
244|https://doi.org/10.3311/PPee.13424
Creative Commons Attribution b

Periodica Polytechnica Electrical Engineering and Computer Science, 63(4), pp. 244–253, 2019

Cite this article as: Kokila, J., Das, M. A., Begum, B. S., Ramasubramanian, N. "Hardware Signature Generation Using a Hybrid PUF and FSM Model for
an SoC Architecture", Periodica Polytechnica Elecrical Engineering and Computer Science, 63(4), pp. 244–253, 2019. https://doi.org/10.3311/PPee.13424

Hardware Signature Generation Using a Hybrid PUF and FSM
Model for an SoC Architecture

Jagadeesh Kokila1*, Arjun Murali Das1, Basha Shameedha Begum1, Natarajan Ramasubramanian1

1	Department of Computer Science and Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu, 620015, India
*	Corresponding author, e-mail: jk.cse09@gmail.com

Received: 10 November 2018, Accepted: 26 April 2019, Published online: 14 June 2019

Abstract

Security is becoming an important issue in the recent System on Chip (SoC) design due to various hardware attacks that can affect

manufacturers, system designers or end users. Major issues include hardware Trojan attack, hardware intellectual property (IP) theft,

such as an illegal sale or use of firm intellectual property cores or integrated circuits (ICs) and physical attacks. A hybrid model

consisting of Arbiter PUF and Butterfly PUF are used to generate random responses which are fed to a Finite State Machine (FSM). A

three-level FSM was designed to generate the signature correctly to authenticate IPs. The results were obtained with the help of three

Intellectual Property (IP) cores – Zedboard OLED IP, ISCAS’89 s1423 Benchmark IP and a Full Adder IP. A 16-bit arbiter PUF and Butterfly

PUF have been implemented on a 28nm FPGA. The average execution time to generate hardware signature for three IP cores was

found to be 4.78 seconds (5 iterations) which is considerably low.

Keywords

Physical Unclonable Function (PUF), Intellectual Property (IP), System on Chip (SoC), Finite State Machine (FSM), Zedboard

1 Introduction
A system on a chip (SoC) combines the essential electronic
circuits of various computer components onto a single die.
An SoC can perform analog, digital or even mixed-sig-
nal operations. It mainly consists of a graphical process-
ing unit (GPU), a multi core central processing unit, and
a system memory (RAM). SoC FPGA devices integrate
both processor and FPGA architectures into a single sub-
strate. Therefore, they provide lower power, smaller board
size, higher integration, and higher bandwidth communi-
cation between the processor and FPGA logic. They also
contain different peripherals, a Field Programmable Gate
Array, an on-chip memory, and different types of trans-
ceivers. The advantages of using FPGA in a design are
considered to be lower non-recurring engineering costs,
shorter time-to-market, and higher flexibility. These rea-
sons made FPGA a prevalent design platform for automo-
tive, aerospace and consumer electronics applications.

An IP core is a design block that is used for product
development in reconfigurable devices like ASICS or
FPGAs. Due to the elements of design reuse, IP cores are
essential parts of the growing electronic design automa-
tion industry. Ideally, an IP [1] core should be inserted

into any vendor technology or design methodology effort-
lessly. Universal Serial Bus (USB), Phase Locked Loops
(PLLs), Digital to Analog converters, and AMBA inter-
faces are some of the examples of IP cores. It can be cate-
gorized into three – hard, firm and soft cores. Hard cores
are physical indicators of the IP design. These are mainly
used in plug and play applications. Hard cores are less
flexible and portable compared to the other two types of
cores. Firm cores carry placement data that are configu-
rable to different applications which are like hard cores.
Soft cores are made of logic gates with associated inter-
connections. They are even available as a file written in
Hardware description language like VHDL or Verilog.

IP cores are licensed and distributed like software to a
system developer. Protection against unlicensed usage is
a serious threat to the IP vendors which enables cloning
of IP cores [2, 3]. This threat is taken into consideration
when designing future embedded systems. By using IP
cores, speed of product delivery can be rapidly increased.
This will boost the trade with IP cores. So, the IP ven-
dors need to address the issue of security against unli-
censed usage of IP cores. It can also be found that the area

https://doi.org/10.3311/PPee.13424
https://doi.org/10.3311/PPee.13424
mailto:jk.cse09@gmail.com

Kokila et al.
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 244–253, 2019|245

and power overhead for additional security or reliability
functions will decrease with increasing chip area. Hence
a secure and reliable IP core is necessary for future sys-
tem development.

1.1 Hardware Signature
Modern design methodologies are based on reusable mod-
ules called IP cores. The modular nature, reduced sys-
tem complexity and improved development time are some
of the advantages of a reuse-based design methodology.
Violation of Intellectual Property (IP) rights of the reus-
able modules is one of the risks in this type of design
methodology. A third-party IP core vendor can sell an
IP core as their own without even knowing the internal
architecture or implementation. This is due to the modu-
lar nature of IP cores which enables easy integration with
other components. Hence the development of an intellec-
tual property protection (IPP) mechanisms is vital for the
evolving reuse-based system design methodology. Several
watermarking techniques for the protection of IP cores
have been proposed in the previous years. One such pro-
tection scheme is to embed a digital signature or a hard-
ware signature in the IP core. This watermarking tech-
nique is applied at hardware description language (HDL)
level. This signature is preserved throughout the process
of synthesis, placement and routing.

In this paper, the hardware signature is generated using
a hybrid PUF and FSM model. The generated signature is
embedded in the external IP core [4]. During verification,
the BPUF key is extracted from the signature and com-
pared with the inbuilt values in the FSM.

1.2 Physical Unclonable Function (PUF)
Physical unclonable functions (PUFs) [5 - 8] are innova-
tive hardware primitives that are used in cryptographic
applications like authentication or secret key generation.
They are advantageous over existing digital storage mech-
anisms for several reasons:

•	 PUF hardware [9] is made of simple digital circuits
consisting of gates and flip flops. This consumes less
power and area compared to the memory solutions
with antitamper facilities.

•	 PUF is popular due to the absence of additional cryp-
tographic hardware like the secure hash algorithm
(SHA) or an encryption algorithm involving public or
private key.

•	 It is very difficult to perform a physical attack to
extract the digital data present on the chip when the

power is OFF. The chip must be powered on to store
the ‘secret’ on a memory.

•	 It is hard to perform invasive attacks without modify-
ing the physical characteristics of a PUF.

•	 It is very difficult to reproduce a Non-Volatile Memory
(NVM) based on PUF for secret key storage.

The secret obtained from a PUF is extremely difficult to
predict or extract due to the inherent randomness of a PUF.
The two primary applications of PUFs are secure key genera-
tion and low-cost authentication. PUFs are broadly classified
into two groups. These groups are described as strong PUF
and weak PUF. Strong PUFs are mostly used for authentica-
tion [10] while weak PUFs are used for storing keys. In this
project, we are using both weak and strong PUFs. We are
using Butterfly PUF and Arbiter PUF in our hybrid model.

Arbiter PUF [11, 12] is a delay based PUF made of
Multiplexers and a D Latch. The circuit shown in Fig. 1
takes 16-bit input called ‘challenge’ and produces a 1-bit
‘response’. The amount of delay between two paths is
determined using Multiplexers with the help of input con-
trol bits. A pair of Multiplexers is controlled by the same
input bit I[i] which work as switching box. If the input con-
trol bit is zero, the Multiplexers pass through the two delay
lines. Else, the top and bottom signals are interchanged.
In this way, the circuit can create a pair of delay paths for
each input ‘I’. The output is evaluated by giving a rising
signal to both the paths simultaneously. Due to the delay
differences in two paths, the arbiter latch decides which
signal is faster. The output is high or low depending on the
speed of signal reaching data input (D) of latch.

A Butterfly PUF cell [13] is a cross-coupled circuit made
of two D latches as shown in Fig. 2. The output is made to
occupy any of the stable states by the circuit operation. It is
very difficult to create a cross coupled ring using combina-
tional circuits. This led to the design of combinational ring
using latches present in a FPGA matrix. There are two main
signals in D latch called Preset (PRE) and Clear (CLR). The

Fig. 1 Arbiter PUF

246|Kokila et al.
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 244–253, 2019

preset signal turns the output ‘Q’ to high on a high input. The
Clear signal turns the output ‘Q’ to low on a high input. The
output ‘B’ can be captured when the Clock is high. The data
is transferred to ‘Q’. Initially, the Preset and Clear signals are
set to low. Excite signal is connected to the Clear of Latch 1
and Preset of Latch 2. Clock signal of both Latches is set to
high to simulate the operation of a combinational loop. The
Excite signal is made high to start the PUF operation. This
brings the circuit to a highly unstable point. The Excite sig-
nal is made low after a few clock cycles. This makes the PUF
circuit to attain either one of the two possible stable states,
high or low, on the output ‘Out’.

2 Review of Literature
Counterfeiting of IP cores is a growing concern on the
global economy and it also questions the security of the
critical infrastructure [14]. A very well-known impact
of counterfeiting is product cloning. Overproduction of
goods is another dangerous aspect which is less known to
people. Flexibility of software and performance of hard-
ware are the two critical factors concentrated on reconfig-
urable computing. These advantages led to the increasing
attention from the industry for Reconfigurable comput-
ing. In this section we discuss some of the important
works related to this article YingjieLao [14] talks about
designing a two-level FSM to address the problem of
Intellectual Property (IP) protection. He proposes a two
level FSM architecture which is capable of authenticating
IPs and correct the PUF response bit errors occurring due
to environmental disparities. The cost required for this
approach is very less compared to the conventional error
correcting approaches (BCH codes) that are used previ-
ously for PUF based authentication.

A new IP protection mechanism to restrict the exe-
cution of IP core only on specific FPGA devices is being
demonstrated by Jiliang Zhang [15]. It prevents the IP
core from being reproduced. This mechanism enforces a

pay-per-device licensing, which enables the system develop-
ers to purchase the IPs from the core vendors and the devel-
oper needs to pay only for the lease time. The unit price is
lower compared to the normal expensive license fees. An
Internet of Things architecture which facilitates run-time
modifications to the hardware components is described by
Anju P Johnson [16]. This Partially Reconfigurable FPGA
architecture is inspired from the principles of hardware
sharing and hardware mixing. This also allows on-line
hardware updates which is used in enterprise IoT infrastruc-
tures sharing available resources. They evaluated the effec-
tiveness of different threats that can originate from the IoT
nodes which use the dynamic partial reconfiguration. They
also proposed a possible solution based on physical unclon-
able function (PUF) circuits to prevent such intimidations.

To protect and validate the IP in the design there are
some existing techniques such as watermarking and finger-
printing. A recent method to embed watermarking [17] in
soft IP core was proposed for embedded systems and it is a
sequential aware one. The simulation results have been ana-
lyzed for Xilinx Virtex-II Pro FPGA board. The main lim-
itation of this method is sequence length. Embed the water-
marks into a FPGA design at net list level by manipulating
LUT. The watermark is embedded into LUTs at the net list
level and fingerprint is inserted in the bit steam level to pro-
tect the IP reuse [18]. Mostly the IP protection techniques
are started using PUF-FSM structure, because of its advan-
tages and security issues as mentioned in the related works.
The IP protection based mechanism started using FSM
based PUF for authenticating a device and IPs with data-
base. But in our work we have implemented a hardware sig-
nature which involves combination of two PUFs and FSM
to protect specific IPs with less area, power utilization and
communication overhead and no database.

3 Hardware Software Co-Design
Hardware/software (HW/SW) co-design is the concurrent
development of both hardware and software sides of the sys-
tem. This type of design methodology helps in embedding
together the modules on hardware and software to develop
an optimized solution. This enables a system programmer
to design hardware and software modules with ease.

The HW/SW co-design needs segregating the specifi-
cation into hardware and software. One part is implemen-
tation on hardware i.e., using hardware description lan-
guage in FPGA and other part run on software such as
SDK using C. For these partitions the performance evalu-
ation is difficult. In order to achieve the above objective,

Fig. 2 Butterfly PUF

Kokila et al.
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 244–253, 2019|247

the hardware modules are mapped to compute-intensives
parts of the application.

Fig. 3 shows an overview of HW/SW co-design that was
used in this article. The specification of the system in terms
of performance, functionality, cost and power is the initial
step towards hardware-software co-design. Partitioning
the application follows the initial step which is a very deci-
sion. The process of splitting the functions into hardware
and software parts is termed as HW/SW partitioning. The
profiling tools are used to analysis the heterogeneous appli-
cation and generates the information which helps the HW/
SW to take decision. After the decision of hardware, soft-
ware and the interface blocks, the style of coding and sim-
ulation is being finalized. In this step, the software and
hardware specification are separated independently in the
implementation process to optimize the overall specifica-
tion. This is succeeded by an important step called co-sim-
ulation. Validation of the system simulating the hardware
and software development is undergone in this step. The
co-simulation step provides the output, which is used to
verify the achievement of design goals. The co-design
flow will stop if the acceptance stage is reached. Else the
design is not acceptable, which means some specification
or design error has occurred. At this stage the Co- design
will go to the previous steps where hardware and software
have to be redesigned until an output that sounds a good
design is attained. In the next step simulation-level imple-
mentation is achieved in hardware and software part, for
which the results are obtained from the co-simulation step.

After the partitioning has been completed, the executable
software and all the bit-stream generated files are linked
together to create ”.elf” file that can be made to run on the
target platform. For the experimental purpose, the Zedboard
[19, 20] heterogeneous platform has been considered in this

work. Zedboard is a Zynq evaluation development board
for the designer interested in developing/testing designs.
To enable a wide range of heterogeneous applications, the
Zedboard includes all the necessary interfaces, commu-
nications and support functions. The most important part
on this board is Xilinx Zynq 7000 All Programmable SoC
(ZynqSoC os zynq board). ZynqSoC performs all com-
putational resources for the design system. Some con-
figuration has made computational resources, which is
performed by ARM-based processing system (PS) and
programmable logic (PL) based on Artix-7.

4 Proposed Design
The Flowchart described in Fig. 4 shows the different
phases of our proposed hybrid model. Our hybrid model
consists of two PUFs- Arbiter (APUF) and Butterfly
(BPUF). The responses generated from two PUFs are
given as input to the FSM. BPUF does not have an external
challenge as input. ‘Excite’ signal shown in BPUF is con-
nected to the Enable pin of D-Latch present in the BPUF
cell. This signal is used to trigger the output of BPUF. It
is activated only once. Whereas for APUF, there exists a
challenge Response Pair (CRP). It means for every chal-
lenge there exist a unique response.

In the next step, hamming distance is found between
APUF challenge and Response pair (CRP). Hamming
distance (HD) along with the BPUF key is given as input
to the Finite State Machine (FSM). Based on the analy-
sis of Butterfly PUF, certain key values are fixed in FSM.
Details of the FSM are described in detail in the next sec-
tion. When the corresponding match occurs with the val-
ues in the FSM, a hardware signature is generated.

Fig. 3 HW/SW co-design overview of the design flow for ZynqSoC.

Fig. 4 Flow Chart

248|Kokila et al.
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 244–253, 2019

The HD is calculated for CRP of APUF, where the strong
PUF will generate a large set of CRPs. These CRPs have
been tested by IP owners and the most frequent occurring
HD have been selected for specific BPUFs KEY. These
BPUF KEY is unique and used to generate key for specific
devices by the device vendors. The HD is acting as a hash
value for IP cores and KEY is used to authenticate the
device. The combination of HD, Key and logical operation
such as XOR and SHIFT will generate the hardware signa-
ture. This hardware signature is configured at the time of
IP execution, which needs to be verified at that time of IP
integration. This signature is attached to the configuration
register inside the .elf file of the requesting IP core. If this
signature is not authenticated in the initial stage of the IP
booting step then it is not a valid or authentic IP.

4.1 Design of Finite State Machine
A three level Finite State Machine (3-l FSM) has been pro-
posed in this work. It is a three level design because the
hardware signature is generated only after three stages.
The signature is generated only if the hamming distance
and BPUF key matches with the corresponding values in
the FSM. Hamming distance (HD) is evaluated for 16- bit
CRP of APUF which ranges from 0-15. To store this range
only 4-bit is needed. The 4-bit HD is used in the first level
of the FSM. A key value has been attached to correspond-
ing HD which is checked for the second stage.

The signature generation FSM has been given in the
Fig. 5. This can be made even complex and it is up to the
designer. An important thing that is to be noted is these val-
ues in FSM is subject to change for other SoC board. Hence
the analysis has to be performed again to find and fix the
values in FSM.

5 Implementation
Xilinx Zedboard, All Programmable SoC, were used to
do this experiment [16]. Three IP Cores-OLED, s1423
Benchmark IP and a Full Adder IP - were used in this
design. The IP cores were selected using on board DIP
switches and the status was displayed using the on board
LEDs. The 32x128 pixels of OLED display panel is inbuilt
on the Zedboard and is organized by the controller. The
OLED controller will initialize the display panel based on
the producer’s guidelines and specifications. The initial
configuration is archived by sending gusts of commands
as bytes which are separated by measured time intervals
through a Serial Peripheral Interface (SPI). Next step is to
access the processing system (PS) in order to increase the

performance. The OLED controller offers a PS access to the
OLED display buffer through memory-mapped registers.

There are seventeen registers of 32-bits each which can
be accessed through soft wares. These software access
register together form a slave AXI-peripheral of the con-
troller. In which 1 - 16 are data registers, while the 17th one
is used for control. Any AXI-crossbar compliant proces-
sor system is connected to the OLED controller through
AXI interface. The Zedboard OLED communicates with
the display panel through SPI.

The benchmark circuits were used to evaluate the per-
formance of the algorithms used in the areas of fault sim-
ulation, testability analysis, formal verification, logic
synthesis, technology mapping, and layout synthesis. The
benchmark circuits disseminated to ISCAS’89 are all
described as gate level netlist. The benchmark IP distrib-
uted in ISCAS’89, s1423, is one of the IP cores used in my
design. It consists of 74 D-flip flops, 167 inverters, and
490 gates. The gates are made of 197 ANDs, 64 NANDs,
137 ORs, and 92 NORs. It takes 17-bit input and produces
a 5-bit output.

Full Adder is the normal 3-bit adder producing sum and
carries as output. There are three inputs and two outputs
for a simple full adder. A and B are the first two inputs
and C-IN is the third input carry. The C-OUT is the out-
put carry and usual output is SUM. The output carry is
designated as C-OUT and the normal output is SUM. A
cascade of adders can be generated using a full adder,
which adds 8, 16, 32 etc. bit binary numbers

Fig . 5 FSM of the proposed Model

Kokila et al.
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 244–253, 2019|249

6 Results and Discussion
Fig. 6 shows the diagram of the implemented design in
Zedboard. The entire logic is implemented with the help
of Look Up Tables (LUTs), Flip-Flops (FFs), Block RAM
(BRAM) and BUFGs.

6.1 Utilization Details
Table 1 describes the resource utilization details of the
design. The column ‘Available’ in Table 1 tells the amount
of resources available in Artix-7 based ProgrammableLogic
(PL) present in zedboard. The logic is implemented as
LUTs, LUTRAMs, Flip Flops, BRAMs, IOs and BUFGs.

6.2 Power Details
 Static power of the device is the power consumed due to
transistor leakage on all connected voltage rails and the
circuits required for the stable operation of FPGA during
the post-configuration phase. This can be obtained by
programming a blank bit-stream into the FPGA device.
Design power is the power consumed by the user design
mainly due to the input data and the internal activities of
the circuit components. It depends on voltage levels and
design logic. This power is varying for each clock cycle. It
is also dependent on the routing resources used.

The main part of the design power is contributed for
clock managers, the static current consumed by I/O pads
and the circuits which consume power when required.
Power taken by off-chip devices is not taken into consid-
eration while calculating design power.

Thermal power or total on-chip power is the power con-
sumed by the internal components of the FPGA. This is
the sum of design power and static power consumed by
the device. The On-Chip Power graph, as shown in Fig. 7,
tells the power dissipated in different resources. It can be
seen that the Processing System (PS7) contributes most to
the total power (90 %). It can be found that the PL dynamic
power is 16 mW and the device static power is 163 mW.

The area and power will vary based on the type of IPs
and the embedded signature. The overhead incurred in the
proposed model in terms of area and power is less com-
pared to the model without HS. The measured values are
reported in the Fig. 8 with 3 different benchmark IPs.

6.3 PUF Analysis
The security metrics such as uniqueness, reliability, and
randomness as referred in [21] are measured for a single
32-bit PUF and hybrid PUFs which are described below

and compared in Table 2. The security metrics of PUFs
with the Eq. (1)-(3) and description are explained.

Table 1 Resource utilization details

Resource Utilization Available Utilization
Percentage

LUT 3586 53200 6.74

LUTRAM 68 17400 0.39

FLIP FLOP 2988 106400 2.81

BLOCK RAM 0.5 140 0.36

IO 54 200 27

BUFG 1 32 3.13

Fig. 6 Implementation Design in Zedboard

Fig. 7 On-Chip Power

250|Kokila et al.
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 244–253, 2019

Uniqueness (Un)

U
k k

HD or or
ni j k
i j

j i

k

i

k

, ,
()

(,)
% .=

−
×

= +=

−

∑∑2

1
100

11

1

	 (1)

The average inter-chip variation between chip i and
j is measured among output responses ori and orj

for n-bits and k chip.

Reliability (Re)

Re %
(, ')

% .,

,

i t
i i t

t

m

m
HD or or

n
= − ×

=
∑100

1
100

1

	 (2)

The intra-chip variation based on time duration t is mea-
sured among output responses ori for n-bit. The tempera-
ture is maintained to be 20 to 46 °C in the zynq board.

Randomness (Ra)

Ra
L

ori j
i

L

= ×
=
∑1 100
1

, % . 	 (3)

The uncertainty in each bit is measured for L iterations,
where ori, j is the j−th binary bit of an n−bit output response
from a chip i.

While comparing with the individual PUFs, the hybrid
PUF with FSM is better in terms of area, power, unique-
ness, and reliability. The proposed model is implemented
in SoC FPGA, which is 28 nm with heterogeneous PUF
hence, its power and area vary.

6.3.1 BPUF Response Analysis
The hardware generation module is executed for 10,000
iterations, and a specific sample of 500 iterations has
been selected for 4 different zynq boards, and its HD
and KEY values are fixed, based on Fig. 9. The most
frequently occurring HD and golden response of BPUF

as KEY values have to be chosen in such a way that it
is used only once and should be unpredictable. Fig. 9
includes the call out or text for specific values which
helps us to select the HD and golden response KEY with
the most frequency. The KEY and HD are fixed to gen-
erate a unique hardware signature for specific board and
IP modules respectively. In Fig. 9 each board will have
three specific KEYs and HD, to generate hardware sig-
nature for a specific device and its selected IP modules.

It is based on these analyses the values are fixed in the
Finite State Machine (FSM). Each key uniquely iden-
tifies IP cores for which the hardware signature has to
be generated. In our design, a maximum of 8 IP cores
can be incorporated. The number of IP cores that can be
increased by changing the number of bits of Butterfly PUF
from 8 bits to 32 bits or 64 bits.

The tabular column is shown below, Table 3, shows the
KEYs, HDs and time required to generate the hardware
signature for the three IP cores, which is tested in 4 Boards.
It is to be noted that for the two iterations IPs are selected at
random among the three. For board 3 the HD 9 is mapping
to two unique BPUF KEYs, which indicates that the group
of IPs can be authenticated using this method.

The time measurements are made in seconds. As
described in the previous section, the signature generated
is a 16-bit value. This is formed by the logical operation
such as XORing the hamming distance and BPUF key

Fig. 8 Area and Power Overhead with and without HS

Table 2 PUF based metrics comparison

Metrics Power
(W)

Area
(%)

Un
(%)

Re
(%)

Ra
(%)

A-PUFs 0.959 56.21 45.67 98.4 49.6

B-PUFs 0.098 55.39 36.23 91.86 30.45

Hybrid AB-PUFs
and FSM 1.675 22.66 46.23 95.06 42.49

Kokila et al.
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 244–253, 2019|251

followed by right shifting n- bits. The logical operation
and n-bit shift may vary based on the designer. A specific
verification technique is needed to extract the signature
from the bit file and to authenticate an IP module.

7 Conclusion and Future work
A hybrid model has been proposed, which consists of
Physical Unclonable Functions (PUFs) and Finite State
Machine (FSM) for an SoC architecture. It mainly
addresses the issue of security in IP cores. The entire
project is designed from the perspective of the IP vendor.
The role of an IP vendor, like Synopsys, is to create and
package design to an Intellectual Property (IP) core which
is then given to a client through the network. The client
uses this IP core in his design. So the vendor can incor-
porate this lightweight model in their design for overcom-
ing counterfeiting of IPs. One important advantage of our
design is that it can be used in a heterogeneous environ-
ment. Our model is implemented and verified in Xilinx
Zedboard. Our model uses Butterfly and Arbiter PUFs to
generate random responses. BPUF response is termed as
the key which uniquely identifies IP cores. Hamming dis-
tance between APUF challenge and response along with
BPUF key is given as input to the FSM. The output of it
is a flag variable which tells whether the signature is gen-
erated or not. If it is generated the signature is returned.

Table 3 Key, Hardware signature (HS) and Execution
Time for 4 Zynq Boards

Board No: BPUF KEY HD HS Execution
time (s)

1

DF34 11 37c9 2.52

CF7F 10 19ed 5.18

EFF6 9 077f 1.69

2

DF6F 11 37df 9.79

F7FD 10 1efd 0.99

EDF3 9 079f 7.56

3

DCFC 11 373b 8.53

ECBD 9 1d95 2.11

EFFF 9 07ef 3.36

4

FACB 11 3eb2 1.54

D8FE 10 1b1d 1.68

AF7F 9 057b 13.98

Fig. 9 BPUF Key and HD mapping for 4 independent zynq Boards

252|Kokila et al.
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 244–253, 2019

The number of IP cores that can be attached to our
design is limited to 8. This can be further improved by
increasing the number of bits of PUFs to 64 or 128. The
future works can be concentrated on implementing the
same design in a networked environment. The developer
can add Operating System and Networking functions to
the design. As mentioned in the previous chapters BPUF
is a weak PUF. So, this model can be improved by chang-
ing this to modern PUFs like Feed Forward Arbiter PUF
or XOR-Arbiter PUF. This will enable a large number of
IP cores to be incorporated in the design. An important
feature provided by Xilinx called 'Partial Reconfiguration'

can be used to reduce the area occupied and power con-
sumed. Partial Reconfiguration enables the device to
dynamically modify the logic blocks by choosing the par-
tial bit files at run time.

Acknowledgement
The project presented in this article is supported by
Visvesvaraya Ph.D. scheme (PhD-MLA/4(16)/ 2014,
Dated 21.01.2014). The authors would like to acknowledge
the infrastructure support provided by the Reconfigurable
Intelligent System Engineering (RISE) Lab, Dept. of
Computer Science and Engineering, NIT, Trichy.

References
[1]	 Guajardo, J., Kumar, S. S., Schrijen, G-J., Tuyls, P. "FPGA

intrinsic PUFs and their use for IP protection", In: Pallier, P.,
Verbauwhede, I. (eds.) Cryptographic Hardware Embedded
Systems, Springer, Berlin, Heidelberg, Germany, 2007, pp. 63–80.

	 https://doi.org/10.1007/978-3-540-74735-2_5
[2]	 Guajardo, J., Kumar, S. S., Schrijen, G-J., Tuyls, P. "Physical

unclonable functions and public-key crypto for FPGA IP protec-
tion", In: International Conference on Field Programmable Logic
and Applications, Amsterdam, Netherlands, 2007, pp. 189–195.

	 https://doi.org/10.1109/FPL.2007.4380646
[3]	 Trimberger, S. M., Moore, J. J. "FPGA Security: Motivations,

Features, and Applications", Proceedings of the IEEE, 102(8),
pp. 1248–1265, 2014.

	 https://doi.org/10.1109/JPROC.2014.2331672
[4]	 Zhang, J., Lin. Y., Lyu, Y., Qu, G., Cheung, R. C. C., Che, W.,

Zhou, Q., Bian, J. "FPGA IP protection by binding finite state
machine to physical unclonable function", In: 23rd International
Conference on Field Programmable Logic and Applications, Porto,
Portugal, 2013, pp. 1–4.

	 https://doi.org/10.1109/FPL.2013.6645555
[5]	 Herder, C., Yu, M-D., Koushanfar, F., Devadas, S. "Physical

Unclonable Functions and Applications: A Tutorial", Proceedings
of the IEEE, 102(8), pp. 1126–1141, 2014.

	 https://doi.org/10.1109/JPROC.2014.2320516
[6]	 Tuyls, P., Škorić, B. "Strong authentication with PUFs", In:

Petković, M., Jonker, W. (eds.) Security, Privacy and Trust in
Modern Data Management, Data-Centric Systems and Applications,
Springer, Berlin, Heidelberg, Germany, 2007, pp. 133–148.

	 https://doi.org/10.1007/978-3-540-69861-6_10
[7]	 Paral, Z., Devadas, S. "Reliable and efficient PUF-based key gener-

ation using pattern matching", In: IEEE International Symposium
on Hardware-Oriented Security Trust San Diego, CA, USA, 2011,
pp. 128–133.

	 https://doi.org/10.1109/HST.2011.5955010
[8]	 Devadas, S., Yu, M. D. "Secure and robust error correction

for physical unclonable functions", IEEE Design and Test of
Computers, 27(1), pp. 48–65, 2010.

	 https://doi.org/10.1109/MDT.2010.25

[9]	 Maes, R., Verbauwhede, I. "Physically unclonable functions: A
study on the state of the art and future research directions", In:
Sadeghi, A. R., Naccache, D. (eds.) Towards Hardware-Intrinsic
Security, Information Security and Cryptography, Springer,
Berlin, Heidelberg, Germany, 2010, pp. 3–37.

	 https://doi.org/10.1007/978-3-642-14452-3_1
[10]	 Dailey, M. D. "Authentication schemes based on physically unclon-

able functions", PhD dissertation, Worcester Polytechnic Institute,
2009. [online] Available at: https://users.wpi.edu/~martin/MQP/
daileyshomorony.pdf [Accessed: 20 Feburuary 2018]

[11]	 Suh, G. E., Devadas, S. "Physical unclonable functions for device
authentication and secret key generation", In: 44th Annual Design
Automation Conference, San Diego, CA, USA, 2007, pp. 9–14.

	 https://doi.org/10.1145/1278480.1278484
[12]	 Majzoobi, M., Koushanfar, K., Devadas, S. "FPGA PUF using

programmable delay lines", In: IEEE International Workshop
on Information Forensics and Security Seattle, WA, USA, 2010,
pp. 1–6.

	 https://doi.org/10.1109/WIFS.2010.5711471
[13]	 Kumar, S. S., Guajardo, J., Maes, R., Schrijen, G-J., Tuyls, P.

"Extended abstract: The butterfly PUF protecting IP on every
FPGA", In: IEEE International Workshop on Hardware-Oriented
Security and Trust, Anaheim, CA, USA, 2008.

	 https://doi.org/10.1109/HST.2008.4559053
[14]	 Lao, Y., Yuan, B., Kim, C. H., Parhi, K. K. "Reliable PUF-based

local authentication with Self Correction", IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 36(2),
pp. 201–2013, 2017.

	 https://doi.org/10.1109/TCAD.2016.2569581
[15]	 Zhang, J., Lin, Y., Qu, G. "A PUF-FSM Binding scheme for FPGA

IP Protection and Pay-per device Licensing", IEEE Transactions
on Information Forensics and Security, 10(6), pp. 1137–1150, 2015.

	 https://doi.org/10.1109/TIFS.2015.2400413
[16]	 Johnson, A. P., Chakraborty, R. S., Mukhopadhyay, D. "A PUF

Enabled Secure Architecture for FPGA Based IoTApplications",
IEEE Transactions on Multi-Scale Computing Systems, 1(2),
pp. 110–122, 2015.

	 https://doi.org/10.1109/TMSCS.2015.2494014

https://doi.org/10.1007/978-3-540-74735-2_5
https://doi.org/10.1109/FPL.2007.4380646
https://doi.org/10.1109/JPROC.2014.2331672
https://doi.org/10.1109/FPL.2013.6645555
https://doi.org/10.1109/JPROC.2014.2320516
https://doi.org/10.1007/978-3-540-69861-6_10
https://doi.org/10.1109/HST.2011.5955010
https://doi.org/10.1109/MDT.2010.25
https://doi.org/10.1007/978-3-642-14452-3_1
https://users.wpi.edu/~martin/MQP/daileyshomorony.pdf
https://users.wpi.edu/~martin/MQP/daileyshomorony.pdf
https://doi.org/10.1145/1278480.1278484
https://doi.org/10.1109/WIFS.2010.5711471
https://doi.org/10.1109/HST.2008.4559053
https://doi.org/10.1109/TCAD.2016.2569581
https://doi.org/10.1109/TIFS.2015.2400413
https://doi.org/10.1109/TMSCS.2015.2494014

Kokila et al.
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 244–253, 2019|253

[17]	 Nie, T., Li, Y., Zhou, L., Toyonaga, M. "A multilevel fingerprint-
ing method for FPGA IP protection" In: 2013 IEEE International
Symposium on Circuits and Systems (ISCAS2013), Beijing, China,
2013, pp. 1789–1792.

	 https://doi.org/10.1109/ISCAS.2013.6572212
[18]	 Kufel, J., Wilson, P. R., Hill, S., Al-Hashimi, B. M., Whatmough,

P. N. "Sequence-aware watermark design for soft IP embedded
processors", IEEE Transactions on Very Large Scale Integration
Systems, 24(1),2016, pp. 276–289.

	 https://doi.org/10.1109/TVLSI.2015.2399457
[19]	 Peterson, E. "Leveraging Asymmetric Authentication to Enhance

Security-Critical Applications Using Zynq-7000 All Programmable
SoCs", White Paper, Xilinx, 2015. [online] Available at: https://
www.xilinx.com/support/documentation/white_papers/wp468_
asym-auth-zynq-7000.pdf [Accessed: 24 February 2018]

[20]	 "Zynq - 7000 All Programmable SoC", Technical Reference
Manual, Xilinx, 2018. [online] Available at: https://www.xilinx.
com/support/documentation/user_guides/ug585-Zynq-7000-
TRM.pdf [Accessed: 22 November 2018]

[21]	 Cherkaoui, A., Bossuet, L., Marchand, C. "Design, evaluation,
and optimization of physical unclonable functions based on tran-
sient effect ring oscillators", IEEE Transactions on Information
Forensics and Security, 11(6), 2016, pp. 1291–1305.

	 https://doi.org/10.1109/TIFS.2016.2524666

https://doi.org/10.1109/ISCAS.2013.6572212
https://doi.org/10.1109/TVLSI.2015.2399457
https://www.xilinx.com/support/documentation/white_papers/wp468_asym-auth-zynq-7000.pdf
https://www.xilinx.com/support/documentation/white_papers/wp468_asym-auth-zynq-7000.pdf
https://www.xilinx.com/support/documentation/white_papers/wp468_asym-auth-zynq-7000.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://doi.org/10.1109/TIFS.2016.2524666

	1 Introduction
	1.1 Hardware Signature
	1.2 Physical Unclonable Function (PUF)

	2 Review of Literature
	3 Hardware Software Co-Design
	4 Proposed Design
	4.1 Design of Finite State Machine

	5 Implementation
	6 Results and Discussion
	6.1 Utilization Details
	6.2 Power Details
	6.3 PUF Analysis
	6.3.1 BPUF Response Analysis

	7 Conclusion and Future work
	Acknowledgement
	References

