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Abstract

Many companies are migrating from monolithic architectures to microservice architectures, and they need to decompose their applications 

in order to create a microservices application. Therefore, the need comes for an approach that helps software architects in the 

decomposition process. This paper presents a new approach for decomposing monolithic application to a microservices application 

through analyzing the application programming interface. Our proposed decomposition methodology uses word embedding models 

to obtain word representations using operation names, as well as, using a hierarchical clustering algorithm to group similar operation 

names together in order to get suitable microservices. Also, using grid search method to find the optimal parameter values for Affinity 

Propagation algorithm, which was used for clustering, as well as using silhouette coefficient score to compare the performance of the 

clustering parameters. The decomposition approach that was introduced in this research consists of the OpenAPI specifications as an 

input, then extracts the operation names from the specifications and converts them into average word embedding using fastText model. 

Lastly the decomposition approach is grouping these operation names using Affinity Propagation algorithm. The proposed methodology 

presented promising results with a precision of 0.84, recall of 0.78 and F-Measure of 0.81.
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1 Introduction
These days, large companies such as Amazon, Netflix, 
eBay, and others have utilized cloud architecture to oper-
ate their services. Cloud model provides the flexibility to 
these companies with the purpose of scaling the resources 
based on the actual consumption of the users [1].

One of the architectural patterns used to implement 
applications on the cloud is microservice architecture. 
It is a service oriented architectural (SOA) style where the 
application consists of small services working together as a 
single application. These services interact with each other 
using lightweight methods, for instance REST API [2].

On the other hand, there is the monolithic architec-
ture, where all the services are contained in a single code 
base. These services exchange information with exter-
nal systems through multiple mechanisms such as web 
services, HTML pages, or REST API [3]. Since many 
companies are migrating from monolithic architecture 
to microservice architecture, the process of converting 
a monolithic application into a microservices application 
is an important step. Microservices' decomposition is the 
process of converting an existing monolithic application 

to microservices application architecture. This is done 
through extracting services from the monolithic applica-
tion into candidate microservices [4].

This paper presents a method for decomposing mono-
lithic applications into microservices by identifying func-
tions that are related to each other based on their semantic 
similarity. Furthermore, clustering of these similar func-
tions is also performed to create actual microservice can-
didates. In the proposed decomposition method of this 
paper, the monolithic application is considered in the first 
step of the decomposition process, because microser-
vices will use the functions of the monolithic application 
by grouping similar functions together.

Finding proper microservices can lead to easier main-
tainability and scalability of a software [5]. Therefore, 
microservices decomposition is an essential phase in the 
process of migrating from monolithic architecture to 
a microservice architecture. The method of services 
decomposition or extraction is required to identify micro-
service candidates from the monolithic application in this 
process. The decomposition itself is an essential process 
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for the whole experience of migrating to a microservice 
architecture because creating inappropriate microser-
vices can lead to performance issues in the application 
and problems with governance policies at the organiza-
tion. Thus, the properties of microservices like granular-
ity, loose coupling, and high cohesion must be maintained 
during the decomposition [4].

Several methods and techniques were presented in the 
literature to extract microservices from monolithic appli-
cations. Some used semantic similarity between shared 
reference concepts in APIs to identify microservices [4]. 
Use cases and domain models were also applied to extract 
microservices [6]. These researches will be discussed 
in detail in the literature review section.

The aim of our research was to provide a new method-
ology, using word embedding and hierarchical clustering 
method, to identify microservice candidates in a mono-
lithic application through analyzing the application pro-
gramming interface "API". OpenAPI [7] specification was 
used, which is a format description for REST APIs that is 
useable for automatic processing. OpenAPI specification 
contains endpoints, operation names, operation parame-
ters, inputs, and outputs of operations. Hence, we used the 
OpenAPI specification to obtain operation names, which is 
widely used by developers and is fully machine-readable.

2 Literature Review
Several methods were presented for extracting micro-
services from a monolithic application. For instance, 
Gysel et al. [6] developed Service Cutter a service decom-
position framework in which domain models and use cases 
were used to extract coupling information from, and this 
information was represented as weighted graphs to allo-
cate closely related services. Also, they deployed Newman 
and Girvan [8] and Epidemic Label Propagation [9] clus-
tering algorithms on the extracted coupling information. 
One issue with these clustering algorithms is that they 
require the number of clusters to be assigned in order 
to be functional, which in this case can be a weak point 
for this framework because it is hard to define the num-
ber of services for large applications. For the evalua-
tion of the method, they developed their own classifi-
cation metrics to calculate the quality of the candidate 
services. Service Cutter framework was tested with two 
sample applications, and the suggested services ranged 
from good to bad according to the classification method. 
Overall results were good for one test application and 
acceptable for the other one [6].

Baresi et al. [4] proposed a solution based on the 
semantic similarity between the operations available 
in OpenAPI specifications. They used Schema.org speci-
fications as a vocabulary reference to be mapped with the 
specifications of the available OpenAPI. Also, a fitness 
function was applied which was based on DISCO [10], 
which is a tool that calculates the distributional similarity 
between two words in a large corpus of the text. The idea 
of Baresi et al. [4] was to couple standardized OpenAPI 
specifications with similar semantic characterizations. 
Baresi et al. [4], evaluated their method using two micro-
services applications: the first one was a Money Transfer 
application, which consists of four microservices, and 
the second application was the Kanban Board which con-
sists of three microservices. The resulted microservices 
candidates of the first application were 80 % accurate 
which means 8 of the 10 operations were properly decom-
posed. In the second application, the accuracy rate was 
77 %, 10 of the 13 operations were decomposed correctly. 
Thus, they claimed that their method was 80 % accurate, 
if the expected decompositions would have been available 
in advance. In their paper, they showed that their method 
produced better results than the Service Cutter [6] method.

Another research is done by Mazlami et al. [11] where 
a formal model for microservices extraction was intro-
duced through employing the source code of the monolithic 
application as an input for the method and converting it to 
a graph representation. After that, clustering algorithms 
were applied to the graph representation to produce micro-
services candidates. Their method consists of three stages: 

1. the first stage is the monolith stage, 
2. the second stage is the graph stage, 
3. and the third stage is the microservices stage.

Our proposed decomposition methodology uses 
word embedding models such as fastText [12] to obtain 
word representations to find similarities between words 
in operation names, as well as, using a hierarchical clus-
tering algorithm, which uses message passing between 
data points, to group similar operation names together 
into actual microservices. So when compared to Service 
Cutter [6] method, the proposed method of this research 
has several advantages. For example, the clustering algo-
rithm does not need to specify the number of clusters 
in advance because it finds it automatically. Also, when 
compared to paper of Baresi et al. [4], which is more sim-
ilar to our approach in terms of using semantic similar-
ity to find relations between operation names, but they 
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used DISCO [10] "Distributionally related words using 
co-occurrences" to find semantic similarity between 
words, while word embedding was used in our approach.

3 Methodology
The decomposition approach that was introduced in this 
research consists of the OpenAPI specifications as an 
input, then extracts the operation names from the speci-
fications and converts them into average word embedding 
using a given model. fastText [12] and Word2Vec [13] 
models were utilized to obtain word vectors from the 
operation names. To obtain word representation, a vector 
is created from input tokens by searching a word embed-
ding model [14]. Algorithm 1 presents a general overview 
of the proposed decomposition method.

In this research, Word2Vec [14] was trained on Google 
News corpus, and fastText was trained on different data-
sets. Nevertheless, before converting the operation names 
into vectors, removing the stop words was an initial step, 
because without the removal of stop words might lead to 
inaccurate results. Also, a list of specific words was cre-
ated to be removed from the operation names, because 
these words can change the meaning of the sentence or 
the operation name in this context. For example, the word 
"post", "get", "update", and others, which can be found 
in many operation names.

3.1 Word Embedding Models
The Word2Vec embedding model is a combination of two 
different algorithms, the continuous bag of words (CBOW) 
and skip-gram. The skip-gram model is an efficient method 
for learning high-quality distributed vector representations 
that capture a large number of precise syntactic and seman-
tic word relationships. The goal of Skip-gram model is to 
find word embedding that is good for predicting the seman-
tically closest words in a large corpus of text [14].

fastText [12] is a library for word embedding and sen-
tence classification that was created by Facebook Research 
Group. It is also an evolution of the Word2Vec model.

In this research, two pre-trained models were used 
for word representations with two different text corpora. 
First one is the Word2Vec model with Google News cor-
pus, the second model is the fastText with one million-word 
vectors trained on Wikipedia 2017. The purpose of using 
fastText and Word2Vec models is to create a sentence level 
embedding or operation's name level embedding as used 
in this research.

3.2 Operation Name Vector
Usually, operation names have more than one word in their 
names. Therefore, in order to convert the operation name 
to a word representation vector, we utilized a method of 
getting the sum of each word vector in the operation name 
and dividing it by the number of words in the same oper-
ation name. In other words, getting the average of word 
vectors in an operation name as it was proposed by Le and 
Mikolov [15]. Thus, this method returns the average of all 
word representations for each operation name. The output 
needs to be fed by a clustering algorithm such as Affinity 
Propagation after that.

3.3 Clustering Method
After converting the operation names into vectors based 
on the word embedding of the pretrained models and 
removing stop words the clustering is applied. The clus-
tering method was utilized to group similar operation 
names together in order to create a microservice candi-
date consist of these similar operation names. The Affinity 
Propagation [16] algorithm was used, because it defines 
the number of clusters without the need to specify it 
beforehand. This clustering algorithm will find the num-
ber of microservices that is going to be created from the 
API of a monolithic application.

Affinity Propagation works by passing messages 
between data points, also, it finds exemplars, which are 
unique data points that represent the clusters and each clus-
ter has one exemplar [16]. The purpose of these messages 
is to find the willingness of the data points to be exem-
plars. These exchanged messages between the data points 
are divided into two types. The first type is "responsibil-
ity" messages, which are messages sent from data points to 
candidate exemplars, in order to show if the data points are 
suitable being a member of the candidate exemplar's cluster. 
The "responsibility" denoted by r(i,k) in Eq. (1) indicates if 

Algorithm 1 Our proposed decomposition algorithm

Data: OpenAPI Specifications

Results: microservices' candidates

1 sentences ← θ

2 foreach operationName do

3 sentences ← ConvertToLowerCase(operationName)

4 sentences ← RemoveStopWords(sentences)

5 sentences ← ShorttextToVector(operationName)

6 end

7 microservicesCandidates ← AffinityPropagation(sentences)

8 Return microservicesCandidates
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point k is suited to be an exemplar for point i. Responsibilities 
are exchanged from point i to exemplar to be k:

r i k s i k a i k s i k
k s t k k

, , max ., ,
. .

( )← ( ) − ′( ) + ′( ){ }
′ ′≠

 (1)

The second type is "availability" messages, which are 
messages sent from candidate exemplars to other data 
points, demonstrating if the candidate exemplar is suit-
able to be an exemplar. The "availability" denoted by a(i,k) 
in Eq. (2) indicates if point i can choose point k as an 
exemplar. Availabilities are exchanged between exemplar 
candidate k and data point i starting from k:
a i k r k k r i k

i s t i i k

, min , , max , , .

. ,

( )← ( ) + ′( ){ }{ }′ ′∉{ }
∑0 0  (2)

Self-availability is updated in a different way, which 
can be seen in Eq. (3):
a k k r i k

i s t i k

, max , , .

. .

( )← ′( ){ }
′ ′≠
∑ 0  (3)

Then the algorithm finds pairwise similarities between 
the data points, and it will identify the clusters by max-
imizing the total similarity between the exemplars and 
their data points.

Mézard [17] explained the importance and efficiency 
of message passing algorithms even on complicated prob-
lems. Hence, Affinity Propagation was utilized in this 
research paper for clustering similar operation names to 
create candidates for microservices.

In Affinity Propagation algorithm there are three param-
eters which are related to the performance of the algorithm: 

1. The first parameter is damping, which damps the 
exchange of messages between responsibility and 
availability to prevent numerical oscillations while 
updating the values of responsibilities and availabil-
ities [18].

2. The second one is the maximum number of iterations. 
3. The third one is the number of iterations with no 

change in the number of estimated clusters that stops 
the convergence.

Algorithm 2 summarizes all the steps in Affinity 
Propagation algorithm.

3.4 Evaluation Metrics
Calculating the Silhouette coefficient [19] is a method 
for validating data consistency within clusters. It mea-
sures the similarity between an object and its own clus-
ter compared to other clusters. Silhouette coefficient score 
ranges from −1 to 1, this means an object is matched cor-
rectly to its cluster when it has a value of 1 for its silhouette 

coefficient s(i). This method was used to evaluate the per-
formance of the clustering algorithm while using different 
values for the algorithm's parameters.

s i b i a i
a i b i

( ) =
( ) − ( )

( ) ( ){ }max ,
,  (4)

where a(i) represents the average dissimilarity of object i, 
to all other objects of the same cluster. b(i) represents the 
smallest average distance between object i and any other 
object in other clusters.

Also, grid search was used to try different combina-
tions of the three parameters of the clustering algorithm 
in order to find the optimal values for these parameters.

Precision, recall, and F-measure were the metrics used 
to evaluate the performance of the proposed decomposi-
tion method.

The precision for the clustering method that is used in 
this paper is the averaged precision of each object or in 
this case of each operation name. The precision P(OO) of a 
given object OO, which will find the precision of the object 
OO in a computed cluster compared with the ideal cluster 
of the same object C(OO):
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where S OOτ ( )  denotes the object related to the same ideal 
cluster that the selected object OO belongs to. After cal-
culating the precision of every object, the precision of the 
clustering P is the average of the precisions of every object.

Algorithm 2 Affinity Propagation algorithm

Data: s i j
i j N

,
, , ,

( ){ } ∈ …{ }1
 data similarities and preferences

Results: cluster assignments ĉ
1 Availability ← 0

2 repeat a and r updates until convergence

3 r i k s i k a i k s i k
k s t k k

, , max , ,
. .

( ) ← ( ) − ′( ) + ′( ){ }
′ ′≠

4 a i k r k k r i k
i s t i i k

, min , , max , ,

. . ,

( ) ← ( ) + ′( ){ }{ }′ ′∉{ }
∑0 0

5 if k i≠

6 a k k r i k
i s t i k

, max , ,

. .

( ) ← ′( ){ }
′ ′≠
∑ 0

7 end

8 end

9 Return c a i k r i kk= ( ) + ( )[ ]argmax , ,ˆ
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The recall R(OO) of a given object OO, which will find 
the recall of the object OO in a computed cluster compared 
with the ideal cluster of the same object C(OO):
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where S OOτ ( )  denotes the object related to the same ideal 
cluster that the selected object OO belongs to. After calcu-
lating the recall of every object, the recall of the clustering 
R is the average of the recalls of all the objects.

Furthermore, F-Measure F1 was used to get the har-
monic mean of recall and precision, where 1 represent the 
best value and 0 represent the worst result. F-Measure can 
be calculated as follows:

F P R
P R

1 2= ∗
∗
+

.  (7)

4 Results and Discussion
For the implementation of the algorithm in this research, 
Python [20] programming language was utilized with 
specific libraries for text analysis and clustering such as 
Gensim [21], NLTK [22], and Sklearn [23].

In order to find the optimal values for the parameters 
of Affinity Propagation algorithm like damping, the max-
imum number of iterations, and convergence iterations, 
grid search approach was used. The test cases were the 
APIs of four different applications such as, Amazon Web 
Services, PayPal, Kanban Board, and Money Transfer app. 
Furthermore, Silhouette coefficient "SC" was utilized to 
evaluate the performance of the clustering algorithm with 
different parameter values. The parameter values were 
a range of numbers. First, damping "DA" value started 
from 0.5 until 0.9 with 0.1 step size. Second, maximum 
iteration "MI" ranges from 100 to 1000 with 100 step size. 
Finally, convergence iteration "CI" ranges from 10 to 100 
with 10 step size. Eventually, we found, that the optimal 
values for the parameters were 0.6 for damping, 300 for 
maximum iteration, and 50 for convergence iteration. 
Table 1 shows the highest values of average Silhoutte 
coefficient score and the parameter values were used to 
achieve these results.

Fig. 1 illustrates the Silhouette coefficient score of 
each operation name and its cluster for PayPal’s API using 
affinity propagation algorithm with the optimal parame-
ters that were obtained previously. The average Silhouette 
coefficient was 0.43.

Once the optimal parameters for Affinity Propagation 
algorithm were chosen, there was a need to choose which 
word embedding model should be used for the proposed 
decomposition method. Several tests with 4 different 
test cases conducted were chosen. F-Measure was used 
to compare the performance between Word2Vec and 
fastText models.

As it is apparent in Fig. 2, the performance of fastText 
was better than the performance of Word2Vec in terms of 
F-Measure. Therefore, fastText was selected to be used for 
conducting the final tests with the 4 different test cases.

After performing several tests, 4 different OpenAPI 
specifications of different applications were evaluated. 
These applications were the Money Transfer [24] application 

Table 1 Average Silhouette coefficient scores

App DA MI CI SC

AWS 0.6 300 50 0.50

Money 0.6 300 50 0.40

PayPal 0.6 300 50 0.43

Kanban 0.6 300 50 0.55
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Fig. 1 PayPal's Silhouette coefficient score of each operation name
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with 11 operations and 4 microservices, the Kanban 
Board [25] application which contained 13 operations 
and 3 microservices. Both of them were created by Chris 
Richardson the author of Microservice Patterns [26] book, 
serving as a good standard for evaluating the performance 
of the decomposition method presented in this paper.

Subsequently, the application of the proposed decom-
position method on these two examples gave an excellent 
result of 100 % precision and 85 % recall for Kanban Board 
application, and 82 % precision and recall for Money 
Transfer application. Table 2 compares the proposed 

decomposition using our method against the standard 
design of the two applications. Comparing these results 
with the results of Baresi et al. [4], our proposed method 
performed better in the decomposition of the Kanban 
Board application by decomposing 12 out of 13 operations 
correctly, in comparison to method of Baresi et al. [4], 
which decomposed only 10 operations correctly. For the 
Money Transfer application, 10 of the 11 operations were 
decomposed correctly using our method, while in research 
of Baresi et al. [4] only 8 operations were found correctly 
during the decomposition. Consequently, the proposed 
method in this paper showed a better performance when 
compared to other methods in the literature, as research 
of Baresi et al. [4] showed already that their method per-
formed better than Service Cutter [6].

Furthermore, additional test cases were created with real 
life examples of applications that are already used in a real 
life environment. Thus, we searched for companies using 
microservice architecture in their applications; for exam-
ple, Netflix, Amazon, PayPal, Twitter, and others [27]. 
Eventually, Amazon Web Services and PayPal were selected 
as a case study for the proposed decomposition methodol-
ogy, because their API was available in OpenAPI specifica-
tions definition. So, these were compatible with our method.

0

0,2

0,4

0,6

0,8

1

Money App Kanban PayPal AWS
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M

ea
su

re

Word2Vec FastText

Fig. 2 Performance of Word2Vec vs fastText

Table 2 Comparison of the proposed method's decomposition and the standard decomposition of the two applications

Application Proposed Decomposition Optimal Decomposition

Money Transfer

addToAccountUsing
createAccountUsing

getAccountUsing

addToAccountUsing
createAccountUsing

getAccountUsing

createCustomerUsing 
getAccountsForCustomerUsing

getCurrentUserUsing
getCustomerUsing

getCustomersByEmailUsing
getTransactionHistoryUsing

createCustomerUsing 
getAccountsForCustomerUsing

getCurrentUserUsing
getCustomerUsing

getCustomersByEmailUsing

doAuthUsing doAuthUsing

moneyTransferUsing moneyTransferUsing
getTransactionHistoryUsing

Kanban Board

doAuthUsing doAuthUsing

getBoardUsing
listAllBoardsUsing

saveBoardUsing

getBoardUsing
listAllBoardsUsing

saveBoardUsing

backlogTaskUsing
completeTaskUsing

deleteTaskUsing
listAllTasksUsing

saveTaskUsing
scheduleTaskUsing

startTaskUsing
updateTaskUsing

completeTaskUsing
deleteTaskUsing

listAllTasksUsing
saveTaskUsing

scheduleTaskUsing
startTaskUsing

updateTaskUsing

getHistoryUsing backlogTaskUsing
getHistoryUsing
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The number of operations in Amazon Web Services API 
was 318 divided into 47 microservices. On the other hand, 
PayPal's API has 110 operations scattered on 16 micros-
ervices. This shows the size of the applications, and how 
challenging it is to decompose them manually without 
any automation.

Performing the decomposition process on these two APIs 
and comparing the decomposition results with the already 
available services in the API documentations of each appli-
cation, our method presented promising results in terms 
of precision and recall. For example, the precision of the 
proposed decomposition method was 74 %, and recall was 
79 % obtained from decomposing Amazon Web Services 
API. For PayPal API, the performance was less accurate, 
precision was 80 %, while recall was 66 %. Table 3 shows 
the results of all tests using the 4 different applications.

Accordingly, in total there were 4 applications with 
452 operations tested using our decomposition method. 
By getting the precision and recall, F-measure was calcu-
lated as was mentioned before. The averaged F-Measure 
was 81 %, while the averaged precision of all the tests 
was 84 % and the averaged recall was 78 %. These results 
showed that the proposed decomposition method is suitable 
to be a helping tool for software architects by decomposing 
a monolithic application into a microservices application.

5 Conclusion and Future Work
This paper proposed a novel approach to identify micro-
services in the process of migrating from monolithic 
architecture to a microservice architecture. The proposed 
method consists of several steps, starts with the extracted 
operation names from OpenAPI specifications. The sec-
ond step is the process of converting the operation names 

into word representation using word embedding models. 
The third step is the clustering of semantically similar 
operation names in order to create candidates of micros-
ervices. The proposed method showed significantly better 
results when compared it to other methods from the litera-
ture, resulted in F-Measure of 0.81, a precision of 0.84 and 
a recall of 0.78. Therefore, this can be an aiding addition 
for software architects in the process of extracting micro-
services from monolithic applications.

Furthermore, we proposed a new microservices decom-
position method using word embedding and hierarchical 
clustering method to identify potential microservices 
through analyzing application programming interfaces.

For the future, this work can be improved by finding 
a different method for calculating the distance between 
word vectors such as using word mover's distance instead 
of averaging the word representations in operation names. 
Another possible area of further research is the develop-
ing of new evaluation metrics based on service granular-
ity. The general goodness of the microservices' grouping 
should be addressed with it directly.

Table 3 The performance of the proposed decomposition methodology

Application Precision Recall F-Measure # of 
Operations

AWS 0.74 0.79 0.76 318

Kanban 
Board 1 0.85 0.92 13

Money 
Transfer 0.82 0.82 0.82 11

PayPal 0.8 0.66 0.72 110

Precision 
Average

Recall 
Average

F-Measure 
Average Total

0.84 0.78 0.81 452
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