Improved Sensorless Control of Doubly Fed Induction Motor Drive Based on Full Order Extended Kalman Filter Observer

Djamila Cherifi¹*, Yahia Miloud¹

¹ GACA Laboratory, Department of Electrical Engineering, Faculty of Technology, University of Dr. Tahar Moulay, P. O. B. 138, 20000 Ennass, Saida, Algeria
* Corresponding author, e-mail: d_cherifi@yahoo.fr

Received: 20 April 2019, Accepted: 16 July 2019, Published online: 30 October 2019

Abstract
The paper deals with a Doubly Fed Induction Motor (DFIM) supplied by two PWM voltages inverters. The aims of this paper are sensorless adaptive Fuzzy-PI speed control decoupled by a vector control applied to a Doubly Fed Induction Motor using full order Extended Kalman Filter. The application of the adaptive Fuzzy-PI controller for speed control brings a very interesting solution to the problems of robustness and dynamics. In order to reduce the number of sensors used, and thus the cost of installation, Extended Kalman Filter Observer is used to estimate the rotor speed, rotor fluxes and stator currents, this observer is a unique observer which offers best possible filtering of the noise in measurement and of the system if the noise covariances are known. Simulation results of the proposed scheme show good performances.

Keywords
Doubly Fed Induction Motor (DFIM), Direct Field Oriented Control (DFOC), robust adaptive Fuzzy-PI controller, sensorless control, Extended Kalman Filter Observer (EKFO)

1 Introduction
Nowadays, the Doubly Fed Induction Motor (DFIM) drives are becoming popular in industry applications due to its high power handling capability without increasing the power rating of the converters. It presents good performances stability both in very low speed and in high speed operation [1, 2]. The progress accomplished, in the few past years, in power electronics has made the Doubly Fed Induction Motor (DFIM) an industrial standard due to its low cost and high reliability [3, 4]. DFIM is essentially non-linear, due to the coupling between the flux and the electromagnetic torque. Vector control with directed rotor flux has become the most widely used technique for variable speed electric drives of asynchronous motors. It consists in finding a situation similar to that found in the DC machine, controlling the flux and the torque independently [5-7]. However, the performance is sensitive to the variations of machine parameters, because the control laws using the PI type controllers give good results in the case of linear systems with constant parameters, but for nonlinear systems, these conventional control laws can be insufficient because they are not robust especially when the requirements on the speed and other dynamic characteristics of the system are strict. In order to improve the performance of the vector control and make it insensitive to parameter variations, and disturbances, we propose an adaptive Fuzzy-PI speed controller. Vector control based adaptive Fuzzy-PI speed controller provides precise speed control in a wide range of variation with high static and dynamic performance. The drawback of this method is that the rotor speed of the DFIM must be measured, which requires a speed sensor of some kind, for example a resolver or an incremental encoder. The cost of the speed sensor, at least for machines with ratings less than 10 kW, is in the same range as the cost of the motor itself. The mounting of the sensor to the motor is also an obstacle in many applications. A sensorless system where the speed is estimated instead of measured would essentially reduce the cost and complexity of the drive system. Note that the term sensor less refers to the absence of a speed sensor on the motor shaft, and that motor currents and voltages must still be measured. The vector control method requires also estimation of the flux linkage of the machine, whether the speed is estimated or not [8-10]. Various control algorithms have been proposed...
for the elimination of speed and position sensors: estimators using state equations, artificial intelligence, Model Reference Adaptive System (MRAS), Extended Kalman Filters (EKF), Extended Luenberger Observer (ELO), sliding mode observer etc. ... [11]. This paper proposes a sensorless direct field oriented strategy based on the full order Extended Kalman Filter Observer.

The Extended Kalman Filter (EKF) is applied to nonlinear, time-varying stochastic systems, this observer is a unique observer which offers best possible filtering of the noise in measurement and of the system if the noise covariances are known. The advantage of EKF is that they can combine parameter and state estimation. The algorithm is based on a mathematical model representing the machine dynamics taking into account plant and measurement noise. The EKF has the advantages of considering modeling errors and inaccuracy as well as measurement errors in addition to accurate speed estimation over a wide speed range [12]. This paper is organized as follows:

• Section 2 dynamic model of DFIM is reported;
• principle of field-oriented controller is given in Section 3.
• The proposed solution is presented in Section 4.
• In Section 5, results of simulation tests are reported.
• Finally, Section 6 draws conclusions.

2 Doubly Fed Induction Motor model

The chain of energy conversion adopted for the power supply of the DFIM consists of two converters, one on the stator and the other one on the rotor. A filter is inserted between the two converters, as shown in Fig. 1.

The structure of DFIM is very complex. Therefore, in order to develop a model, it is necessary to consider the following simplifying assumptions: the machine is symmetrical with constant air gap; the magnetic circuit is not saturated and it is perfectly laminated, with the result that the iron losses and hysteresis are negligible and only the windings are driven by currents; the m.m.f created in one phase of stator and rotor are sinusoidal distributions along the gap [13].

By this means, a dynamic model of the DFIM in stationary reference frame can be expressed by:

\[
\begin{align*}
\frac{d}{dt} i_d &= -\lambda i_d + \omega i_q + \frac{K}{T} \phi_d + \omega \phi_q + 1 \sigma L v_d - K v_d \\
\frac{d}{dt} i_q &= -\omega i_d - \lambda i_q - \omega \lambda \phi_d + \frac{K}{T} \phi_q + 1 \sigma L v_q - K v_q \\
\frac{d}{dt} \phi_d &= \frac{L_m}{T} i_d - \omega \phi_d + 1 T \phi_q + v_d \\
\frac{d}{dt} \phi_q &= \frac{L_m}{T} i_q - \omega \lambda \phi_d - 1 T \phi_q + v_q \\
\frac{d}{dt} \omega &= \frac{3}{2J} F L_r (\phi_d i_q - \phi_q i_d) - F \frac{\sigma}{J}
\end{align*}
\]

with:

\[
T_c = \frac{L_m}{R_s} ; T = \frac{L_m}{R_s} ; \lambda = \frac{1}{\sigma T} ; K = \frac{L_m}{\sigma L_L L_r} ; \\
\sigma = 1 - \frac{L_m^2}{L_r L_s} ; \omega = p \Omega .
\]

The electromagnetic torque is expressed by:

\[
T_{em} = \frac{3}{2} P \frac{L_m}{L_r} (\phi_d i_q - \phi_q i_d) .
\]

3 Vector control by rotor flux orientation

The main objective of the vector control of DFIM is as in DC machines, to independently control the torque and the flux; this is done by using a d-q rotating reference frame synchronously with the rotor flux space vector. The d-axis is then aligned with the rotor flux space vector [14]. Under this condition we get:

\[
\phi_d = 0, \phi_q = \phi_d .
\]

So, we can write:

\[
T_{em} = \frac{3}{2} P \frac{L_m}{L_r} (\phi_d i_q - \phi_q i_d)
\]

For the Direct Rotor Flux Orientation (DFOC) of DFIM, accurate knowledge of the magnitude and position of the rotor flux vector is necessary. In a DFIM motor mode, as stator and rotor currents are measurable, the rotor flux can be estimated (calculated). The flux estimator can be obtained by the Eq. (5) [15]:
\[
\phi_s = \sqrt{\phi_{r\alpha}^2 + \phi_{r\beta}^2} \quad \text{and} \quad \theta_s = \tan^{-1}\left(\frac{\phi_{r\beta}}{\phi_{r\alpha}}\right). \quad (5)
\]

3.1 The speed control of the DFIM by an adaptive Fuzzy-PI controller

In order to achieve good performance of sensorless vector control, we propose a robust adaptive Fuzzy-PI speed controller.

In what follows, we show the synthesis and description of the adaptation of the PI controller by a fuzzy system method:

- The fuzzy inference mechanism adjusts the PI parameters and generates new parameters during the process control. It enlarges the operating area of the linear controller (PI) so that it also works with a non-linear system [16, 17].
- The input of the fuzzy adapter are:
 - the error \(e \) and
 - the derivative of error \(e \Delta e \).
- The outputs are:
 - the normalized value of the proportional action \(k'_p \) and
 - the normalized value of the integral action \(k'_i \).

The normalization PI parameters are given by Eqs. (6), (7) [18]:

\[
k'_p = \left(k_p - k_{p\min}\right) / \left(k_{p\max} - k_{p\min}\right) \quad (6)
\]

\[
k'_i = \left(k_i - k_{i\min}\right) / \left(k_{i\max} - k_{i\min}\right). \quad (7)
\]

The parameters \(k'_p \) and \(k'_i \) are determined by a set of fuzzy rules of the form. If \(e \) is \(A_j \), and \(\Delta e \) is \(B_j \), then \(k'_p \) is \(C_{ij} \) and \(k'_i \) is \(D_{ij} \). Where \(A_j \), \(B_j \), \(C_j \), and \(D_j \) are fuzzy sets on corresponding supporting sets. The associated fuzzy sets involved in the fuzzy control rules are defined as follows:

- ZE Zero
- PB Positive Big
- PM Positive Medium
- PS Positive Small
- S Small
- NB Negative Big
- NM Negative Medium
- NS Negative Small
- B Big.

The membership functions for the fuzzy sets corresponding to the error \(e \), \(\Delta e \) and the adjusted proportional and integral terms \((k'_p \) and \(k'_i) \) are defined in Fig. 2 and Fig. 3.

By using the membership functions shown in Fig. 3, we satisfy the Eq. (8).

\[
\sum_{i=1}^{3} \nu_i = 1 \quad (8)
\]

The fuzzy outputs \(k'_p \) and \(k'_i \) can be calculated by the center of area defuzzification as:

\[
\begin{bmatrix} k'_p, k'_i \end{bmatrix} = \frac{\sum_{i=1}^{3} w_i c_i}{\sum_{i=1}^{3} w_i} = \nu^T W. \quad (9)
\]

Where \(C = [c_1 \ldots c_2] \) is the vector containing the output fuzzy centers of the membership functions, \(W = [w_1 \ldots w_3] / \sum_{i=1}^{3} w_i \) is the firing strength vector and \(\nu_i \) represents the membership value of the output \(k'_p \) or \(k'_i \) to output fuzzy set \(i \).

Once the values of \(k'_p \) and \(k'_i \) are obtained, the new parameters of PI controller is calculated by Eqs. (10), (11) [17]:

\[
k_p = (k_{p\max} - k_{p\min}) k'_p + k_{p\min} \quad (10)
\]

\[
k_i = (k_{i\max} - k_{i\min}) k'_i + k_{i\min}. \quad (11)
\]

4 Kalman filter observer

The Kalman filter is a state observer that relies on a number of assumptions including the presence of noise. The basic
The principle of the Kalman filter is the minimization, variance of state-based estimation measurement error.

The Kalman filter can be expressed by Eqs. (12), (13) [19]:

\[
\frac{dx}{dt} = Ax + Bu + U(t)w(t) \quad \text{(System equation)} \tag{12}
\]

\[
y = Cx + v(t) \quad \text{(Measurement equation)} \tag{13}
\]

where

- \(U(t) \): weight matrix of noise
- \(v(t) \): noise matrix of output model (measurement noise)
- \(w(t) \): noise matrix of state model (system noise)

\(U(t), v(t), \) and \(w(t) \) are assumed to be stationary, white Gaussian noise and their expectation values are zero.

The covariance matrices \((Q) \) and \((R) \) of this noise are defined as

\[
Q = \text{covariance} \{w\} = E\{ww'\} \tag{14}
\]

\[
R = \text{covariance} \{v\} = E\{vv'\} \tag{15}
\]

The state equations of the Kalman filter can be performed by Eq. (16):

\[
\dot{x} = (A - KC)\dot{x} + Bu + Ky. \tag{16}
\]

The Kalman filter matrix is based on the covariance of the noise and denoted by \(K \). The measure of quality of the observation is expressed by Eq. (17):

\[
L = \sum E\{(x(k) - \hat{x}(k))^T (x(k) - \hat{x}(k))\} = \min. \tag{17}
\]

The value of \(K \) should be such that as to minimize \(L_c \). The result of \(K \) is a recursive algorithm for the discrete time case. The discrete form of Kalman filter may be written by Eqs. (18)-(22) [20]:

1. System state estimation

\[
x(k+1) = x(k) + K(k)(y(k) - \hat{y}(k)) \tag{18}
\]

2. Renew of the error covariance matrix

\[
P(k+1) = P(k) - K(k)h^T(k+1)P(k) \tag{19}
\]

3. Calculation of Kalman filter gain matrix

\[
K(k+1) = \frac{P(k)}{P(k) + h^T(k+1)h + R} \tag{20}
\]

4. Prediction of state matrix

\[
f(k+1) = \frac{\partial}{\partial x}(A_d x + B_d y)|_{x=x(k+1)} \tag{21}
\]

5. Estimation of error covariance matrix

\[
P^*(k+1) = f(k+1) \hat{P}(k) f^T(k+1) + Q. \tag{22}
\]

Discretization of Eq. (12) and Eq. (13) yields

\[
x(k+1) = A_d x(k) + B_d u(k) \tag{23}
\]

\[
y(k) = C_d x(k) \tag{24}
\]

where \(K(k) \) is the feedback matrix of the Kalman filter.

\(K(k) \) gains matrix calculates how the state vector of the Kalman filter is updated when the output of the model is compared with the actual output of the system. The EKF is a recursive optimum stochastic state estimator which can be used for the joint state and parameter estimation of a non-linear dynamic system in real time by using noisy monitored signals that are disturbed by random noise.

An extended DFIM model is obtained and the rotor speed is considered as an extended state. The discrete DFIM model defined in Eq. (23) and Eq. (24) can be implemented in the Extended Kalman Filter algorithm. The block diagram of the EKF estimator is shown in Fig. 5.

The input and output matrices of the discrete system are denoted by \(A_d, B_d, \) and \(C_d, \) while the state and the output of the discrete system are denoted by \(x(k) \) and \(y(k) \).

The discrete model of the DFIM can be given by Eq. (25) [19, 20]:

\[
x(k+1) = f(x(k), u(k)) + w(k) = A_d x(k) + B_d u(k) + w(k)
\]

\[
y(k) = h(x(k)) + V(k) = C_d x(k) + V(k). \tag{25}
\]

Where \(w(k) \) is the measurement noise and \(V(k) \) is the process noise.

The state vector is chosen to be

\[
A_d = e^{A_d T} \approx I - A_d, \tag{26}
\]

\[
B_d = \int_0^T e^{A_d \tau} B_d \tau \approx BT, \tag{26}
\]

\[
C_d = C \tag{26}
\]
4.1 Application of Kalman filter extended to DFIM

Now, we will proceed to the equation of states of the model of the machine that will be used to design our observer, it is necessary to take a reference axis related to the stator, so:

\[X = \begin{bmatrix} i_{ra} & i_{rb} & \phi_{ra} & \phi_{rb} \end{bmatrix}^T \]

\[U = \begin{bmatrix} v_{ma} & v_{mb} & v_{ra} & v_{rb} \end{bmatrix}^T \]

\[B = \begin{bmatrix} \frac{1}{\sigma L_s} & 0 & K & 0 \\ 0 & \frac{1}{\sigma L_s} & 0 & K \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \]

The state equations can be written by Eq. (27):

\[
\begin{align*}
\dot{i}_{ra} &= -\lambda i_{ra} + \omega_i i_{rb} + \frac{K}{T_r} \phi_{ra} + \omega \phi_{rb} + \frac{1}{\sigma L_s} v_{ra} + K v_{ra} \\
\dot{i}_{rb} &= -\omega i_{ra} - \lambda i_{rb} - \omega_i K \phi_{ra} + \frac{K}{T_r} \phi_{rb} + \frac{1}{\sigma L_s} v_{rb} + K v_{ra} \\
\dot{\phi}_{ra} &= \frac{L_m}{T_r} i_{ra} - \frac{1}{T_r} \phi_{ra} + \omega \phi_{rb} + v_{ra} \\
\dot{\phi}_{rb} &= \frac{L_m}{T_r} i_{rb} - \omega \phi_{ra} - \frac{1}{T_r} \phi_{rb} + v_{rb}
\end{align*}
\]

(27)

with

\[T_r = \frac{L_m}{R_s}; \quad T_s = \frac{L_m}{R_s}; \quad \lambda = \frac{1}{\sigma L_s}; \quad K = \frac{L_m}{\sigma L_s L_r}. \]

The extended model of the machine in the repository linked to the stator is written:

\[
\begin{bmatrix}
-\lambda x_1 + \omega x_2 + \frac{K}{T_r} x_5 + K \omega x_4 + \frac{1}{\sigma L_s} v_{ra} + K v_{ra} \\
-\lambda x_2 + \omega x_3 - K \omega x_5 + \frac{K}{T_r} x_4 + \frac{1}{\sigma L_s} v_{rb} + K v_{ra}
\end{bmatrix}
\]

\[
f = \begin{bmatrix}
\frac{L_m}{T_r} x_1 - \frac{1}{T_r} x_5 + \omega x_4 + v_{ra} \\
\frac{L_m}{T_r} x_2 - \omega x_3 - \frac{1}{T_r} x_4 + v_{rb} \\
0
\end{bmatrix}
\]

(28)

The stator voltages and states are:

\[U = \begin{bmatrix} v_{ma} & v_{mb} & v_{ra} & v_{rb} \end{bmatrix}^T \]

\[X = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_5 \end{bmatrix}^T \]

\[= \begin{bmatrix} i_{ra} & i_{rb} & \phi_{ra} & \phi_{rb} & \omega_r \end{bmatrix}^T. \]

The Jacobian matrix (\(F \)) is deduced by Eq. (29):

\[
F = \begin{bmatrix}
1-t_c \lambda & t_c \omega & t_c K \phi_{rb} & t_c K \omega & t_c K \phi_{rb} \\
1-t_c \omega & -t_c K \omega & t_c K \phi_{ra} & t_c \lambda & t_c K \phi_{rb} \\
0 & 1-t_c \omega & -t_c K \omega & 1-t_c \lambda & 1-t_c K \phi_{rb} \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

(29)

The important and difficult part in the design of the full order EKF is choosing the proper values for the covariance matrices (\(Q \)) and (\(R \)). The change of values of covariance matrices affects both the dynamic and steady-state.

In order to have a good performance, to insure better stability, convergence time and considerable rapidity of the EKF, the chosen values for the covariance matrices (\(Q \), \(R \)) and (\(P \)) can be initialized and adjusted as:

\[P = \text{diag}[0.1, 0.1, 1e^{-3}, 1e^{-3}, 60] \]

\[Q = \text{diag}[0.01, 0.01, 1e^{-3}, 1e^{-3}, 1e^{-3}] \]

\[R = [2.5, 2.5]. \]

5 Simulation result and discussion

In order to evaluate the performance of the full order Extended Kalman Filter estimation algorithm and therefore the overall drive system performance, we subjected our system to various simulation tests for direct oriented rotor flux control (Fig. 6).

The main parameters of this simulation are summarized as follows:

- sampling frequency 1.8 kHz;
- the DC voltage \(U_{DC} = 500 \) V.
This scheme (Fig. 6) consists of a DFIM powered by two PWM voltage inverters, a Direct Field Oriented Control block in which there is an adaptive Fuzzy-PI speed controller, PI type current and flux controllers as well, a transformation block of three-phase quantities to two-phase magnitudes, an observer on the Extended Kalman Filter.

The first test (Fig. 7) concerns a no-load starting of the motor with a reference speed \(\omega_{\text{ref}} = 250 \) rad/s and a nominal load disturbance torque (10 N.m) is suddenly applied between 1 sec and 2 sec, followed by a consign inversion (−250 rad/s) at 2.5 s, this test has for object the study of controller behaviors in pursuit and in regulation.

It can be seen that the estimate of the rotational speed is almost perfect (Fig. 7 (a)). The estimated speed follows perfectly the real speed with a static error equal to zero (Fig. 5 (b)). We also notice that there is good sensitivity to load disturbances is observed, with a relatively low rejection time because of the use of a strong and robust control loop by the adaptive Fuzzy-PI controller.
Fig. 7 (c) shows the electromagnetic torque waveform in the case of sensorless DFIM with adaptive Fuzzy-PI speed based on Direct Field Oriented Control.

We clearly see an excellent orientation of the rotor flux on the direct axis (Fig. 7 (d)), during the changes of the setpoints, and in particular during the inversion of rotation, the change of direction of the torque does not degrade the orientation of the fluxes. We also note a perfect continuation of the components of the rotor flux estimated at their corresponding real components (Fig. 7 (e)).

5.1 The rotor resistance variation test

In order to study the influence of parametric variations on the behavior of the EKF-based speed sensorless vector control, we introduced a variation of +50 % of R_r in the first test, we obtained the results as shown in Fig. 8 whose membership functions of adaptive Fuzzy-PI are detailed in Tables 1 and 2.

According to the result of Fig. 8, we note that the increase in resistance did not affect the accuracy of

<table>
<thead>
<tr>
<th>Table 1 Fuzzy rules base for computing k_{i}^{e}</th>
<th>Δe^{e}</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>ZE</td>
<td>ZE</td>
</tr>
<tr>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>PM</td>
<td>PM</td>
</tr>
<tr>
<td>PB</td>
<td>PB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2 Fuzzy rules base for computing k_{i}^{e}</th>
<th>Δe^{e}</th>
</tr>
</thead>
<tbody>
<tr>
<td>NB</td>
<td>NB</td>
</tr>
<tr>
<td>NM</td>
<td>NM</td>
</tr>
<tr>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>ZE</td>
<td>ZE</td>
</tr>
<tr>
<td>PS</td>
<td>PS</td>
</tr>
<tr>
<td>PM</td>
<td>PM</td>
</tr>
<tr>
<td>PB</td>
<td>PB</td>
</tr>
</tbody>
</table>

Fig. 7 Simulation waveforms of proposed sensorless control drives: Reference, Measure and Estimated Rotor speed, Speed Error, Stator Flux, Rotor Flux, Rotor Flux Error, Electromagnetic torque waveform.
the observer and the estimation of the rotational speed, we clearly see that the estimated speed perfectly follows its reference. An increase of the rotor resistance gives best performances.

The results of the speed control have shown that the control with adaptive Fuzzy-PI controller ensures good performance even in the presence of parametric variations and external disturbances (load disturbance torque).

As we see in this result, the increase in resistance did not affect the accuracy and orientation of the rotor flux, which proves the robustness of the proposed controller. According to these results, we can say and in general, we obtained the same performance as the previous test with the nominal rotor resistance.

5.2 The stator resistance variation test

For a nominal value of R_s, the stator resistance R_s is increased by +50% of its nominal value, we obtained the results as shown in Fig. 9. The obtained results (Fig. 9) demonstrates that even if the stator resistance changes,
the proposed full order Extended Kalman Filter Observer gives a good estimate of the speed. This result shows also that using adaptive Fuzzy-PI controller performs a better control in terms of robustness.

6 Conclusion
In this paper, adaptive Fuzzy-PI controller was employed to solve different drawbacks of the conventional PI controllers and to obtain the better performance from the DFIM motor mode in a speed control also make it insensitive to parameter variations, and disturbances. Sensorless speed operation increases reliability, reduces the complexity and the cost of the system, for all these reasons full order Extended Kalman Filter Observer is developed.

The simulation results prove that the proposed method give high the robustness quality. The optimal sensor-less vector control is then obtained and the torque/current ratio is thus maintained at the maximum value corresponding to a given load torque and also in the case of variation of the parameters.

Appendix

<table>
<thead>
<tr>
<th>DFIM motor parameters</th>
<th>Symbol</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFIM Mechanical Power</td>
<td>P_w</td>
<td>1.5 Kw</td>
</tr>
<tr>
<td>Nominal speed</td>
<td>ω</td>
<td>1450 rpm</td>
</tr>
<tr>
<td>Pole pairs number</td>
<td>P</td>
<td>2</td>
</tr>
<tr>
<td>Stator resistance</td>
<td>R_s</td>
<td>1.68 W</td>
</tr>
<tr>
<td>Rotor resistance</td>
<td>R_r</td>
<td>1.75 W</td>
</tr>
<tr>
<td>Stator self inductance</td>
<td>L_s</td>
<td>295 mH</td>
</tr>
<tr>
<td>Rotor self inductance</td>
<td>L_r</td>
<td>104 mH</td>
</tr>
<tr>
<td>Mutual inductance</td>
<td>L_m</td>
<td>165 mH</td>
</tr>
<tr>
<td>Moment of inertia</td>
<td>J</td>
<td>0.01 kg.m²</td>
</tr>
<tr>
<td>Friction coefficient</td>
<td>F</td>
<td>0.0027 kg.m²/s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nomenclature of the parameters DFIM model</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_d, v_q</td>
</tr>
<tr>
<td>v_d, v_q</td>
</tr>
<tr>
<td>i_d, i_q, i_d, i_q</td>
</tr>
<tr>
<td>ω_s, ω_r</td>
</tr>
<tr>
<td>R_s, R_r</td>
</tr>
<tr>
<td>L_s, L_r</td>
</tr>
<tr>
<td>L_m</td>
</tr>
<tr>
<td>ω</td>
</tr>
<tr>
<td>T_e</td>
</tr>
<tr>
<td>T_L</td>
</tr>
<tr>
<td>p</td>
</tr>
<tr>
<td>F</td>
</tr>
</tbody>
</table>

References

