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Abstract

The proposed manuscript presents a coefficient diagram method (CDM) controller for an electro-pneumatic system. In order to 

tune the controller parameters, an artificial bee colony (ABC) optimization method is applied. According to the simulation results, 

the optimized parameters can provide better dynamic and steady state performances and higher robustness to the control algorithm, 

than the conventional tuned parameters.
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1 Introduction
Electro-pneumatic systems have many advantages such as 
low weight and size; these systems are robust, economical 
with easy installation and maintenance [1-4], they are now 
used in several industrial sectors such as transporting sys-
tem, buildings, machine tools, assembly, pharmaceutical 
and chemical system. Contrariwise, the design of control 
laws for such systems is not easy due to its difficult model-
ing such as presence of parametric uncertainty.

Newly, several control approach were proposed to elec-
tro-pneumatic systems such as the classical technique 
proportional–integral–derivative (PID) linear control-
ler, it is widely employed, however this kind is deliberated 
as a fixed parameters controller which planned at nomi-
nal operating points to obtain a linearized model transfer 
function, this approach is not appropriate in all operating 
point, because of the incompetence of the PID controller's 
to the effect of the nonlinearities. The sliding mode control 
displays its usefulness due to its robustness and the guaran-
teed convergence. However, its weakness is the well-known 
"chattering" phenomenon [2, 5], produced by the discon-
tinuous input. Backstepping is one of these advanced con-
trol techniques that has attracted researcher in recent years. 

The main idea of this method is to select some suitable func-
tions of state variables as virtual control variables for subsys-
tems in the structure of the overall system recursively [6-10]. 
It can evade cancellations of useful nonlinear terms and 
frequently introduce additional nonlinearities to enhance 
transient performance, but in this approach, the control law 
is designed at each step in the procedure by means of vir-
tual control signals and their derivatives which are tedious 
for controlling nonlinear system when the order system is 
greater than three because the control signal will include 
the successive derivative of the virtual control.

The fundamental contribution of this paper is the devel-
opment of a new command filtered backstepping [11-14] 
combined with CDM controller [15-18] which will be 
applied to an electro-pneumatic system for position track-
ing; this approach requires only the reference signals and 
theirs derivatives to be available as inputs to the control 
system. The proposed control can guarantee an asymptotic 
convergence and enhance the robustness of the control law 
in the presence of disturbance and parameter variations.

The controller parameters tuning is frequently the main 
problem in the control field, when the classical command 
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filtered CDM-backstepping control is characterized 
by strong robustness and high stability. In order to achieve 
the high performance for position tracking, continuous 
adjustments of controller parameters have to been done 
by searching the optimal adjustment coefficient within 
short period. Conventional controller parameters adjust-
ing used the trial and error method, which is complex 
and the period of tuning is length. In order to enhance 
this controller and guarantee the optimum performance, 
a swarm intelligence optimization algorithm namely 
ABC algorithm [19-21] is used to optimize the parame-
ters of the proposed controller. The main novelty of the 
proposed approach consists in solving simultaneously 
both the problem of increasing terms in the traditional 
CDM-backstepping method caused by the repeated dif-
ferentiations of virtual control laws and the complexity 
of tuning many parameters of controller to obtain high 
performance, it is proven in simulation that the better 
performance in motion positioning is achieved by using 
this optimization approach.

The remainder of this paper is structured as follows. 
Section 2, explains the electro-pneumatic system dynam-
ics in state space model. Section 3 is dedicated to the 
design procedure of linear control for CDM. Section 4 is 
devoted to establish the command filtered backstepping 
based on coefficient diagram method with stability anal-
ysis, Section 5 describes the ABC optimization and its 
application.  Section 6 evaluates the performance of the 
proposed approach using computer simulations. The last 
section concludes this paper.

2 Electro-pneumatic system modeling
The state space model of this system is given in [1-4] 
by Eq. (1):
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So the functions q u P P P u umP P P P P P P( , ) ( ) ,sgn( )= + ( )ϕ ψ , 
q u P P P u umN N N N N N N( , ) ( ) ,sgn( )= + ( )ϕ ψ , V y V SyP ( ) = +0 , 
and V y V SyN ( ) = −0 .

With ϕ PP( )  and ϕ PN( )  are a polynomial functions 
of the pressure, ψ P uP P,sgn( )( )  and ψ P uN N,sgn( )( )  are 

a polynomial functions of the pressure and the input con-
trol, F text ( )  is the external force.

Where y is the position, v is the velocity, uP and uN are 
servo-distributors voltages, PP and PN are pressure in the 
chamber P and N , qm mass flow rate provided from ser-
vo-distributor to cylinder chamber, ϕ .( )  leakage poly-
nomial function, ψ .,.( )  polynomial function, bv viscous 
friction coefficient, k polytropic constant, M total load 
mass, S piston section, T temperature, r perfect gas con-
stant, V0 half-cylinder volume.
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3 Linear CDM control
CDM control is one of algebraic approach with polynomial 
form, it allow getting required response in the time domain 
by arranging the poles of the closed loop transfer function 
using stability index and equivalent time constant.

The output of the closed-loop system is defined as

y s N s F s
P s

ref s A s N s
P s

d s( )
( ) ( )

( )
( )

( ) ( )

( )
( ).= +  (3)

Where y is the system output, ref  is the reference input, 
u  is the control input and d is the external disturbance signal, 
N s( )  and D s( )  are the numerator and the denominator of 
the transfer function of the plant, respectively, A s( ) and 
B s( ) are the denominator polynomial and the feedback 
numerator of the controller transfer function, while F s( )  is 
the pre-filter, P s( )  is the characteristic polynomial.

The stability index γi , the equivalent time con-
stant T0 and the stability limit γ i

∗  [16-18] are defined as 
T ts0 2 5 3= ∼( . ) , γ µ µ µi i i i= − +

2

1 1( )  for i =1 to n −( )1 , 
γ γ γi i i
∗

+ −= +1 11 1 , γ1 2 5= . , γ i = 2  for i n= ∼ −2 1( ) , 
γ γ0 = = ∞n  with ts is the settling time. Finally the pre-filter 
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F s P N s( ) ( ) ( )= 0  is used for reducing the steady state error 
and the characteristic polynomial is given in [16] by Eq. (4):
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4 Command filtered CDM-backstepping and 
stability analysis
This section deal with robust command filtered CDM-
backstepping approach with an incorporated stability anal-
ysis for position tracking of electro-pneumatic system. 
The composition of this method is as follows: a CDM-
backstepping procedure is used to derive the stabilizing func-
tions and compensate the uncertainty generated by param-
eters variations and the external disturbances. As well, 
the command filter is used to guarantee that the desired state 
is closer to the value of the stabilizing function.

Initially we define the first tracking error as follows 
e x xd1 1= −  with xd is the reference, its time derivative 
along the trajectories of the system given by Eq. (2) can 
be written as  e x xd1 2= − , by adding and subtracting 
the terms φ1 and φ1 f from x2 , then its time derivative is 
given as    e x x x xd f f d1 1 2 1 1 1 1= − = + − + − −ϕ ϕ ϕ ϕ , other-
wise  e x xf f d1 2 1 1 1 1= − + + − −( )ϕ ϕ ϕ ϕ , as a consequence 
 e e xf d1 2 1 1 1= + + − −ϕ ϕ ϕ , with φ1 f represents the filtered 

command signal generated using the first order low pass 
filter with ϕ σ ϕ ϕ1 1 1 1f f= −( ) , where σ1 is the filter's cut-
off frequency, whereas ϕ ϕ1 1 10 0 00f d dx x x( ) ( , , )=   denotes 
the initial value of the virtual control signal with x10 0= , 
xd 0 0=  and xd 0 0= .

To compensate the influence of the command filter 
on the closed loop stability, a new variable ε1 is introduced 
such that the compensated tracking error signal is defined 
as z e1 1 1= −ε , then   z e1 1 1= −ε , we then proceed by choos-
ing the first Lyapunov function [8-10] as follows V z1 1

20 5= . , 
its time derivative is   V z e1 1 1 1= −( )ε , to ensure the nega-
tivity of the time derivative of V1 , the virtual control [8] 
φ1 and the dynamics of ε1 are selected as ϕ λ1 1 1= − +e xd , 
with ε λ ε ϕ ϕ ε1 1 1 1 1 2= − + − +f  and ε1 0 0( ) = , where ε2 is a 
new variable, then     z e e xf d1 1 1 2 1 1 1 1= − = + + − − −ε ϕ ϕ ϕ ε , 
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Hence, z z z1 2 1 1= −λ , as a result V z z z1 1 1

2

1 2= − +λ .
In the second step of the controller design, consid-

ers the subsystem given by x ax ax b x f tv ext2 3 4 2= − − − ( ) . 

The second compensated tracking error signal is defined as 
z e2 2 2= −ε , its derivative is   z e2 2 2= −ε . The second error 
tracking is taking e x f2 2 1= −ϕ , we then proceed by com-
pensating for the second command filter using the new 
vector ε2 and define z e2 2 2= −ε . The backstepping vari-
able is e x f2 2 1= −ϕ , and its derivative is prearranged 
as    e x ax ax b x f tf v ext f2 2 1 3 4 2 1= − = − − − −ϕ ϕ( ) , then 
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Treat ax ax b xv3 4 2− −  as an independent control whose 
desired input is ϕ λ ϕ2 1 2 2 2 1= − − + + +z e b x f tv ext f( )   with 
λ2 0> . Then, the virtual controls are expressed as 
x ad f3 2 2=ϕ ( )  and x ad f4 2 2= −ϕ ( ) , where φ2 f sym-
bolizes the filtered command signal produced by means 
of the first order low pass filter with ϕ σ ϕ ϕ2 2 2 2f f= −( ),  
ϕ ϕ2 200f ( ) = , and σ2 is the filter's cut-off frequency, 
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of the virtual control signal.
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In order for V2  to be negative, the dynamics equation 
of ε2 is selected as ε λ ε ϕ ϕ2 1 2 2 2= − + −f  with z e3 3=  and 
z e4 4= , then V z z az z az z2 1 1

2

2 2

2

2 3 2 4= − − + −λ λ , at that 
time, we define an auxiliary variable ζ = ( )x x T

3 4 , 
one can obtain ζ = +F x G x U( ) ( )  with U u u T= ( )1 2 , 
G x g x g x T

( ) ( ) ( )= ( )1 2  and F x f x f x T
( ) ( ) ( )= ( )1 2 .

At final step we have z e x d3 3 1 3= = −ζ , z e x d4 4 2 4= = −ζ , 
then let the vector E z z T= ( )3 4 , afterwards

E x xd
d d d

T= − =ζ ζ ζwith ( ) .3 4  (8)

The control signal can be expressed by Eq. (9):

A x U A x dU dt E tc1 2( ) ( )( ) ( ).+ =  (9)

Where the error E tc ( )  can be specified by Eq. (10):

E t C x B x B xc
d( ) ( ) ( ) ( ) .= − −0 0 1ζ ζ ζ  (10)



238|Haouari et al.
Period. Polytech. Elec. Eng. Comp. Sci., 63(3), pp. 235–241, 2019

A x1 ( ) , A x2 ( ) , C x0 ( ) , B x0 ( )  and B x1 ( )  are nonlin-
ear control gains and are designed as follows. Assuming 
that the constant gains δ1 , δ2 , c1 and c2 are such that

c z z d az h x ii i si i

t

iδ θ θsgn( ) ( ) ( ) , . .+∫ ≥ + =2

0

2 1 2with
 (11)
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With K is a diagonal matrix, by replacing Eq. (8) into 
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If Λ( )t < 0  then �V3 0≤ , the gains δ1 , δ2 , c1 and c2 must 
be taken using inequality Eq. (11).

5 ABC based command filtered CDM-backstepping
The ABC is resulting from biological behavior of bee col-
ony founded on the searching way of the honey bees [22], 
which is used to solve the optimal problem in the opti-
mization process. Comparing with powerful and known 
meta-heuristics such as genetic algorithm GA and parti-
cle swarm optimization, PSO, the presented ABC algo-
rithm habitually achieved better solutions in less time, 
because of this algorithm summarize the easiness, flexi-
bility, employs less control parameters [23, 24], it can be 
efficiently used for solving multidimensional optimiza-
tion problems [23, 25] and it can combines a global search 
with a local search [23], while GA uses only global search. 
The ABC optimization technique has three categories of 
bees: employed bee, onlooker bee, and scout bee [19-21]. 
The first half of the colony is the population size is con-
stituted of one half of employed bees and another half of 
onlooker bees. The number of employed bees is the same 
to that of food source which is obtainable in the natu-
ral world. In particular, each food source is used by one 
employed bee. Onlooker obtains information concerning 
food sources via dances of employed bees [25]. A selec-
tion is done by onlookers for selecting an employed 
bee and to exploit the food source to gather nectar [25]. 
The employed bee becomes scout if it was abandoned 
from food source which supports in exploring more poten-
tial food sources [26-28]. In ABC algorithm, the posi-
tion of a food source symbolizes a probable solution to be 
optimized. However the fitness of the optimized solution 
related to the source is termed as nectar amount.

The key steps of ABC algorithm are as follows:
STEP 1: The population is produced randomly between 

the search spaces, is given in [24, 26] by Eq. (18):

Par Par rand Par Pari
j

j j j= + ( )× −( )min max min, .0 1  (18)

Where i N= …1, ,  denote the number of food sources 
(equal to half to entire number of bees) and j D= …1, , . 
N and D signify the dimension (number of controller 
parameters) of the problem, Parmax  and Parmin  are the 
upper bound and the lower bound of the search space.

Step 2: In this step, in the surrounding area of the solu-
tion, each employee bee searches a new candidate solu-
tion [24, 26] via v Par rand Par Pari

j
j
i

j
i

j
k= + − × −( , ) ( )1 1 , 

where the constant k is chosen randomly neighbor of i , 
where k i≠  and j is a dimension designated randomly. 
Once the solution vi is discovered, it is compared to Pari . 
If  vi is better than Pari , Pari  is substituted by vi and trial 
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counter of i is returned to zero. In addition, the trial counter 
of  i is simply incremented by one, if Pari  is better than vi .

Step 3: In the hive, when the dance is performed by the 
employed bees, an onlooker bee chooses her food source 
to utilize, probabilistically, corresponding to the solution 
the probability [28] of food sources is considered by Eq. (19):

P fit fiti i j
j

m

=
=
∑

1

.  (19)

The fitness function is designated by fit Ji = +( )1 1 ,

where J is the objective function to be optimized and 
given by Eq. (20):

J z dti
i

=
∞

=
∫∑ 2

01

4

.  (20)

After choosing probabilistically the food source, 
the onlooker bee behaves in similar fashion as declared 
in the employed step.

Step 4: After employed and onlooker steps, all solu-
tions of the trial counters are examined, and if they 
exceed the maximum limit, the employed bee of that solu-
tion becomes scout and that solution is abandoned. 
Subsequently, those scouts generate a new solution 
by Eq. (18) to substitute the abandoned source.

6 Computer simulations
In order to study the efficiency of the ABC optimization 
in the position control, we have designed a computer simu-
lation of optimized controller where compared with the tra-
ditional controller, the test was divided in two phases ideal 
case and robustness analysis in the case when the distur-
bance and uncertainties are added to the system. The param-
eters of the system are b = 50 N/m/s , VDN = × −1 2 10 5 2.  m , 
T = 293 K , V0

4 33 4 10= × −.  m , r = − −287 1 1 1. . . J kg K , 
S = 0 0045 2.  m , M = 3 4.  kg , k =1 2. . The initial val-
ues are y 0 0 07( ) = − .  m, v 0 0 1( ) = − ms , PP 0 1( ) =  bar . 
The search space of controller parameters are 0 1001< <λ , 
0 1002< <λ , 0 1003< <λ , 0 501< <δ , 0 502< <δ , 
0 501< <c , 0 502< <c , 0 301< <σ , 0 302< <σ .

6.1 First test scenario
The results are represented in Figs. 1-3, which display com-
parisons between the performance of the conventional con-
troller and the optimized controller. From Fig. 1, it is clear 
that the system with conventional controller ensure high 
settling time, high steady state error and ISE value with 
4.12 mm, and 1.18 mm respectively. The optimized control-
ler enhances the performance where the settling time and 

steady state error are extremely minimized with 0.097 mm 
and 0.021 mm respectively. The overshoot of the system is 
nearly equal zero for both controllers; the results obtained 
are depicted in Table 1. Fig. 2 and Fig. 3 show the compar-
ison of the actuators controls action where the amplitude 
of control input is less, then very suitable for the optimized 
controller. So, tuning of filtered CDM-backstepping gains 
is useful in minimizing the settling time, steady state error 
and control effort but has no effect in overshoot.
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Fig. 1 First test, actual positions for both controllers
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0 5 10 15 20

−6

0

5

time (s)

C
on

tro
l i

np
ut

  u
2 (v

) Conventional controller
Optimized controller

Fig. 3 First test, actual controls inputs for both controllers

Table 1 Performance comparison of algorithms

Conventional controller Optimized controller

Controller 
parameters

λ1 = 80, λ2 = 40, 
λ3 = 27, 

δ1 = 18, δ2 = 17,
c1 = 10, c2 = 11,
σ1 = 20, σ2 = 20

λ1 = 60.2, λ2 = 35.1, 
λ3 = 21.4,

δ1 = 15.2, δ2 = 8.32,
c1 = 9.43, c2 = 10.1,
σ1 = 24.3, σ2 = 25.2

Settling time ts = 0.71 s ts = 0.41 s

Performance
criteria J = 0.00412 J = 0.00097
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6.2 Second test scenario
To show the superiority and the robustness of the proposed 
ABC technique for optimizing the controller parameters, 
wide changes are effected in the operating conditions and 
system parameters by adding the external disturbance 
and varying system parameters from the nominal values 
in the range of −25 % to 25 % applied at t = 0 s . Figs. 4-6 
illustrate the performance comparison of the controllers, 
the results obtained from the optimized and conventional 
controllers are compared, minimum steady state error, 
settling time, ISE values and control efforts are obtained 
with optimized controller and the effect on the system per-
formance is negligible. Hence, the proposed control is the 
best in robustness under these changes.

7 Conclusion
The proposed paper applies a new optimization method 
for optimal gain tuning of controller parameters by means 
of ABC algorithm in order to obtain high performance of the 
electro-pneumatic system using command filtered CDM-
bakstepping to avoid the problem of increase of complex-
ity, the asymptotic stability is proven and guaranteed using 
Lyapunov theory, the optimization method is designed 
with the comprehensive analysis of its tuning performance 
and its impact to robustness, throughout the searching evo-
lution, the well-defined objective function is successively 
minimized so that the optimal control parameters finally 
ensued, in the simulation, two types of control cases are 
provided to display the feasibility of the proposed method, 
where the closed-loop control performances of the opti-
mized controller are compared with traditional control-
ler, the asymptotic convergence is achieved for both 
control system without overshoot, where the optimized 
control system has best performance and is not affected by 
inserted disturbance and changes of the parameters values, 
when the considered system parameters are varied in the 

range of ±25 %. Consequently it is seen from this study, 
that this optimization technique can be applied to the 
electro-pneumatic system successfully. Then simulation 
results expose the superiority of the optimized controller 
design method. Also, for future research, it is worthwhile 
to valid experimentally the research method.
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