
122|https://doi.org/10.3311/PPee.13321
Creative Commons Attribution b

Periodica Polytechnica Electrical Engineering and Computer Science, 63(2), pp. 122–132, 2019

Cite this article as: Bodó, Z., Lantos, B. "Integrating Backstepping Control of Outdoor Quadrotor UAVs", Periodica Polytechnica Electrical Engineering and 
Computer Science, 63(2), pp. 122–132, 2019. https://doi.org/10.3311/PPee.13321

Integrating Backstepping Control of Outdoor Quadrotor UAVs

Zsófia Bodó1*, Béla Lantos1

1 Department of Control Engineering and Information Technology, Faculty of Electrical Engineering and Informatics, 
Budapest University of Technology and Economics, H-1117 Budapest, Magyar Tudósok krt. 2., Hungary

* Corresponding author, e-mail: zsbodo@iit.bme.hu

Received: 17 October 2018, Accepted: 13 December 2018, Published online: 28 February 2019

Abstract

In this paper an improved approach is presented for integrating backstepping control of outdoor quadrotor UAVs. The controller 

uses the approximated nonlinear dynamic model, while for simulation or test purposes the quadrotor can be modeled either with 

the precise or the simplified model. A hierarchical integrating backstepping control algorithm was constructed that has the capability 

of handling every effect in the dynamic model and in the meantime successfully ignores the realistic measurement noises. The 

hierarchical control structure consists of position, attitude and rotor control, extended with path design with continuous acceleration 

and/or continuous jerk. The state estimation is based on sensor fusion. Control parameters can be easily tuned. Adaptive laws are 

elaborated for mass and vertical disturbance force estimation. The tracking algorithm is able to follow the prescribed path with small 

error. The sensory system and the state estimation are prepared for outdoor applications. The embedded control system contains a 

HIL extension to test the control algorithms before the first flight under real time conditions.
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1 Introduction
The research field of unmanned aerial vehicles (UAVs) 
is highly prospering these days. Although the field was 
mainly motivated by the possible military applications, 
the civilian usage is emerging quickly. Several military 
and civilian professionals are interested in developing an 
autonomous mini unmanned outdoor quadrotor helicopter. 
The benefits of such a system are significant, in the near 
future the quadrotor may be able to precisely follow a pre-
defined path while performing a measurement series such 
as performing a surveillance above a predefined territory. 

In the control of quadrotor helicopters several control 
algorithms can be considered, including linear and non-
linear algorithms [1] or soft-computing algorithms [2]. In 
the domain of nonlinear control algorithms, the most pop-
ular technique is the backstepping approach, although sev-
eral other techniques can be found in this field, including 
the sliding mode technique [3] and feedback linearization 
control algorithms [4]. A full state backstepping algorithm 
is presented in [5]. 

The paper is organized as the following. Section 2 pres-
ents the kinematic and dynamic models of quadrotors. 
Section 3 describes the standard backstepping control for 

single variable systems. Section 4 presents the hierarchical 
backstepping control of UAVs and the cascade controller 
structure. Section 5 describes the path design and track-
ing methods. Section 6 presents the adaptive extension for 
mass and vertical force identification. Section 7 illustrates 
the efficiency of the developed control approaches using 
simulation. Section 8 deals with the embedded control real-
ization and the HIL test. Section 9 concludes the paper. 

2 Dynamic model of quadrotors
2.1 Kinematic model of aerial vehicles
It can be assumed that a coordinate system (frame) EK  
was fixed to the Earth, therefore it might be considered as 
an inertial frame of reference. In our paper the frame con-
sidered to be fixed might be the NED frame. 

Another coordinate system fixed to the center of gravity 
of the quadrotor is HK , it can be described by its position 

( )Tx y zξ = , ,  and orientation (RPY angles) ( )Tη = Φ,Θ,Ψ  
relative to EK . Translational and angular velocities v  and 
ω  of the helicopter are given in HK . 

The orientation may be described by the (orthonormal) 
matrix tR  as follows: 
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The relationship between ξ  and η  and translational 
and angular velocities v  and ω  of the helicopter can be 
described as 
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and the time derivative of ω  can be written as 

r rR Rε ω η η= = + .

       (4)

Notice that the kinematic model is similar for both fixed 
wing and quadrotor UAVs. 

2.2 Dynamic model
The concept of the quadrotor helicopter is shown in Fig. 1. 
Four brushless DC motors act as the four actuators of the 
quadrotor helicopter. They exert lift forces if  propor-
tional to the square of the angular velocities iΩ  of the 
actuators. The rotational directions of the propellers are 
shown in the sketch. 

When applying Newton’s laws, the translational and 
rotational motions of the helicopter in HK  may be rep-
resented by 

( )

( )
ext

ext c c

F mv mv

T I I

ω

ω ω ω

= + × ,

= + × ,
∑
∑





    (5)

where cI  describes the quadcopter’s inertia matrix. Let 
us assume that it can be described by a diagonal matrix 

( )diagc x y zI I I I= , , . extF∑  and extT∑  describe the 
forces and torques respectively applied to the quadrotor 
helicopter expressed in HK . These forces and torques are 
partly caused by the rotation of the rotors ( F  and T ), the 
aerodynamic friction ( aF  and aT ), the gravitational effect 
( gF ) in the translational motion and the gyroscopic effect 
( gT ) in the rotational motion: 

ext a g

ext a g

F F F F

T T T T

= + + ,

= + +
∑
∑

    (6)

Each of the helicopter’s four actuators exert a lift force 
which is proportional to the square of the angular veloc-
ities iΩ  of the actuators ( 2

i if b= Ω ). The BLDC motors’ 
reference signals can be programmed in iΩ . The resulting 
torque and lift force might be described as: 
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where l , b , d  are helicopter and rotor constants. The 
force F  can then be rewritten as ( )0 0 TF f= , , . 

The gravitational force points to the negative z -axis, 
hence it yields ( )0 0 TT T

g t tF mR g mR G= − , , = − . The gyro-
scopic effect can be represented as 

( ) ( ) ( )2 4 1 3g r r rT k I kIω ω= − × Ω +Ω −Ω −Ω = − × Ω .   
      (8)

The rotor inertia value is rI  and the third unit vector is k .
The aerodynamic friction at low speeds can well be 

approximated by the linear formulas a tF K v= −  and 
a rT K ω= − . 

Using the equations above the motion equations of the 
quadrotor can be derived:

( ) ( ).
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t t t t
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  (9)

2.3 Simplified dynamic model
A simplified dynamic model of the quadrotor can be 
described by disregarding certain effects and thus apply-
ing corresponding approximations. For slow helicopter 
motion all the aerodynamic effects can be neglected. In 
practice this means that tK  and rK  might be approxi-
mated as zero matrices. Slow motion in lateral directions 
means little roll and pitch angle changes, therefore rR  can 
be approximated by a 3-by-3 unit matrix. Such simplifica-
tion cannot be applied to tR . 
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Fig. 1 Concept of the quadrotor helicopter
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Consequently, the dynamic equations in Eq. (9) become 

( )

T T
t t

c c r r

F mR mR G
T I I I

ξ
η η η

≈ − ,

≈ + × + Ω .



  

   (10)

The six equations are the ones that can be found in 
[3, 6]. Because of their importance in later use in the paper 
they will be repeated here. 
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2.4 Rotor dynamics
Each of the four brushless DC motor’s dynamics can be 
represented as follows: 

2

k
m k k e k

kr m k r k s

di
L u Ri k

dt
I k i k k

,= − − Ω ,

= − Ω − ,Ω

 

   (12)

where ek , mk  and sk  describes the back emf constant, the 
motor torque constant and the friction constant, respec-
tively. For negligible motors’ inductance Eq. (12) can be 
transformed to 

2
0 1 2k k k u m kk k k k uΩ, Ω, Ω, ,= − − Ω − Ω + ,Ω   (13)

0 1 2
s m e mr

u
r r r r

k k k kkk k k k
I I R I I RΩ, Ω, Ω,= , = , = , = .   (14)

3 Standard integral backstepping
In order to compensate disturbance effects in steady state 
the usual way is adding the error integrals to the control 
components. Hence we present first a standard integral 
backstepping control (IBC) approach which will be used 
many times in the sequel. By our knowledge the first pub-
lication in this field appeared in [7] for motor control and 
later it became popular also in quadrotor helicopter control.

Let us consider the simple single variable system ( a  
and b  may be nonlinear) 

1 2

2

x x
x a bu
=
= +





     (15)

and define the errors and their derivatives as follows: 
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The virtual control 2dx  will be chosen as 
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Then the error derivatives satisfy the following relations:
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The form 2 2 2 1e c e e= − −  was prescribed from stability 
reason. It will be assumed that 1 2 0c cλ, , > . Using the two 
equivalent forms of 2e  it follows 

( ) ( ) ( )
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      (19)
Let us consider now the following Lyapunov function V  
and its derivative: 

( ) ( )

2 2 2
1 1 2 1 1 1 1 2 2

1 1 1 1 1 1 2 2 2 2 1

1 1 1
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dVV p e e p p e e e e
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Leaving the canceling terms it remains 

2 2
1 1 2 2 0.dV c e c e

dt
= − − ≤     (20)

Hence, by using LaSalle’s stability theorem, the closed 
loop system with integrator backstepping control is glob-
ally asymptotically stable (GAS) if 1 2 0c cλ, , > . 

Algorithm for controller parameter design: Within sta-
bility an important question is how to choose the control-
ler’s parameters for prescribed speed (closed loop eigen-
values) of the control transients. By Eq. (18) and the use of 
the control law Eq. (19) the closed loop is 

1 1 1
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hence the characteristic equation is 

( ) ( )3 2
1 2 1 2 21 0.s c c s c c s cλ λ+ + + + + + =

If the closed loop eigenvalues are prescribed by 
s a s a s a

1 1 2 2 3 3
= − = − = −, ,   and 1 2 3a a a≥ ≥  then the 

characteristic polynomial is 

( ) ( )3 2
1 2 3 1 2 1 3 2 3 1 2 3s a a a s a a a a a a s a a a+ + + + + + +
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and by comparison of the coefficients yields 

( ) ( )3 2
2 1 2 3 2 1 2 1 3 2 3 2 1 2 3

1 2 3 2 1 1 2 3 2

1 0c a a a c a a a a a a c a a a
a a a c c a a a cλ

− + + + + + − − = ,

= , = + + − .

 

      (21)

Because of the ordering of the ia  values the largest 2 0c >  
solution of the cubic polynomial has to be chosen. 
Example: If 1 2 10a a= =  and 3 1a =  (which is a typi-
cal choice in SI units for 0 01sT s= .  sampling time and 
integral control) then the characteristic polynomial is 

3 221 119 100s s s+ + +  and 2 11 0486c = . , 1 9 9514c = .  
and 9 0509λ = .  with the prescribed eigenvalues 

( ) ( )eig 10 10 1 TA = − ,− ,− . 

4 Hierarchical backstepping control
A full state backstepping algorithm is represented in 
[5] without error integral action. Here the control law is 
obtained step-by-step through the stabilization of three 
virtual subsystems and high order derivatives of the path 
are needed which can cause numerical problems. The heli-
copter’s dynamic model that was shown in Section 2 is 
comparable to that in the cited paper. In [3, 6, 8], a back-
stepping method is applied to the simplified dynamic 
model of the quadrotor. These serve as the base of the 
method that is represented in this section. 

The next subsections focus on the construction of such 
an algorithm that is capable of explicitly handling all the 
effects appearing in Eq. (9), while being ignorant to realis-
tic measurement noises and tolerating disturbances. 

4.1 Cascade controller structure
Since the helicopter is underactuated, the concept is that 
the helicopter is required to track a path defined by its 
( )d d d dx y z, , ,Ψ  coordinates. The helicopter’s roll and 
pitch angles are stabilized to 0 internally. The control 
algorithm can be divided into three main parts. At first, 
the translational part of the vehicle dynamics is controlled, 
which then produces the two missing reference signals to 
the attitude control system. The third part is responsi-
ble for generating the input signals of the BLDC motors. 
The cascade structure of the controller is shown in Fig. 2, 
where indexes d  and m  denote desired and measured 
values, respectively. 

Kalman filters can tolerate the difference of measure-
ment frequencies of the position and orientation (GPS or 
vision system) and acceleration and velocity (IMU). The 
sampling time of the motor control is set to 10ms. 

4.2 Position control
Using the approximating dynamic model (neglecting aero-
dynamic friction etc.) the translational motion equations 
can be brought to the following form: 

0
0
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As can be seen the standard IBC can be applied for every 
component of the position vector. Especially for the 
z-component follows 
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Because of the special form of x  and y  yields 
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It is evident to manage the errors and virtual controls as 
usual in the standard form, however to express a  from 
the standard form because 0b = . Therefore we can keep 
the content of the brackets until the desired accelera-
tions, for example in the first component taking [ ]d x

x+   
and determine from it [ ]:

x

m
df x

u xξ = …+  , and similarly 
[ ]:

y

m
df y

u yξ = +  . Then the desired orientation for the 
attitude control can be determined from them: 
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Fig. 2 The cascade structure of the controller
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The reason why these signals can be considered as 
reference signals is that as the helicopter approaches the 
desired coordinates, they converge to zero. 

Notice that the errors, error integrals and virtual con-
trols have to be determined separately both in x  and y  
direction according to the standard IBC form. 

4.3 Attitude control
The design is similar to the standard form and can be 
applied component-wise. Only the rotation around the 
x-axis will be considered, the other rotations can be man-
aged similarly. 

Let us consider the approximating dynamic model as 
follows (neglecting aerodynamical friction etc.): 

1 2 1r xa a bτΦ = ΘΨ + Ω Θ+       (25)

where ( )1 y z xa I I I= − , 2 r xa I I= −  and 1 1 xb I= . Then 
the IBC control is the following: 

( ) ( )
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= + +Φ −Φ.∫
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Similar relations are valid for 
1 2y e eτ Θ Θ, ,  and 

1 2z e eτ Ψ Ψ, , , 
respectively: 

3 4 2

5 3

r y

z

a a b

a b

τ

τ

Θ = ΨΦ + Ω Φ +

Ψ= ΦΘ+

   

 

where ( )3 z x ya I I I= − , 4 r ya I I= − , 2 1 yb I= , 
( )5 x y za I I I= − , 3 1 zb I= . 

4.4 Rotor control
The calculation of mu  differs a little from the method used 
for inputs. Let us consider one of the rotors and for sim-
plicity suppress the index, then 
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For stability proof consider the Lyapunov function V  and 
its derivative: 

2 21 0
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dVV e e e c e
dtΩ Ω Ω Ω Ω= ⇒ = = − <   (27)

Hence the rotor controls are stable. Since the four motors 
are considered to be identical, mg  can be any of m kg , -s 
and therefore it is a scalar. Since T  and f  are linear com-
binations of 2

dkΩ , hence, using symbolic matrix inversion, 

dkΩ  are the element-wise square roots of the vector at the 
left side:
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      (28)

4.5 State estimation
The control algorithms need the state variables that may 
be unmeasured or noisy, hence they have to be estimated 
from the available sensor measurements. For outdoor 
applications the state estimation is based on sensor fusion 
of GPS, IMU and magnetometer. The approach was pre-
sented in our earlier paper [9]. The quaternion and 3xEKF 
(Extended Kalman Filter) based technique can well-toler-
ate the large difference between IMU and GPS sampling 
frequencies and can be applied for any type of outdoor 
vehicles. 

The efficiency of the method was demonstrated for real 
flight data of a fixed wing propeller driven UAV, how-
ever the method can also be applied for outdoor quadrotor 
UAVs considered in this paper. Beside unit quaternion, the 
orientation (attitude) is also presented in the form of Euler 
roll, pitch, yaw ( )Φ,Θ,Ψ  angles. The biases of the sen-
sors are online corrected. 

4.6 Parameter tuning of the controller
The tuning of parameters of the controllers are very sim-
ple because only the positivity should be guaranteed. The 
numerical values are tightly related to the speed and the 
order of forces and torques influencing the power con-
sumption. It should also be taken into consideration that 
by increasing the speed of control saturation may be 
caused in the actuators. Simulation experiments can help 
in parameter choice based on Eq. (21). 
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5 Path design and tracking
The typical motion of the quadrotor helicopter can be fit 
together from takeoff, hovering, attitude change in fixed 
position and motion along a straight line in fixed direction. 
These sections must be connected with continuous acceler-
ation or possibly with smooth acceleration (continuous jerk). 

In order to spar power the goal is to design path in 
Cartesian space with continuous/smooth linear and angu-
lar accelerations. It can be assumed that the prescribed 
information for the path is given in the form of the 
sequences { }1

nξ  and { }1
nΨ . Therefore the path information 

is a sequence of 4-dimensional vectors with scalar com-
ponents. Hence, the path design problem can be reduced 
to the path design of a fictitious robot with the joint vec-
tor ( )Tq x y z= , , ,Ψ  or its subset, then it can be solved 
by repeating path design in a single scalar variable with 
bounded and continuous/smooth second order derivative. 
For the two cases different algorithms will be presented. 

5.1 Path design with continuous acceleration
The path can be divided into B B B C′ ′′→ → →  sections 
in the normalized time [ ]t Tτ∈ − ,  where the scalar ( )y t  
is of fourth order if [ )t τ τ∈ − ,  and linear if [ )t Tτ∈ , . In 
order to obtain smooth solution it is required 

y t
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Path design algorithm in q: 
1. Step 1: Prepare the computation of path coefficients:
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Computation of the coefficients 0 4a a, ,  (can be 
vectorized). Set the standardized time to t τ:= − . 

2. Step 2: Repeat while t T τ< − : 

( )
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( ) [ )

4

1

if
if

.

P t t
q t

P t t T

t t

τ τ
τ τ

 ∈ − ,=  ∈ , −
:= + ∆

Here ( )4P t  and ( )1P t  denote polynomials of given order, 
∆  is the step-size (sampling time etc.). The actual path posi-
tion ( )d tξ  comes immediately from the first three compo-
nents of ( )q t . The last component of ( )q t  is defining the 
desired yaw angle ( )d tΨ  for the orientation. The remaining 
Euler angles ( )d tΦ  and ( )d tΘ  are the result of real time 
computations (see above) and the desired orientation matrix 
can be determined by substituting them into ( )tR t .

5.2 Path design with continuous jerk
In case of the motion along a straight line in fixed direc-
tion, the yaw angle dΨ  must be constant on the traveling 
portion instead of to be linear as above, while the acceler-
ation has to be smooth, i.e. the jerk is continuous. For this 
purpose a special path design is suggested where the sca-
lar ( )y t  is of fifth order satisfying 

( )

( ) ( ) ( ) ( )
( ) ( )

( )

5 4 3 20 31 2
4 5

0 0 0 0

0 0 1 3

0 25 3
0 0

4 5
0

60 24 6 2
0,   0,

0
45 15
4 4

15 1 .
16 2

B C

C B C B

C B
C B

a aa ay t t t t t a t a

y y y y

y q y q a a
q q q q

a a

q q
a a q q

τ τ τ τ

τ τ

τ τ

τ

= + + + + +

− = = − = =

− = , = ⇒ = = ,

− −
= , = − ,

−
= , = +

   

Due to practical consideration 0 nτ τ= ⋅  is allowed where 
n  is an integer number. The main difference to the pre-
vious algorithm is that here ( ) Cy t q=  is constant on the 
traveling part. 

Since the path evaluations are performed in normalized 
time, hence a precise technique was elaborated to convert 
paths obtained for different τ  and 0τ  values to absolute 
time by taking into consideration also the sampling time, 
such that the desired paths remains continuous/smooth. 
Notice that small spikes in the acceleration could cause 
large torque/force signals. 

5.3 The tracking algorithm with filtering and multiple 
differentiation
The purpose of the control design is to track a predefined 
trajectory with the smallest possible tracking error. In 
practice a navigation point must be approximated with 
a predefined accuracy considering the positions and 
orientations. 

The conditions for position tracking ensures that the 
helicopter will remain in the proximity of the navigation 
points while keeping the motion continuous which is sup-
ported by the path design. 
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On the other hand, the orientation control algorithm 
needs the derivatives of dΦ  and dΘ  by the time. For robust 
filtering and differentiation a fictitious control system (inte-
grator plant 1 s , first order serial compensator ( )1 2F s F+  
and outer unity feedback) was designed. Denote α  anyone 
of the two angles to be differentiated, then 

( )
1 2

2 1 1 2 2

1 1

2 2

F r F
y
y

α α
α α α

α
α

=

= − −

=
=





where r  is the input signal to be differentiated, 1y  is the 
filtered signal and 2y  is the numerically differentiated 
input. The obtained term can be cascaded considering 2y  
as the input for the next term. Then the state equation of 
the composite member is as follows: 

1 2

2 1 1 2 2 1

3 4

4 1 2 1 3 2 4

1 1

2 2

3 4

F F F r

F F F
y
y
y

α α
α α α
α α
α α α α

α
α
α

=
= − − +
=
= − −
=
=
=









where 1y  is the filtered input rf , 2y  is the first derivative 
dr  and 3y  is the second derivative ddr . 

6 Adaptive control
The standard IBC can be extended in the direction of 
parameter and disturbance force identification. 

6.1 Modeling the parameter changes
Denote ˆθ θ θ= +   the unknown parameter vector then it 
follows: 

( ) ( )

ˆ ˆ

2
1 1 1 1 2 2 1 1 1 1

ˆˆ

1 ˆ1 .ˆ

i i
i i

i ii i

a bu

d

a ba bu a bu u

u c e c c e c p x a
b

θ θ
θ θ

θ θ

λ λ

+

∂ ∂
+ = + + +

∂ ∂

 := − + + + − + − 

∑ ∑




 





Prescribing as usual from stability point of view 
2 2 2 1e c e e:= − −  then

2 2 2 1
ˆˆ .e c e e a bu a bu + + = − − − − 



 


Taking into consideration the chosen form of u  and 
canceling the equivalent terms we obtain for the parame-
ter identification the relation: 

ˆ ˆ2 2 2 1
i i

i i
i ii i

a be c e e u
θ θ
θ θ

θ θ
∂ ∂

= − − − +
∂ ∂∑ ∑ 



  (29)

From application point of view, a typical reason of param-
eter change is the change of the mass. Such situation 
arises if some load will be dropped (parcel, food etc.) in 
civil application or some missile will be fired in military 
application. 

In both cases the remaining mass of the quadrotor is 
changing which will have an influence to the control prop-
erties. It will be assumed that the change of the center of 
gravity (COG) can be neglected or can be considered as 
a vertical disturbance, and the controller is able to repro-
gram itself if this information is available. 

6.2 Mass and vertical force identification
Let us consider the identification of the mass m  and a dis-
turbance force zD : 

ˆ ˆ ˆ0

ˆ ˆ ˆ0 .

z

a b

z z z z z z z z

C CDz g u
m m

m m m m m m m m

D D D D D D D D

Φ Θ= − + +

= + ⇒ = = + ⇒ = −

= + ⇒ = = + ⇒ = −



 

 
 

   

 
 

   

Using the general results above, it follows: 
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(30)

Using Lyapunov theory: 

2 2 2 2 2
1 2

1 2

1 1 1 2 2
1 2

1 1 1 1 1 1 1
ˆ ˆ2 2 2 2 2

ˆˆ .
ˆ ˆ

z z z z z
z z

z
z z z z z z z z

z z

V p e e m D
m m

DdV mp e e e e e m D
dt m m

λ
γ γ

λ
γ γ

= + + + +

= + + − −













 

Substituting 1 1 1 2z z z z z ze c e p eλ= − − +  from standard the-
ory and 2ze  from above it follows: 
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( )

1 1 2 2

2 1

2

2 2

2
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1

2
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dt
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Making the braces to zero then the stability condition is 
satisfied by 2 2

1 1 2 2 0dV
z z z zdt c e c e= − − ≤  and an adaptation law 

is obtained for mass and disturbance force identification. 
Adaptation law: 

( ) ( )1 2 1 1 1 1 2 2 1 1

2ˆ 1z z z z z z z z z z z dm e c e c c e c p z gγ λ λ = − + + + − + + 




 
      

(31)

2 2
ˆ

z z zD eγ= −      (32)

7 Simulation tests
The mechanical parameters of the helicopter and the 
BLDC motors with the rotors are based on the planned 
dimensions, the masses of purchased elements. These val-
ues are summarized in Table 1. 

For path design with continuous acceleration (in x y z, ,  
directions) 5τ =  and 0 07i maxq , = .  were chosen, while for 
path design with continuous jerk (only for Ψ ) 0 5τ τ=  
and traveling time T  according to the values obtained for 
x y z, ,  directions were chosen (all values are in SI units). 

7.1 IBC with known system parameters
As a final result of the integration of all the components 
of the integrating backstepping control (IBC) the track-
ing of a complex trajectory consisting of a general 3D line 
followed by a pentagon in horizontal plane is presented in 
Fig. 3 for known helicopter mass. 

7.2 Estimation of the initial helicopter mass
In some cases the initial mass of the helicopter is unknown, 
for example because it was changed after the last flight. 
Hence the parameter estimation can help to obtain reli-
able values of the mass for the IBC control. The estimation 
results are shown in Fig. 4 for unknown helicopter mass. 
The starting value was 1 5 realm. . 

Beside the mass estimation also the position trajectory 
and the errors 1ze , 2ze  and 1ze∫  are shown because of their 
influence of the helicopter behavior. It can be seen that the 
position in z -direction can become zero (and also nega-
tive), hence the integration of the 1ze  component should be 
switched out for large errors. The signal IMODE shows 
whether the integration is running (1) or switched out (0). 
This concept is applied also for other control situations. 

Table 1 The physical parameters of the helicopter and the motors

Parameter Value 

l 0.23 m 

b 1.759 ∙ 10−5kg m

d 1.759 ∙ 10−6kgm2

Ix, Iy 1.32 ∙ 10−2kgm2

Iz 2.33 ∙ 10−2kgm2

Ir 5.626 ∙ 10−5kgm2

m 1.4 kg

Kt [ ]( )diag 0 1 0 1 0 15 Ns m. , . , .
 

Kr [ ]( )diag 0 1 0 1 0 15 Nsm. , . , .
 

kΩ,0 94.37s−2

kΩ,1 3.02s−1

kΩ,2 0.005

ku 139.44 V/s2
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Fig. 3 The position and attitude of the helicopter using IBC control for 
known helicopter mass

(a) Position

(b) Attitude
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7.3 Estimation of varying mass and vertical 
disturbance force
The estimation results of the varying mass and the ver-
tical disturbance force are shown in Fig. 5 together with 
the position and the integral errors. The error integration 
is switched out if 1ze  is larger than 0 01m.  which is typical 
during the initial phase of parameter estimation. 

7.4 Attitude and Rotor Control
The desired dΦ  and dΘ  is produced by the position con-
trol system and has to be differentiated several times by 
the cascaded fictitious control systems for use in the atti-
tude IBC control. 

The rotor controls have also IBC principle but some 
modifications were necessary because of the (only) first 
order dynamics. Controller parameter design for IBC rotor 
control was discussed earlier. 

The attitude control transients and the angular veloci-
ties and driving torques of the motors are shown in Fig. 6. 

8 Embedded Control Realization
The hierarchical structure of the controller has already 
been shown in Fig. 2. 

8.1 Control architecture
For embedded realization a hardware architecture was 
developed that is shown in Fig. 7. 

The control loop of the helicopter requires accurate 
position and orientation information. A primary sen-
sor for this is Crossbow MNAV100CA containing GPS 
and inertial measurement unit (IMU) which provides 3D 
acceleration and angular velocity and magnetometer mea-
surements together with pressure and temperature infor-
mation. It contains also 9 servo PWM outputs (not used 
here). Crossbow's MICRO-VIEW software is also included 
to assist users with calibration, control, data collection and 
overall system development. 

Part of the architecture is the motor control unit. The 
rotors are driven by brushless DC (BLDC) motors. The 
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motor controllers and the sensory unit are connected to the 
CPU via CAN bus. 

The on-board computer is a phyCORE-MPC555 
equipped with a floating point unit and the controller can 
be developed at MATLAB/Simulink level. The internal 
bus is CAN 2.0. The hardware architecture contains an RF 
channel providing bidirectional communication between 
the quadrotor and the ground station including also a cam-
era unit. The ground station sends commands and refer-
ence path information to the CPU. The helicopter sends 
status information to the ground. 

8.2 Hardware-in-the-loop test
Because of the complexity of flying systems, it is inev-
itable to verify their control systems thoroughly before 
flight. Before implementing the control algorithm on the 
embedded target, it was tested using hardware-in-the-
loop method (HIL). The tests were aided by a dSPACE 
DS1103 board on which the helicopter model and the 

sensory system's measurements were emulated while 
further experiments included the real control architec-
ture and software realizing the control algorithm and the 
3xEKF based state estimation.

The scheme of the HIL test can be found in Chapter 6 
of [10]. 

9 Conclusions
The paper has been dealt with the problem of modeling 
and control of outdoor quadrotor helicopters (UAVs). 
Novelties of the paper are the following: 

1. A hierarchical integrating backstepping based non-
linear algorithm was elaborated for stabilizing and 
path tracking including controller parameter design. 

2. This paper’s results differ from earlier ones in the 
tuning of the stabilizing controllers and that they are 
integrated with a novel quaternion based approach of 
state estimation usable for any type of vehicles.

3. Adaptation laws are presented for mass and distur-
bance force estimation. 

4. A technique was elaborated for switch in/out of the 
integrators in the several IBC controllers based on 
the norm of the error which can increase especially 
during parameter estimation. 

5. An embedded control architecture was suggested 
which is general enough for many types of vehicles. 

Future research will deal with the control of fixed wing 
UAVs based on the developed control architecture and 
sensory system.
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