
274|https://doi.org/10.3311/PPee.13925
Creative Commons Attribution b

Periodica Polytechnica Electrical Engineering and Computer Science, 63(4), pp. 274–281, 2019

Cite this article as: Al-Debagy, O., Martinek, P. "A New Decomposition Method for Designing Microservices", Periodica Polytechnica Electrical Engineering
and Computer Science, 63(4), pp. 274–281, 2019. https://doi.org/10.3311/PPee.13925

A New Decomposition Method for Designing Microservices

Omar Al-Debagy1*, Peter Martinek1

1 Department of Electronics Technology, Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics, H-1521 Budapest, P. O. B. 91, Hungary

* Corresponding author, e-mail: omeraldebagy@gmail.com

Received: 22 February 2019, Accepted: 03 May 2019, Published online: 19 June 2019

Abstract

Many companies are migrating from monolithic architectures to microservice architectures, and they need to decompose their applications

in order to create a microservices application. Therefore, the need comes for an approach that helps software architects in the

decomposition process. This paper presents a new approach for decomposing monolithic application to a microservices application

through analyzing the application programming interface. Our proposed decomposition methodology uses word embedding models

to obtain word representations using operation names, as well as, using a hierarchical clustering algorithm to group similar operation

names together in order to get suitable microservices. Also, using grid search method to find the optimal parameter values for Affinity

Propagation algorithm, which was used for clustering, as well as using silhouette coefficient score to compare the performance of the

clustering parameters. The decomposition approach that was introduced in this research consists of the OpenAPI specifications as an

input, then extracts the operation names from the specifications and converts them into average word embedding using fastText model.

Lastly the decomposition approach is grouping these operation names using Affinity Propagation algorithm. The proposed methodology

presented promising results with a precision of 0.84, recall of 0.78 and F-Measure of 0.81.

Keywords

microservice architecture, microservices identification, service extraction, monolithic decomposition

1 Introduction
These days, large companies such as Amazon, Netflix,
eBay, and others have utilized cloud architecture to oper-
ate their services. Cloud model provides the flexibility to
these companies with the purpose of scaling the resources
based on the actual consumption of the users [1].

One of the architectural patterns used to implement
applications on the cloud is microservice architecture.
It is a service oriented architectural (SOA) style where the
application consists of small services working together as a
single application. These services interact with each other
using lightweight methods, for instance REST API [2].

On the other hand, there is the monolithic architec-
ture, where all the services are contained in a single code
base. These services exchange information with exter-
nal systems through multiple mechanisms such as web
services, HTML pages, or REST API [3]. Since many
companies are migrating from monolithic architecture
to microservice architecture, the process of converting
a monolithic application into a microservices application
is an important step. Microservices' decomposition is the
process of converting an existing monolithic application

to microservices application architecture. This is done
through extracting services from the monolithic applica-
tion into candidate microservices [4].

This paper presents a method for decomposing mono-
lithic applications into microservices by identifying func-
tions that are related to each other based on their semantic
similarity. Furthermore, clustering of these similar func-
tions is also performed to create actual microservice can-
didates. In the proposed decomposition method of this
paper, the monolithic application is considered in the first
step of the decomposition process, because microser-
vices will use the functions of the monolithic application
by grouping similar functions together.

Finding proper microservices can lead to easier main-
tainability and scalability of a software [5]. Therefore,
microservices decomposition is an essential phase in the
process of migrating from monolithic architecture to
a microservice architecture. The method of services
decomposition or extraction is required to identify micro-
service candidates from the monolithic application in this
process. The decomposition itself is an essential process

https://doi.org/10.3311/PPee.13925
https://doi.org/10.3311/PPee.13925
mailto:omeraldebagy@gmail.com

Al-Debagy and Martinek
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 274–281, 2019 |275

for the whole experience of migrating to a microservice
architecture because creating inappropriate microser-
vices can lead to performance issues in the application
and problems with governance policies at the organiza-
tion. Thus, the properties of microservices like granular-
ity, loose coupling, and high cohesion must be maintained
during the decomposition [4].

Several methods and techniques were presented in the
literature to extract microservices from monolithic appli-
cations. Some used semantic similarity between shared
reference concepts in APIs to identify microservices [4].
Use cases and domain models were also applied to extract
microservices [6]. These researches will be discussed
in detail in the literature review section.

The aim of our research was to provide a new method-
ology, using word embedding and hierarchical clustering
method, to identify microservice candidates in a mono-
lithic application through analyzing the application pro-
gramming interface "API". OpenAPI [7] specification was
used, which is a format description for REST APIs that is
useable for automatic processing. OpenAPI specification
contains endpoints, operation names, operation parame-
ters, inputs, and outputs of operations. Hence, we used the
OpenAPI specification to obtain operation names, which is
widely used by developers and is fully machine-readable.

2 Literature Review
Several methods were presented for extracting micro-
services from a monolithic application. For instance,
Gysel et al. [6] developed Service Cutter a service decom-
position framework in which domain models and use cases
were used to extract coupling information from, and this
information was represented as weighted graphs to allo-
cate closely related services. Also, they deployed Newman
and Girvan [8] and Epidemic Label Propagation [9] clus-
tering algorithms on the extracted coupling information.
One issue with these clustering algorithms is that they
require the number of clusters to be assigned in order
to be functional, which in this case can be a weak point
for this framework because it is hard to define the num-
ber of services for large applications. For the evalua-
tion of the method, they developed their own classifi-
cation metrics to calculate the quality of the candidate
services. Service Cutter framework was tested with two
sample applications, and the suggested services ranged
from good to bad according to the classification method.
Overall results were good for one test application and
acceptable for the other one [6].

Baresi et al. [4] proposed a solution based on the
semantic similarity between the operations available
in OpenAPI specifications. They used Schema.org speci-
fications as a vocabulary reference to be mapped with the
specifications of the available OpenAPI. Also, a fitness
function was applied which was based on DISCO [10],
which is a tool that calculates the distributional similarity
between two words in a large corpus of the text. The idea
of Baresi et al. [4] was to couple standardized OpenAPI
specifications with similar semantic characterizations.
Baresi et al. [4], evaluated their method using two micro-
services applications: the first one was a Money Transfer
application, which consists of four microservices, and
the second application was the Kanban Board which con-
sists of three microservices. The resulted microservices
candidates of the first application were 80 % accurate
which means 8 of the 10 operations were properly decom-
posed. In the second application, the accuracy rate was
77 %, 10 of the 13 operations were decomposed correctly.
Thus, they claimed that their method was 80 % accurate,
if the expected decompositions would have been available
in advance. In their paper, they showed that their method
produced better results than the Service Cutter [6] method.

Another research is done by Mazlami et al. [11] where
a formal model for microservices extraction was intro-
duced through employing the source code of the monolithic
application as an input for the method and converting it to
a graph representation. After that, clustering algorithms
were applied to the graph representation to produce micro-
services candidates. Their method consists of three stages:

1. the first stage is the monolith stage,
2. the second stage is the graph stage,
3. and the third stage is the microservices stage.

Our proposed decomposition methodology uses
word embedding models such as fastText [12] to obtain
word representations to find similarities between words
in operation names, as well as, using a hierarchical clus-
tering algorithm, which uses message passing between
data points, to group similar operation names together
into actual microservices. So when compared to Service
Cutter [6] method, the proposed method of this research
has several advantages. For example, the clustering algo-
rithm does not need to specify the number of clusters
in advance because it finds it automatically. Also, when
compared to paper of Baresi et al. [4], which is more sim-
ilar to our approach in terms of using semantic similar-
ity to find relations between operation names, but they

276|Al-Debagy and Martinek
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 274–281, 2019

used DISCO [10] "Distributionally related words using
co-occurrences" to find semantic similarity between
words, while word embedding was used in our approach.

3 Methodology
The decomposition approach that was introduced in this
research consists of the OpenAPI specifications as an
input, then extracts the operation names from the speci-
fications and converts them into average word embedding
using a given model. fastText [12] and Word2Vec [13]
models were utilized to obtain word vectors from the
operation names. To obtain word representation, a vector
is created from input tokens by searching a word embed-
ding model [14]. Algorithm 1 presents a general overview
of the proposed decomposition method.

In this research, Word2Vec [14] was trained on Google
News corpus, and fastText was trained on different data-
sets. Nevertheless, before converting the operation names
into vectors, removing the stop words was an initial step,
because without the removal of stop words might lead to
inaccurate results. Also, a list of specific words was cre-
ated to be removed from the operation names, because
these words can change the meaning of the sentence or
the operation name in this context. For example, the word
"post", "get", "update", and others, which can be found
in many operation names.

3.1 Word Embedding Models
The Word2Vec embedding model is a combination of two
different algorithms, the continuous bag of words (CBOW)
and skip-gram. The skip-gram model is an efficient method
for learning high-quality distributed vector representations
that capture a large number of precise syntactic and seman-
tic word relationships. The goal of Skip-gram model is to
find word embedding that is good for predicting the seman-
tically closest words in a large corpus of text [14].

fastText [12] is a library for word embedding and sen-
tence classification that was created by Facebook Research
Group. It is also an evolution of the Word2Vec model.

In this research, two pre-trained models were used
for word representations with two different text corpora.
First one is the Word2Vec model with Google News cor-
pus, the second model is the fastText with one million-word
vectors trained on Wikipedia 2017. The purpose of using
fastText and Word2Vec models is to create a sentence level
embedding or operation's name level embedding as used
in this research.

3.2 Operation Name Vector
Usually, operation names have more than one word in their
names. Therefore, in order to convert the operation name
to a word representation vector, we utilized a method of
getting the sum of each word vector in the operation name
and dividing it by the number of words in the same oper-
ation name. In other words, getting the average of word
vectors in an operation name as it was proposed by Le and
Mikolov [15]. Thus, this method returns the average of all
word representations for each operation name. The output
needs to be fed by a clustering algorithm such as Affinity
Propagation after that.

3.3 Clustering Method
After converting the operation names into vectors based
on the word embedding of the pretrained models and
removing stop words the clustering is applied. The clus-
tering method was utilized to group similar operation
names together in order to create a microservice candi-
date consist of these similar operation names. The Affinity
Propagation [16] algorithm was used, because it defines
the number of clusters without the need to specify it
beforehand. This clustering algorithm will find the num-
ber of microservices that is going to be created from the
API of a monolithic application.

Affinity Propagation works by passing messages
between data points, also, it finds exemplars, which are
unique data points that represent the clusters and each clus-
ter has one exemplar [16]. The purpose of these messages
is to find the willingness of the data points to be exem-
plars. These exchanged messages between the data points
are divided into two types. The first type is "responsibil-
ity" messages, which are messages sent from data points to
candidate exemplars, in order to show if the data points are
suitable being a member of the candidate exemplar's cluster.
The "responsibility" denoted by r(i,k) in Eq. (1) indicates if

Algorithm 1 Our proposed decomposition algorithm

Data: OpenAPI Specifications

Results: microservices' candidates

1 sentences ← θ

2 foreach operationName do

3 sentences ← ConvertToLowerCase(operationName)

4 sentences ← RemoveStopWords(sentences)

5 sentences ← ShorttextToVector(operationName)

6 end

7 microservicesCandidates ← AffinityPropagation(sentences)

8 Return microservicesCandidates

Al-Debagy and Martinek
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 274–281, 2019 |277

point k is suited to be an exemplar for point i. Responsibilities
are exchanged from point i to exemplar to be k:

r i k s i k a i k s i k
k s t k k

, , max ., ,
. .

()← () − ′() + ′(){ }
′ ′≠

 (1)

The second type is "availability" messages, which are
messages sent from candidate exemplars to other data
points, demonstrating if the candidate exemplar is suit-
able to be an exemplar. The "availability" denoted by a(i,k)
in Eq. (2) indicates if point i can choose point k as an
exemplar. Availabilities are exchanged between exemplar
candidate k and data point i starting from k:
a i k r k k r i k

i s t i i k

, min , , max , , .

. ,

()← () + ′(){ }{ }′ ′∉{ }
∑0 0 (2)

Self-availability is updated in a different way, which
can be seen in Eq. (3):
a k k r i k

i s t i k

, max , , .

. .

()← ′(){ }
′ ′≠
∑ 0 (3)

Then the algorithm finds pairwise similarities between
the data points, and it will identify the clusters by max-
imizing the total similarity between the exemplars and
their data points.

Mézard [17] explained the importance and efficiency
of message passing algorithms even on complicated prob-
lems. Hence, Affinity Propagation was utilized in this
research paper for clustering similar operation names to
create candidates for microservices.

In Affinity Propagation algorithm there are three param-
eters which are related to the performance of the algorithm:

1. The first parameter is damping, which damps the
exchange of messages between responsibility and
availability to prevent numerical oscillations while
updating the values of responsibilities and availabil-
ities [18].

2. The second one is the maximum number of iterations.
3. The third one is the number of iterations with no

change in the number of estimated clusters that stops
the convergence.

Algorithm 2 summarizes all the steps in Affinity
Propagation algorithm.

3.4 Evaluation Metrics
Calculating the Silhouette coefficient [19] is a method
for validating data consistency within clusters. It mea-
sures the similarity between an object and its own clus-
ter compared to other clusters. Silhouette coefficient score
ranges from −1 to 1, this means an object is matched cor-
rectly to its cluster when it has a value of 1 for its silhouette

coefficient s(i). This method was used to evaluate the per-
formance of the clustering algorithm while using different
values for the algorithm's parameters.

s i b i a i
a i b i

() =
() − ()

() (){ }max ,
, (4)

where a(i) represents the average dissimilarity of object i,
to all other objects of the same cluster. b(i) represents the
smallest average distance between object i and any other
object in other clusters.

Also, grid search was used to try different combina-
tions of the three parameters of the clustering algorithm
in order to find the optimal values for these parameters.

Precision, recall, and F-measure were the metrics used
to evaluate the performance of the proposed decomposi-
tion method.

The precision for the clustering method that is used in
this paper is the averaged precision of each object or in
this case of each operation name. The precision P(OO) of a
given object OO, which will find the precision of the object
OO in a computed cluster compared with the ideal cluster
of the same object C(OO):

P O
S C O

C O
C O

C O
O

O O

O
O

O

O

() =
∩ () −
() − () >

() =










()τ 1

1
1

1 1

,

,

, (5)

where S OOτ () denotes the object related to the same ideal
cluster that the selected object OO belongs to. After cal-
culating the precision of every object, the precision of the
clustering P is the average of the precisions of every object.

Algorithm 2 Affinity Propagation algorithm

Data: s i j
i j N

,
, , ,

(){ } ∈ …{ }1
 data similarities and preferences

Results: cluster assignments ĉ
1 Availability ← 0

2 repeat a and r updates until convergence

3 r i k s i k a i k s i k
k s t k k

, , max , ,
. .

() ← () − ′() + ′(){ }
′ ′≠

4 a i k r k k r i k
i s t i i k

, min , , max , ,

. . ,

() ← () + ′(){ }{ }′ ′∉{ }
∑0 0

5 if k i≠

6 a k k r i k
i s t i k

, max , ,

. .

() ← ′(){ }
′ ′≠
∑ 0

7 end

8 end

9 Return c a i k r i kk= () + ()[]argmax , ,ˆ

278|Al-Debagy and Martinek
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 274–281, 2019

The recall R(OO) of a given object OO, which will find
the recall of the object OO in a computed cluster compared
with the ideal cluster of the same object C(OO):

R O
S C O

C O
O

O
O

O O

O
O

O

O

() =
∩ () −
() − () >

() =










()τ
τ

τ

1

1
1

1 1

,

,

, (6)

where S OOτ () denotes the object related to the same ideal
cluster that the selected object OO belongs to. After calcu-
lating the recall of every object, the recall of the clustering
R is the average of the recalls of all the objects.

Furthermore, F-Measure F1 was used to get the har-
monic mean of recall and precision, where 1 represent the
best value and 0 represent the worst result. F-Measure can
be calculated as follows:

F P R
P R

1 2= ∗
∗
+

. (7)

4 Results and Discussion
For the implementation of the algorithm in this research,
Python [20] programming language was utilized with
specific libraries for text analysis and clustering such as
Gensim [21], NLTK [22], and Sklearn [23].

In order to find the optimal values for the parameters
of Affinity Propagation algorithm like damping, the max-
imum number of iterations, and convergence iterations,
grid search approach was used. The test cases were the
APIs of four different applications such as, Amazon Web
Services, PayPal, Kanban Board, and Money Transfer app.
Furthermore, Silhouette coefficient "SC" was utilized to
evaluate the performance of the clustering algorithm with
different parameter values. The parameter values were
a range of numbers. First, damping "DA" value started
from 0.5 until 0.9 with 0.1 step size. Second, maximum
iteration "MI" ranges from 100 to 1000 with 100 step size.
Finally, convergence iteration "CI" ranges from 10 to 100
with 10 step size. Eventually, we found, that the optimal
values for the parameters were 0.6 for damping, 300 for
maximum iteration, and 50 for convergence iteration.
Table 1 shows the highest values of average Silhoutte
coefficient score and the parameter values were used to
achieve these results.

Fig. 1 illustrates the Silhouette coefficient score of
each operation name and its cluster for PayPal’s API using
affinity propagation algorithm with the optimal parame-
ters that were obtained previously. The average Silhouette
coefficient was 0.43.

Once the optimal parameters for Affinity Propagation
algorithm were chosen, there was a need to choose which
word embedding model should be used for the proposed
decomposition method. Several tests with 4 different
test cases conducted were chosen. F-Measure was used
to compare the performance between Word2Vec and
fastText models.

As it is apparent in Fig. 2, the performance of fastText
was better than the performance of Word2Vec in terms of
F-Measure. Therefore, fastText was selected to be used for
conducting the final tests with the 4 different test cases.

After performing several tests, 4 different OpenAPI
specifications of different applications were evaluated.
These applications were the Money Transfer [24] application

Table 1 Average Silhouette coefficient scores

App DA MI CI SC

AWS 0.6 300 50 0.50

Money 0.6 300 50 0.40

PayPal 0.6 300 50 0.43

Kanban 0.6 300 50 0.55

-0,2 0 0,2 0,4 0,6 0,8

0

1

2

3

4

5

6

7

8
9

10

11

12

13

14

15

16

17

Silhouette Coefficient Values

Cl
us

te
r L

ab
el

s

Fig. 1 PayPal's Silhouette coefficient score of each operation name

Al-Debagy and Martinek
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 274–281, 2019 |279

with 11 operations and 4 microservices, the Kanban
Board [25] application which contained 13 operations
and 3 microservices. Both of them were created by Chris
Richardson the author of Microservice Patterns [26] book,
serving as a good standard for evaluating the performance
of the decomposition method presented in this paper.

Subsequently, the application of the proposed decom-
position method on these two examples gave an excellent
result of 100 % precision and 85 % recall for Kanban Board
application, and 82 % precision and recall for Money
Transfer application. Table 2 compares the proposed

decomposition using our method against the standard
design of the two applications. Comparing these results
with the results of Baresi et al. [4], our proposed method
performed better in the decomposition of the Kanban
Board application by decomposing 12 out of 13 operations
correctly, in comparison to method of Baresi et al. [4],
which decomposed only 10 operations correctly. For the
Money Transfer application, 10 of the 11 operations were
decomposed correctly using our method, while in research
of Baresi et al. [4] only 8 operations were found correctly
during the decomposition. Consequently, the proposed
method in this paper showed a better performance when
compared to other methods in the literature, as research
of Baresi et al. [4] showed already that their method per-
formed better than Service Cutter [6].

Furthermore, additional test cases were created with real
life examples of applications that are already used in a real
life environment. Thus, we searched for companies using
microservice architecture in their applications; for exam-
ple, Netflix, Amazon, PayPal, Twitter, and others [27].
Eventually, Amazon Web Services and PayPal were selected
as a case study for the proposed decomposition methodol-
ogy, because their API was available in OpenAPI specifica-
tions definition. So, these were compatible with our method.

0

0,2

0,4

0,6

0,8

1

Money App Kanban PayPal AWS

F-
M

ea
su

re

Word2Vec FastText

Fig. 2 Performance of Word2Vec vs fastText

Table 2 Comparison of the proposed method's decomposition and the standard decomposition of the two applications

Application Proposed Decomposition Optimal Decomposition

Money Transfer

addToAccountUsing
createAccountUsing

getAccountUsing

addToAccountUsing
createAccountUsing

getAccountUsing

createCustomerUsing
getAccountsForCustomerUsing

getCurrentUserUsing
getCustomerUsing

getCustomersByEmailUsing
getTransactionHistoryUsing

createCustomerUsing
getAccountsForCustomerUsing

getCurrentUserUsing
getCustomerUsing

getCustomersByEmailUsing

doAuthUsing doAuthUsing

moneyTransferUsing moneyTransferUsing
getTransactionHistoryUsing

Kanban Board

doAuthUsing doAuthUsing

getBoardUsing
listAllBoardsUsing

saveBoardUsing

getBoardUsing
listAllBoardsUsing

saveBoardUsing

backlogTaskUsing
completeTaskUsing

deleteTaskUsing
listAllTasksUsing

saveTaskUsing
scheduleTaskUsing

startTaskUsing
updateTaskUsing

completeTaskUsing
deleteTaskUsing

listAllTasksUsing
saveTaskUsing

scheduleTaskUsing
startTaskUsing

updateTaskUsing

getHistoryUsing backlogTaskUsing
getHistoryUsing

280|Al-Debagy and Martinek
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 274–281, 2019

The number of operations in Amazon Web Services API
was 318 divided into 47 microservices. On the other hand,
PayPal's API has 110 operations scattered on 16 micros-
ervices. This shows the size of the applications, and how
challenging it is to decompose them manually without
any automation.

Performing the decomposition process on these two APIs
and comparing the decomposition results with the already
available services in the API documentations of each appli-
cation, our method presented promising results in terms
of precision and recall. For example, the precision of the
proposed decomposition method was 74 %, and recall was
79 % obtained from decomposing Amazon Web Services
API. For PayPal API, the performance was less accurate,
precision was 80 %, while recall was 66 %. Table 3 shows
the results of all tests using the 4 different applications.

Accordingly, in total there were 4 applications with
452 operations tested using our decomposition method.
By getting the precision and recall, F-measure was calcu-
lated as was mentioned before. The averaged F-Measure
was 81 %, while the averaged precision of all the tests
was 84 % and the averaged recall was 78 %. These results
showed that the proposed decomposition method is suitable
to be a helping tool for software architects by decomposing
a monolithic application into a microservices application.

5 Conclusion and Future Work
This paper proposed a novel approach to identify micro-
services in the process of migrating from monolithic
architecture to a microservice architecture. The proposed
method consists of several steps, starts with the extracted
operation names from OpenAPI specifications. The sec-
ond step is the process of converting the operation names

into word representation using word embedding models.
The third step is the clustering of semantically similar
operation names in order to create candidates of micros-
ervices. The proposed method showed significantly better
results when compared it to other methods from the litera-
ture, resulted in F-Measure of 0.81, a precision of 0.84 and
a recall of 0.78. Therefore, this can be an aiding addition
for software architects in the process of extracting micro-
services from monolithic applications.

Furthermore, we proposed a new microservices decom-
position method using word embedding and hierarchical
clustering method to identify potential microservices
through analyzing application programming interfaces.

For the future, this work can be improved by finding
a different method for calculating the distance between
word vectors such as using word mover's distance instead
of averaging the word representations in operation names.
Another possible area of further research is the develop-
ing of new evaluation metrics based on service granular-
ity. The general goodness of the microservices' grouping
should be addressed with it directly.

Table 3 The performance of the proposed decomposition methodology

Application Precision Recall F-Measure # of
Operations

AWS 0.74 0.79 0.76 318

Kanban
Board 1 0.85 0.92 13

Money
Transfer 0.82 0.82 0.82 11

PayPal 0.8 0.66 0.72 110

Precision
Average

Recall
Average

F-Measure
Average Total

0.84 0.78 0.81 452

References
[1] Chen, R., Li, S., Li, Z. "From Monolith to Microservices: A Dataflow-

Driven Approach", In: 24th Asia-Pacific Software Engineering
Conference (APSEC), Nanjing, China, 2017, pp. 466–475.

 http://doi.org/10.1109/apsec.2017.53
[2] Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M.,

Montesi, F., Mustafin, R., Safina, L. "Microservices: Yesterday,
Today, and Tomorrow", In: Mazzara, M., Meyer, B. (eds.) Present
and Ulterior Software Engineering, Springer, Cham, Switzerland,
2017, pp 195–216.

 https://doi.org/10.1007/978-3-319-67425-4_12
[3] Villamizar, M., Garcés, O., Ochoa, L., Castro, H., Salamanca,

L., Verano, M., … Lang, M. "Cost comparison of running web
applications in the cloud using monolithic, microservice, and
AWS Lambda architectures", Service Oriented Computing and
Applications, 11(2), pp. 233–247, 2017.

 http://doi.org/10.1007/s11761-017-0208-y

[4] Baresi, L., Garriga, M., De Renzis, A. "Microservices Identification
Through Interface Analysis", In: De Paoli, F., Schulte, S., Broch
Johnsen, E. (eds.) Service-Oriented and Cloud Computing, Lecture
Notes in Computer Science, vol. 10465, Springer International
Publishing, Cham, Switzerland, 2017, pp. 19–33.

 http://doi.org/10.1007/978-3-319-67262-5_2
[5] Wilde, N., Gonen, B., El-Sheikh, E., Zimmermann, A.

"Approaches to the Evolution of SOA Systems", In: El-Sheikh, E.,
Zimmermann, A., Jain, L. (eds.) Emerging Trends in the Evolution
of Service-Oriented and Enterprise Architectures, Intelligent
Systems Reference Library, Vol. 111, Springer, Cham, Switzerland,
2016, pp. 5–21.

 http://doi.org/10.1007/978-3-319-40564-3_2

http://doi.org/10.1109/apsec.2017.53
https://doi.org/10.1007/978-3-319-67425-4_12
http://doi.org/10.1007/s11761-017-0208-y
http://doi.org/10.1007/978-3-319-67262-5_2
http://doi.org/10.1007/978-3-319-40564-3_2

Al-Debagy and Martinek
Period. Polytech. Elec. Eng. Comp. Sci., 63(4), pp. 274–281, 2019 |281

[6] Gysel, M., Kölbener, L., Giersche, W., Zimmermann, O. "Service
Cutter: A Systematic Approach to Service Decomposition",
In: Aiello, M., Johnsen, E. B., Dustdar, S., Georgievski, I. (eds.)
Service-Oriented and Cloud Computing, Lecture Notes in
Computer Science, Vol. 9846, Springer International Publishing,
Cham, Switzerland, 2016, pp. 185–200.

 http://doi.org/10.1007/978-3-319-44482-6_12
[7] OpenAPI Initiative "Home - OpenAPI Initiative", [online]

Available at: https://www.openapis.org/ [Accessed: 03 May 2019]
[8] Newman, M. E. J., Girvan, M. "Finding and evaluating

community structure in networks", Physical Review E, 69(2),
article ID: 026113, 2004.

 http://doi.org/10.1103/physreve.69.026113
[9] Raghavan, U. N., Albert, R., Kumara, S. "Near linear time algo-

rithm to detect community structures in large-scale networks",
Physical Review E, 76(3), article ID: 036106, 2007.

 http://doi.org/10.1103/physreve.76.036106
[10] Kolb, P. "DISCO: A Multilingual Database of Distributionally

Similar Words", In: Storrer, A., Geyken, A., Siebert, A., Würzner,
K.-M. (eds.) KONVENS 2018 - Ergänzungsband: Textressourcen
und lexikalisches Wissen, Berlin-Brandenburgische Akademie
der Wissenschaften, Berlin, Germany, 2008, pp. 5–12. [online]
Available at: http://citeseerx.ist.psu.edu/viewdoc/summary?-
doi=10.1.1.329.9446 [Accessed:13 January 2019]

[11] Mazlami, G., Cito, J., Leitner, P. "Extraction of Microservices from
Monolithic Software Architectures", In: International Conference
on Web Services (ICWS), Honolulu, HI, USA, 2017, pp. 524–531.

 http://doi.org/10.1109/icws.2017.61
[12] Joulin, A., Grave, E., Bojanowski, P., Mikolov, T. "Bag of Tricks

for Efficient Text Classification", 2016. [online] Available at:
http://arxiv.org/abs/1607.01759 [Accessed: 28 January 2019]

[13] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.
"Distributed Representations of Words and Phrases and their
Compositionality", 2013. [online] Available at: http://arxiv.org/
abs/1310.4546 [Accessed: 23 January 2019]

[14] Ma, C., Xu, W., Li, P., Yan, Y. "Distributional Representations of
Words for Short Text Classification", In: Blunsom, P., Cohen, S.,
Dhillon, P., Liang, P. (eds.) Proceedings of the 1st Workshop
on Vector Space Modeling for Natural Language Processing,
Association for Computational Linguistics, Red Hook, New York,
USA, 2015, pp. 33–38. [online] Available at: http://www.aclweb.
org/anthology/W15-1505 [Accessed: 21 January 2019]

[15] Le, Q., Mikolov, T. "Distributed Representations of Sentences and
Documents", Proceedings of the 31st International Conference on
Machine Learning, 32(2), pp. 1188–1196, 2014. [online] Available
at: http://arxiv.org/abs/1405.4053 [Accessed: 23 January 2019]

[16] Frey, B. J., Dueck, D. "Clustering by Passing Messages Between
Data Points", Science, 315(5814), pp. 972–976, 2007.

 http://doi.org/10.1126/science.1136800

[17] Mézard, M. "Where Are the Exemplars?", Science, 315(5814),
pp. 949–951, 2007.

 http://doi.org/10.1126/science.1139678
[18] Refianti, R., Mutiara, A. B., Syamsudduha, A. A. "Performance

Evaluation of Affinity Propagation Approaches on Data
Clustering", International Journal of Advanced Computer Science
and Applications, 7(3), pp. 420–429, 2016.

 http://doi.org/10.14569/ijacsa.2016.070357
[19] Rousseeuw, P. J. "Silhouettes: A graphical aid to the interpretation

and validation of cluster analysis", Journal of Computational and
Applied Mathematics, 20, pp. 53–65, 1987.

 https://doi.org/10.1016/0377-0427(87)90125-7
[20] Python Software Foundation "Welcome to Python.org", [online]

Available at: https://www.python.org/ [Accessed: 13 February 2019]
[21] Řehůřek, R., Sojka, P. "Software Framework for Topic Modelling

with Large Corpora", In: Proceedings of LREC 2010 workshop
New Challenges for NLP Frameworks, University of Malta,
Valletta, Malta, 2010, pp. 46–50. [online] Available at: https://is.
muni.cz/publication/884893/en [Accessed: 23 January 2019]

[22] Loper, E., Bird, S. "NLTK: The Natural Language Toolkit",
In: Proceedings of the ACL-02 Workshop on Effective tools and
methodologies for teaching natural language processing and
computational linguistics, vol. 1, Association for Computational
Linguistics, Stroudsburg, PA, USA, 2002, pp. 63–70.

 http://doi.org/10.3115/1118108.1118117
[23] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B.,

Grisel, O., … Duchesnay, É. "Scikit-learn: Machine Learning in
Python", Journal of Machine Learning Research, 12(October),
pp. 2825−2830, 2011. [online] Available at: http://jmlr.csail.mit.
edu/papers/v12/pedregosa11a.html [Accessed: 20 January 2019]

[24] Richardson, C. "Example code for my building and deploying
microservices with event sourcing, CQRS and Docker presenta-
tion", [computer program] Available at: https://github.com/cer/
event-sourcing-examples [Accessed: 22 January 2019]

[25] Richardson, C. "Multi-user Kanban board built using Eventuate,
DDD, microservices, event sourcing, CQRS, and Spring Boot",
[computer program] Available at: https://github.com/eventuate-ex-
amples/es-kanban-board [Accessed: 22 January 2019]

[26] Richardson, C. "Microservices Patterns: With examples in Java",
1st ed., Manning Publications, New York, United States, 2018.

[27] Novoseltseva E. "Benefits & Examples of Microservices Architecture
Implementation", 2018. [online] Available at: https://apiumhub.com/
tech-blog-barcelona/microservices-architecture-implementation/
[Accessed: 15 January 2019]

http://doi.org/10.1007/978-3-319-44482-6_12
https://www.openapis.org/
http://doi.org/10.1103/physreve.69.026113
http://doi.org/10.1103/physreve.76.036106
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.329.9446
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.329.9446
http://doi.org/10.1109/icws.2017.61
http://arxiv.org/abs/1607.01759
http://arxiv.org/abs/1310.4546
http://arxiv.org/abs/1310.4546
http://www.aclweb.org/anthology/W15-1505
http://www.aclweb.org/anthology/W15-1505
http://arxiv.org/abs/1405.4053
http://doi.org/10.1126/science.1136800
http://doi.org/10.1126/science.1139678
http://doi.org/10.14569/ijacsa.2016.070357
https://doi.org/10.1016/0377-0427(87)90125-7
https://www.python.org/
https://is.muni.cz/publication/884893/en
https://is.muni.cz/publication/884893/en
http://doi.org/10.3115/1118108.1118117
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://github.com/cer/event-sourcing-examples
https://github.com/cer/event-sourcing-examples
https://github.com/eventuate-examples/es-kanban-board
https://github.com/eventuate-examples/es-kanban-board
https://apiumhub.com/tech-blog-barcelona/microservices-architecture-implementation/
https://apiumhub.com/tech-blog-barcelona/microservices-architecture-implementation/

	1 Introduction
	2 Literature Review
	3 Methodology
	3.1 Word Embedding Models
	3.2 Operation Name Vector
	3.3 Clustering Method
	3.4 Evaluation Metrics

	4 Results and Discussion
	5 Conclusion and Future Work
	References

