of
business process models, it has to be noted that the quan-
titative model-based dependability and performance
analysis of business processes has quite a rich literature;
see e.g. [41] and [42].

Fig. 4 depicts the simple example business process
model used here. The process – adapted from a real-life
example – describes the steps taken during initial appli-
cation for a loan. While BPMN supports constructs to
express data dependencies and data flows between activ-
ities (such as data objects), in order to keep the example
simple only the control flow aspect is expressed.

It is also assumed that all activities are implemented
by IT resources that can fail, but are dedicated (that is,
activities don't have common mode faults). The "Manual
check" step is an exception; it is assumed not to be influ-
enced by resources. (Although not discussed here, resource
dependencies can be integrated directly into the model
and used for EPA – see, for instance, [37].)

Fault activation patterns are restricted to resource
faults; activity implementation faults and execution engine
faults are assumed not to be present. These would only add
unnecessary complexity to the example.

For EPA, BPMN elements as well as resources are
mapped to a network of error propagation compo-
nents, with a number of input / output error port types
(see Fig. 5). Port types have associated error mode dic-
tionaries, as shown by Fig. 5. Splitting data and activa-
tion (provision) + timing reflects the way BPMN pres-
ents data and control flow – that is, using two intertwined
dependency graphs. The error mode INACTIVE is
included to differentiate the case when a workflow ele-
ment is "correctly inactive" – e.g., because it belongs to
an execution path that's avoided due to choices in exclu-
sive gateways. A component can use resources and in turn,

(OK,OK)

(OK,OK)

(INACTIVE,NA)(OK,OK)

(INACTIVE,NA)(OK,OK)

(OK,OK)

(OK,OK)

(OMISSION,NA)

(OK,OK)(OK,LATE)

(OK,LATE)
(OK,LATE)

(INACTIVE,NA)

(OK,LATE)

Resource
crashed

(OK,LATE)

(OK,LATE) (OK,LATE)

(INACTIVE,NA)(INACTIVE,NA)

Fig. 4 An example business process model, annotated with a particular
error propagation hypothesis

ComponentA_IN A_OUT

D_IN D_OUT

Activation error modes
Presence dimension:
OK/INACTIVE/OMISSION/COMMISSION
Timing dimension:
OK/EARLY/LATE/NA

Resource error modes
OK/CRASHED/OVERLOADED

Data flow error modes
OK/COARSE/SUBTLE

F_IN

Internal fault mode
NO_FAULT/FAULTY

R_IN R_OUT

Fig. 5 Error propagation component model

290|Kocsis and Pataricza
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 282–294, 2019

act as a resource; the resource error modes used here are
CRASHED and OVERLOADED. Components may also
have internal faults under a binary fault model.

The component model is specialized for the three types
of resource-extended BPMN model elements used here.

• BPMN elements map to error propagation compo-
nents with a 1:1 mapping of modeled relationships to
activation and data input / output error ports.

• Tasks – roughly, the "actual steps" of the process that
perform the orchestrated business activities – also
have a resource error mode input port. Data error
flow is unutilized in the example.

Thirdly, resources are simply components that have
an internal fault mode and a resource error mode out port.

The basic logic of error propagation model translation
to mathematical representation for CSP is the following
(the example does not require explicit temporal compac-
tion through syndromes).

1. Component ports are mapped to decision vari-
ables with a finite domain corresponding to
their port-dictionaries.

2. The process and resource topology is mapped
into equality constraints on port-variable pairs.

3. Input-output port variable constraints express
the error propagation (transformation) rules
for each component.

Propagation rules for non-task BPMN elements are
straightforward and reusable. The same holds for the
"default" rule sets of tasks – although some cases need
careful consideration. For instance, a CRASHED exe-
cution resource transforms an incoming COMMISSION
activation error mode to INACTIVE, and not OMISSION.

The default model includes a number of nondeter-
ministic choices; e.g., by default, a task-internal fault
can cause almost any outgoing error modes (notably, not
COMMISSION). For individual tasks, the rules can be
refined, made more deterministic, or even replaced.

10 Exploratory analysis of hypothesis sets
As a propagation example, consider the error propagation
annotation on Fig. 4, a single error propagation hypoth-
esis solution to the problem of "the resource under the
business registry check activity is CRASHED and all
other resources remain OK". Such a (single) solution is
easily tractable. However, this is not the only solution
of this problem. On one hand, there are those solutions

where execution simply steers clear of the crashed
resource – through a different, in our data-omitting case
nondeterministic, choice on the first or second exclusive
gateway. On the other hand, the last exclusive gateway
"doubles" each solution "unnecessarily"; from the point
of view of system-level effects, it's largely unimportant
which branch the execution chooses there.

It is important to note the way this style of error
propagation analysis (in a broader sense, disturbance
effect propagation analysis) can efficiently blend infer-
ence over distinct, but interconnected service assurance
domains. In the example, the engagement of the watch-
dog-like dependability mechanism, while providing tol-
erance against a "hard" fault, also has a performance
impact; that is, the experienced delay will increase.
Similarly, solving for an overloaded resource for the
"Check business registry" step will lead to a propagat-
ing OK, but LATE activation. At the same time, there are
business process tasks that can "transform back" a propa-
gating error that is purely a performance issue to one that
falls under classic dependability (or performability) con-
cerns. An example is activating a task LATE that is bound
to a specific deadline.

Fig. 6 presents the line diagram for the resulting error
hypothesis set under the constraint that zero or one resource
faults may be present ("multiple instantiation" of faults is
due to the fact that the activation of a specific fault can
nondeterministically cause different outcomes). The dia-
gram is a projection for the input of the "Stop" event (fail-
ure types) and the input errors of the confluence element
of the "Checked earlier?" choice gateway (identified by the
CH4 prefix, denoting the fourth "choice" element in the
model). The latter "probing point" has been selected purely
as an example; in practice, much larger diagrams can be
well assessed than what can be presented here (and the fil-
tering of variables would focus on field replaceable units
and elements with applicable dependability mechanisms;
an aspect that this paper does not address).

The selection leading to the highlighting on the fig-
ure has been performed on the node of the "STOP_IN_T_
LATE" label (timing input port of the "Stop" component
being evaluated to LATE) – that is, we are looking at the
(pure) performance failures at the system level.

The reading of the diagram is the following.
"Upwards", late execution at the end of the process entails
only execution correctly reaching the "Stop" stage – maybe
not interestingly, but reassuringly. "Downwards", the
paths identify that

Kocsis and Pataricza
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 282–294, 2019 |291

• the "late" nature of system-level behavior is asso-
ciated either with one of the inputs of CH4 being
late, or the latency introduced later in the process
(in an XOR manner); and

• the possible resource fault activations leading to the
late activation at the stop event – and these don't
include the "no fault" cases.

In general, line diagrams make the fault-localization
capability of the (full) intent of any node easy to visu-
ally assess. Furthermore, nodes with an owned attribute
express a "most specific" fault-localizing attribute that
makes the "upward" elements of the full intent superfluous
to distinguish its extent from the remainder. Regarding the
full context, line diagrams visually represent the fault
equivalence classes of the finest granularity possible under

the current (filtered) error / failure set; and the hierarchy of
tests that make them increasingly distinguishable.

The exploration made possible by interactive filtering
and highlighting not only enables the agile, visual assess-
ment of pre-designed fault detection and localization
attribute sets, but also helps in expert monitoring feature
selection when it is impractical to formalize all important
feature selection preferences.

11 Use cases for FCA in EPA
Two fundamental use cases categories of FCA in depend-
ability and performance assurance are apparent: support-
ing dependability and performance assurance planning
and application for ontology design.

For the first use case, Fig. 7 presents an overview of the
techniques that the previous sections introduced. The fun-
damental idea here is that the visualization capabilities
and algorithms for various simplifications in FCA can pro-
vide a unique insight into the models, analysis and plan-
ning artifacts at each stage of the workflow.

For visual interpretability, context sizes have to be
kept moderate, thus projections have to be performed
for human processing; however, this is not a major prob-
lem, as the human analyst is generally interested in vali-
dation and taking major design decisions at a low struc-
tural resolution (as intended error containment regions,
replaceable / repairable components, or major functional
blocks). Also, dedicated domain-specific algorithms
(especially practice-proven intelligent heuristics) in the

Fig. 6 Fault activation instance and error / failure port valuation formal
context, with filtering and interactive selection

MDD-based
hypothesis set

derivations

Error
propagation

model

Engineering
model

Diagnostic and test
plans

Validate constraint and
propagation logic

Dependability and
performance mechanism

candidates
Avoidance, mitigation

and repair action
candidates

Validate propagation
covers

Propagation logic
simplification

Expert design of rough
granular mechanisms

and diagnosis

Validation, candidate
comparison

Dependability and performance
assurance planning

FCA-based
exploration and design

Component-
wise

Filtered to
rougher

resolutions

Fig. 7 Applications of FCA in assurance planning

292|Kocsis and Pataricza
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 282–294, 2019

planning workflow can be expected to have much more
favorable computational complexity characteristics then
the exact FCA algorithms. (Although it is an open ques-
tion, whether the statement holds for FCA heuristics and
partial context computation algorithms.)

At the same time, for error propagation models, propaga-
tion hypothesis sets, test plans, etc., FCA carries the prom-
ise to serve as a bridge between automated model building
and the human expert – the very same way as EDA does
for statistical modelling and hypothesis testing. In EDA
as well as here, visualizations and descriptive abstractions
don't serve to replace sophisticated algorithms, but to effi-
ciently reach hypotheses, check a wide range of (implicit)
assumptions and validate modelling results.

The second major category is ontology building.
Formal concepts in general are recognized as an efficient
tool for identifying concepts and relations for ontologies
from data, as well as for merging and completing them
(e.g. through attribute exploration) [43, 44].

There are established approaches to express core con-
cepts, requirements and their relationships in depend-
ability and performance (for dependability see e.g. [45];
specifically for workflow performance, [46]); however,
these tend not to fully utilize the potential of ontologies.
Recently, [47] introduced an ontology that explicitly cap-
tures fault-failure mechanisms and severities (through
concepts, relationships and the use of description logic)
and uses FMEA to determine them.

As it has been directly shown here, FCA is capa-
ble to characterize, partition and order faults by their

effects – and the same is true in reverse, for failures
through fault-attributes (cross table transposition is a
standard FCA technique; regarding the diagnosis and test
interpretation, similar results can be derived). This way,
FCA supports deriving the fault and failure hierarchies
and relationships that emerge from data – in the here dis-
cussed case from computed error propagation hypothesis
sets, but the same holds for (classified / quantized) exper-
imental and monitoring data. For an existing ontology
capturing fault types through their effects, it also enables
checking the effect-wise equivalence or compatibility of
observed effects with pre-modelled ones, and checking
the ontology for completeness and freedom from (formal)
conceptual redundancy.

More generally, FCA is also capable to hierarchically
conceptualize error propagation behaviors (e.g. through
their error containment / creation or dampening / amplifi-
cation capability attributes) and error mitigation require-
ments, opening up the possibility for data-driven, rich
semantic support of all major qualitative aspects of design
for dependability and performance. Future research will
target these challenges.

Acknowledgement
The work was created in commission of the National
University of Public Service under the priority proj-
ect KOFOP-2.1.2-VEKOP-15-2016-00001 titled "Service
Development Establishing Good Governance" in the
Workshop for Science of Public Governance 2017/162
BME-VIK "Smart City - Smart Government".

References
[1] Lloyd, V., Rudd, C. "Service Design", The Stationary Office,

London, United Kingdom, 2007.
[2] Kocsis, I., Pataricza, A., Micskei, Z., Kövi, A., Kocsis, Z.

"Analytics of resource transients in cloud-based applications",
International Journal of Cloud Computing, 2(2-3), pp. 191–212, 2013.

 https://doi.org/10.1504/IJCC.2013.055267
[3] Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C. "Basic con-

cepts and taxonomy of dependable and secure computing",
IEEE Transactions on Dependable and Secure Computing, 1(1),
pp. 11–33, 2004.

 https://doi.org/10.1109/TDSC.2004.2
[4] Wille, R. "Formal Concept Analysis as Mathematical Theory of

Concepts and Concept Hierarchies", In: Ganter, B., Stumme, G.,
Wille, R. (eds.) Formal Concept Analysis: Foundations and
Applications, Lecture Notes in Computer Science, vol. 3626,
Springer, Berlin, Heidelberg, Germany, 2005, pp. 1–33.

 https://doi.org/10.1007/11528784_1

[5] Rajkumar, R., Lee, I., Sha, L., Stankovic, J. "Cyber-physical
Systems: The Next Computing Revolution", In: 47th Design
Automation Conference, Anaheim, USA, 2010, pp. 731–736.

 https://doi.org/10.1145/1837274.1837461
[6] Gallina, B., Punnekkat, S. "FI4FA: A Formalism for Incompletion,

Inconsistency, Interference and Impermanence Failures' Analysis",
In: 37th EUROMICRO Conference on Software Engineering and
Advanced Applications, Oulu, Finland, 2011, pp. 493–500.

 https://doi.org/10.1109/SEAA.2011.80
[7] Bondavalli, A., Simoncini, L. "Failure classification with respect

to detection", In: Second IEEE Workshop on Future Trends of
Distributed Computing Systems, Cairo, Egypt, 1990, pp. 47–53.

 https://doi.org/10.1109/FTDCS.1990.138293
[8] Wolforth, I., Walker, M., Papadopoulos, Y., Grunske, L. "Capture and

reuse of composable failure patterns", International Journal of
Critical Computer-Based Systems, 1(1-3), pp. 128–147, 2010.

 https://doi.org/10.1504/IJCCBS.2010.031710

https://doi.org/10.1504/IJCC.2013.055267
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1007/11528784_1
https://doi.org/10.1145/1837274.1837461
https://doi.org/10.1109/SEAA.2011.80
https://doi.org/10.1109/FTDCS.1990.138293
https://doi.org/10.1504/IJCCBS.2010.031710

Kocsis and Pataricza
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 282–294, 2019 |293

[9] Bernardi, S., Merseguer, J., Petriu, D. C. "Adding Dependability
Analysis Capabilities to the MARTE Profile", In: Czarnecki, K.,
Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) Model Driven
Engineering Languages and Systems, Lecture Notes in Computer
Science, vol. 5301, Springer, Berlin, Heidelberg, Germany, 2008,
pp. 736–750.

 https://doi.org/10.1007/978-3-540-87875-9_51
[10] Pataricza, A. "From the General Resource Model to a General

Fault Modeling Paradigm?", In: Workshop on Crititcal Systems
Development with UML at UML 2002, Dresden, Germany,
2002, pp. 163–171.

[11] Andrews, Z., Fitzgerald, J., Payne, R., Romanovsky, A. "Fault mod-
elling for systems of systems", In: IEEE Eleventh International
Symposium on Autonomous Decentralized Systems (ISADS),
Mexico City, Mexico, 2013, pp. 1–8.

 https://doi.org/10.1109/ISADS.2013.6513445
[12] Delange, J., Feiler, P. "Architecture Fault Modeling with the

AADL Error-Model Annex", In: 40th EUROMICRO Conference
on Software Engineering and Advanced Applications, Verona,
Italy, 2014, pp. 361–368.

 https://doi.org/10.1109/SEAA.2014.20
[13] Bernardi, S., Merseguer, J., Petriu, D. C. "Dependability Modeling

and Analysis of Software Systems Specified with UML",
ACM Computing Surveys, 45(1), pp. 2:1–2:48, 2012.

 https://doi.org/10.1145/2379776.2379778
[14] Montecchi, L., Lollini, P., Bondavalli, A. "An Intermediate

Dependability Model for state-based dependability analysis",
University of Firenze, Dip. Sistemi e Informatica, Florence, Italy,
Rep. RCL101115, 2011.

[15] Bittner, B., Bozzano, M., Cavada, R., Cimatti, A., Gario, M.,
Griggio, A., Mattarei, C., Micheli, A., Zampedri, G. "The xSAP
Safety Analysis Platform", In: Chechik, M., Raskin, J.-F. (eds.)
Tools and Algorithms for the Construction and Analysis of
Systems, Lecture Notes in Computer Science, Vol. 9636, Springer,
Berlin, Heidelberg, Germany, 2016, pp. 533–539.

 https://doi.org/10.1007/978-3-662-49674-9_31
[16] Bozzano, M., Cimatti, A., Katoen, J.-P., Nguyen, V. Y., Noll, T.,

Roveri, M. "Safety, Dependability and Performance Analysis
of Extended AADL Models", The Computer Journal, 54(5),
pp. 754–775, 2011.

 https://doi.org/10.1093/comjnl/bxq024
[17] Wallace, M. "Modular Architectural Representation and Analysis

of Fault Propagation and Transformation", Electronic Notes
in Theoretical Computer Science, 141(3), pp. 53–71, 2005.

 https://doi.org/10.1016/j.entcs.2005.02.051
[18] Pataricza, A. "Model-based dependability analysis", DSc Thesis,

Hungarian Academy of Sciences, 2008.
[19] Pataricza, A. "Systematic Generation of Dependability Cases from

Functional Models", presented at FORMS/FORMAT Symposium
on Formal Methods for Automation and Safety in Railway and
Automotive Systems, Budapest, Hungary, Oct. 9-10, 2008.

[20] Pataricza, A., Urbán, P. "A Combination of Petri-Nets and Linear
Programming in Design for Dependability", Budapest University
of Technology and Economics, Budapest, Hungary, technical
report, 1997. [online] https://pdfs.semanticscholar.org/7864/
dd8f57ba1942b23d15a8ef687ede1f1434cd.pdf [Accessed: 07
October 2018]

[21] Hanmer, R. "Patterns for Fault Tolerant Software", 1st ed.,
John Wiley & Sons, Chichester, England, 2007.

[22] Molnár, V., Majzik, I. "Constraint Programming with Multi-
valued Decision Diagrams: A Saturation Approach", In: 24th PhD
Mini-Symposium, Budapest, Hungary, 2017, pp. 54–57.

[23] Kocsis, I. "Design for Dependability Through Error Propagation
Space Exploration", In: 48th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks Workshops
(DSN-W), Luxembourg, Luxembourg, 2018, pp. 172–178.

 https://doi.org/10.1109/DSN-W.2018.00059
[24] McCluskey, E. J., Clegg, F. W. "Fault Equivalence in Combinational

Logic Networks", IEEE Transactions on Computers, C–20(11),
pp. 1286–1293, 1971.

 https://doi.org/10.1109/T-C.1971.223129
[25] Agrawal, V. D., Prasad, A. V. S. S., Atre, M. V. "Fault collaps-

ing via functional dominance", In: International Test Conference,
Charlotte, NC, USA, 2003, pp. 274–280.

 https://doi.org/10.1109/TEST.2003.1270849
[26] Rish, I., Brodie, M., Ma, S., Odintsova, N., Beygelzimer, A.,

Grabarnik, G., Hernandez, K. "Adaptive diagnosis in distrib-
uted systems", IEEE Transactions on Neural Networks, 16(5),
pp. 1088–1109, 2005.

 https://doi.org/10.1109/TNN.2005.853423
[27] Kuznetsov, S. O. "Machine Learning and Formal Concept

Analysis", In: Eklund, P. (ed.) Concept Lattices, Lecture Notes
in Computer Science, Vol. 2961, Springer, Berlin, Heidelberg,
Germany, 2004, pp. 287–312.

 https://doi.org/10.1007/978-3-540-24651-0_25
[28] Wille, R. "Restructuring Lattice Theory: An Approach Based on

Hierarchies of Concepts", In: Rival, I. (ed.) Ordered Sets, NATO
Advanced Study Institutes Series (Series C — Mathematical and
Physical Sciences), vol. 83, Springer, Dordrecht, The Netherlands,
1982, pp. 445–470.

 https://doi.org/10.1007/978-94-009-7798-3_15
[29] Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.

"Computing iceberg concept lattices with Titanic", Data &
Knowledge Engineering, 42(2), pp. 189–222, 2002.

 https://doi.org/10.1016/S0169-023X(02)00057-5
[30] Dias, S. M., Vieira, N. J. "Concept lattices reduction: Definition,

analysis and classification", Expert Systems with Applications,
42(20), pp. 7084–7097, 2015.

 https://doi.org/10.1016/j.eswa.2015.04.044
[31] Behrens, J. T. "Principles and procedures of exploratory data anal-

ysis", Psychological Methods, 2(2), pp. 131–160, 1997.
 https://doi.org/10.1037/1082-989X.2.2.131
[32] Morgenthaler, S. "Exploratory data analysis", Wiley Interdisciplinary

Reviews: Computational Statistics, 1(1), pp. 33–44, 2009.
 https://doi.org/10.1002/wics.2
[33] Tane, J., Kaiser, T., Objedkov, S. "Concept Explorer", [computer

program] Available at: http://conexp.sourceforge.net/ [Accessed:
07 October 2018]

[34] Fu, G. "FCA based ontology development for data integration",
Information Processing & Management, 52(5), pp. 765–782, 2016.

 https://doi.org/10.1016/j.ipm.2016.02.003
[35] Simpson, W. R., Sheppard, J. W. "System Test and Diagnosis",

1st ed., Springer Science & Business Media, Boston, USA, 1994.
 https://doi.org/10.1007/978-1-4615-2702-2

https://doi.org/10.1007/978-3-540-87875-9_51
https://doi.org/10.1109/ISADS.2013.6513445
https://doi.org/10.1109/SEAA.2014.20
https://doi.org/10.1145/2379776.2379778
https://doi.org/10.1007/978-3-662-49674-9_31
https://doi.org/10.1093/comjnl/bxq024
https://doi.org/10.1016/j.entcs.2005.02.051
https://pdfs.semanticscholar.org/7864/dd8f57ba1942b23d15a8ef687ede1f1434cd.pdf
https://pdfs.semanticscholar.org/7864/dd8f57ba1942b23d15a8ef687ede1f1434cd.pdf
https://doi.org/10.1109/DSN-W.2018.00059
https://doi.org/10.1109/T-C.1971.223129
https://doi.org/10.1109/TEST.2003.1270849
https://doi.org/10.1109/TNN.2005.853423
https://doi.org/10.1007/978-3-540-24651-0_25
https://doi.org/10.1007/978-94-009-7798-3_15
https://doi.org/10.1016/S0169-023X(02)00057-5
https://doi.org/10.1016/j.eswa.2015.04.044
https://doi.org/10.1037/1082-989X.2.2.131
https://doi.org/10.1002/wics.2
http://conexp.sourceforge.net/
https://doi.org/10.1016/j.ipm.2016.02.003
https://doi.org/10.1007/978-1-4615-2702-2

294|Kocsis and Pataricza
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 282–294, 2019

[36] Csertán, Gy., Pataricza, A., Harang, P., Dobán, O., Biros, G.,
Dancsecz, A., Friedler, F. "BPM Based Robust E-business
Application Development", In: Bondavalli, A., Thevenod-Fosse,
P. (eds.) Dependable Computing EDCC-4, Lecture Notes in
Computer Science, Vol. 2485, Springer, Berlin, Heidelberg,
Germany, 2002, pp. 32–43.

 https://doi.org/10.1007/3-540-36080-8_4
[37] Urbanics, G., Gönczy, L., Urbán, B., Hartwig, J., Kocsis, I.

"Combined Error Propagation Analysis and Runtime Event
Detection in Process-Driven Systems", In: Majzik, I., Vieira, M.
(eds.) Software Engineering for Resilient Systems, Lecture Notes
in Computer Science, Vol. 8785, Springer, Cham, Switzerland,
2014, pp. 169–183.

 https://doi.org/10.1007/978-3-319-12241-0_13
[38] Object Management Group "BPMN 2.0", [online] Available at:

http://www.omg.org/spec/BPMN/2.0/ [Accessed: 27 July 2017]
[39] Bonfiglio, V., Brancati, F., Rossi, F., Bondavalli, A., Montecchi, L.,

Pataricza, A., Kocsis, I., Molnár, V. "Composable Framework
Support for Software-FMEA through Model Execution",
In: Bondavalli, A., Brancati, F. (eds.) Certifications of Critical
Systems - The CECRIS Experience, 1st ed., River Publishers,
Gistrup, Denmark, 2017, pp. 183–200.

 https://doi.org/10.13052/rp-9788793519558
[40] Pataricza, A., Kocsis, I., Brancati, F., Vinerbi, L.,

Bondavalli, A. "Lightweight Formal Analysis of Requirements",
In: Bondavalli, A., Brancati, F. (eds.) Certifications of Critical
Systems - The CECRIS Experience, 1st ed., River Publishers,
Gistrup, Denmark, 2017, pp. 143–166.

 https://doi.org/10.13052/rp-9788793519558
[41] Gilmore, S., Gönczy, L., Koch, N., Mayer, P., Tribastone, M.,

Varró, D. "Non-functional properties in the model-driven devel-
opment of service-oriented systems", Software and Systems
Modeling, 10(3), pp. 287–311, 2011.

 https://doi.org/10.1007/s10270-010-0155-y

[42] Gönczy, L., Chiaradonna, S., Di Giandomenico, F., Pataricza, A.,
Bondavalli, A., Bartha, T. "Dependability Evaluation of Web
Service-Based Processes", In: Horváth, A., Telek, M. (eds.) Formal
Methods and Stochastic Models for Performance Evaluation,
Lecture Notes in Computer Science, vol. 4054, Springer, Berlin,
Heidelberg, Germany, 2006, pp. 166–180.

 https://doi.org/10.1007/11777830_12
[43] Ignatov, D. I. "Introduction to Formal Concept Analysis and

Its Applications in Information Retrieval and Related Fields",
In: Braslavski, P., Karpov, N., Worring, M., Volkovich, Y.,
Ignatov, D. (eds.) Information Retrieval, Communications
in Computer and Information Science, Vol. 505, Springer, Cham,
Switzerland, 2015, pp. 42–141.

 https://doi.org/10.1007/978-3-319-25485-2_3
[44] Cimiano, P., Hotho, A., Stumme, G., Tane, J. "Conceptual Knowledge

Processing with Formal Concept Analysis and Ontologies",
In: Eklund, P. (ed.) Concept Lattices, Lecture Notes in Computer
Science, Vol. 2961, Springer, Berlin, Heidelberg, Germany, 2004,
pp. 189–207.

 https://doi.org/10.1007/978-3-540-24651-0_18
[45] Dobson, G., Sawyer, P. "Revisiting Ontology-Based Requirements

Engineering in the age of the Semantic Web", presented at
International Seminar on Dependable Requirements Engineering of
Computerised Systems at NPPs, Halden, Norway, Nov. 27-29, 2006.

[46] Truong, H.-L., Fahringer, T., Nerieri, F., Dustdar, S. "Performance
metrics and ontology for describing performance data of grid work-
flows", In: IEEE International Symposium on Cluster Computing
and the Grid, Cardiff, UK, 2005, pp. 301–308.

 https://doi.org/10.1109/CCGRID.2005.1558569
[47] Sanislav, T., Mois, G., Miclea, L. "An approach to model

dependability of cyber-physical systems", Microprocessors and
Microsystems, 41, pp. 67–76, 2016.

 https://doi.org/10.1016/j.micpro.2015.11.021

https://doi.org/10.1007/3-540-36080-8_4
https://doi.org/10.1007/978-3-319-12241-0_13
http://www.omg.org/spec/BPMN/2.0/
https://doi.org/10.13052/rp-9788793519558
https://doi.org/10.13052/rp-9788793519558
https://doi.org/10.1007/s10270-010-0155-y
https://doi.org/10.1007/11777830_12
https://doi.org/10.1007/978-3-319-25485-2_3
https://doi.org/10.1007/978-3-540-24651-0_18
https://doi.org/10.1109/CCGRID.2005.1558569
https://doi.org/10.1016/j.micpro.2015.11.021

	1 Introduction
	2 Error Propagation Analysis
	3 Modern EPA and CSP-based analysis
	4 Basic diagnostic concepts
	5 Formal Concept Analysis
	6 Visual FCA by example: failure abstractions
	7 Diagnostic FCA
	8 Theoretical justification of diagnostic FCA
	9 A business process EPA example
	10 Exploratory analysis of hypothesis sets
	11 Use cases for FCA in EPA
	Acknowledgement
	References

