
Cite this article as: Mitra, V., Govil, M. C., Singh, G., Agrawal, S. "High Throughput and Resource Efficient Pipelined Decoder Designs for Projective Geometry 
LDPC Codes", Periodica Polytechnica Electrical Engineering and Computer Science, 64(2), pp. 179–191, 2020. https://doi.org/10.3311/PPee.14807

https://doi.org/10.3311/PPee.14807
Creative Commons Attribution b |179

Periodica Polytechnica Electrical Engineering and Computer Science, 64(2), pp. 179–191, 2020

High Throughput and Resource Efficient Pipelined Decoder 
Designs for Projective Geometry LDPC Codes

Ved Mitra1*, Mahesh C. Govil2, Girdhari Singh1, Sanjeev Agrawal3

1	Department of Computer Science and Engineering, Malaviya National Institute of Technology, 
Jawahar Lal Nehru Marg, Jaipur, Rajasthan – 302017, India

2	National Institute of Technology Sikkim, Ravangla, South Sikkim, Sikkim – 737139, India
3	Department of Electronics and Communication Engineering, Malaviya National Institute of Technology, 

Jawahar Lal Nehru Marg, Jaipur, Rajasthan – 302017, India
*	Corresponding author, e-mail: vedrig111@gmail.com

Received: 08 August 2019, Accepted: 29 September 2019, Published online: 07 December 2019

Abstract

Projective geometry (PG) based low-density parity-check (LDPC) decoder design using iterative sum-product decoding algorithm (SPA) 

is a big challenge due to higher interconnection and computational complexity, and larger memory requirement caused by relatively 

higher node degrees. PG-LDPC codes using SPA exhibits the best error performance and faster convergence. This paper presents 

an efficient novel decoding method, modified SPA (MSPA) that not only shortens the critical-path delay but also improves the hardware 

utilization and throughput of the decoder while maintaining the error performance of SPA. Three fully-parallel LDPC decoder designs 

based on PG structure, PG(2,GF( 2s )) of LDPC codes are introduced. These designs differ in their bit-node (BN) and check-node (CN) 

architectures. Fixed-point, 9-bit quantization scheme is used to achieve better error performance. Another significant contribution 

of this work is the pipelining of the proposed decoder architectures to further enhance the overall throughput. These parallel and 

pipelined designs are implemented for 73-bit (rate 0.616) and 1057-bit (rate 0.769) regular-structured PG-LDPC codes, on Xilinx 

Virtex-6 LX760 FPGA and on 0.18 μm CMOS technology for ASIC. Synthesis and simulation results have shown the better performance, 

throughput and effectiveness of the proposed designs.

Keywords

low-density parity-check (LDPC) codes, sum-product decoding algorithm (SPA), projective geometry (PG), Galois fields (GF), FPGA, ASIC

1 Introduction
Error-control coding has a great significance in the pres-
ent digital communication systems for error detection and 
correction over received data streams. Low-density par-
ity-check (LDPC) codes represent a special class of lin-
ear block codes, primarily introduced by Gallager [1] 
in  1962; rediscovered by MacKay and Neal [2] in 1995, 
are the focus of intense research since late 1990s. They are 
strong contenders to turbo codes [3] for error con-
trol in digital data storage and communication systems. 
However, turbo codes have limited acceptance as com-
pared to LDPC codes due to their low coding gain, high 
decoding latency and requirement of much complex com-
putations. LDPC codes play a prominent role in modern 
communication systems that demand not only the superior 
error performance close to the Shannon limit over con-
ventional channels [4, 5] but also very-high throughput 

services. These two features promote LDPC codes as one 
of the most propitious candidates for communication stan-
dards – Digital Video Broadcasting (DVB-S2) [6, 7]; IEEE 
802.11n (WLAN) [8], IEEE 802.16e (WiMAX) [9] and 
Magnetic storage systems [10, 11]. However, LDPC codes 
with higher code rates are mainly useful for low noise high 
throughput standards like – Orthogonal frequency-divi-
sion multiplexing (OFDM) [12], IEEE 10GBase-T [13] and 
Fiber-optic communication systems [14].

Among various classes of LDPC codes, projective 
geometry (PG) LDPC codes with sum-product decoding 
algorithm (SPA) have large minimum distance that exhib-
its the  best error performance and faster convergence. 
However, high-performance high-throughput pipelined 
PG-LDPC decoder design using SPA is still a big chal-
lenge due to higher interconnection and computational 

https://doi.org/10.3311/PPee.14807
https://doi.org/10.3311/PPee.14807
mailto:vedrig111@gmail.com


180|Mitra et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(2), pp. 179–191, 2020

complexity, and larger memory requirement caused by rel-
atively higher node degrees. For example, the  degree of 
a check-node (CN) in an OFDM system with code rate 0.875 
proposed by  Yang  et  al.  [12] is 24. In  contrast, by  using 
simplified decoding methods; for example, bit-flipping [15] 
and turbo-decoding message passing (TDMP)  [16, 17] 
or approximations to original SPA; for  example, min-
sum  (MS) algorithm and its  variants  [18–21] complexi-
ties can be reduced and throughput can be enhanced but 
these results in far worse error performance and much 
slower decoding convergence than the  SPA. Bit-flipping 
is a hard-decision based algorithm that exhibits signifi-
cant error performance loss due to the lack in quantization 
precision. MS algorithm and its  variants, replaces com-
plex computations of check-nodes (CNs) in SPA with sim-
ple addition and comparison operations, but it causes upto 
1 dB performance loss compared to SPA for higher code-
word lengths, code rates and node degrees [22].

Many of the existing hardware implementations 
for LDPC codes have used memory-shared, serial or par-
tial parallel architectures [21, 23, 24]; where chip area and 
hardware cost is of more concern. For example, a mem-
ory-shared architecture introduced by Chandrasetty and 
Aziz [23] – for 2304-bit, 1/2-rate LDPC code were used 
232 memory blocks of fixed size memory primitives. 
These port-limited architectures suffer from limited mem-
ory bandwidth, poor memory utilization and interconnec-
tion complexity which may be even worse in the presence 
of multiplexers. For collision free memory blocks access, 
separate address generation units are required that will 
increase chip-area and complexity. Again, these imple-
mentations are difficult to pipeline, and also not porta-
ble and synthesizable on ASIC tools. Further, achievable 
throughput is of the order of only hundreds of mega-
bits-per-second (Mbps). So, to address these problems, 
in this paper we propose high-performance, high-through-
put, resource-efficient fully-parallel and pipelined 
PG-LDPC decoder designs those are capable of provid-
ing throughput in the range of gigabits-per-second (Gbps) 
at moderate block lengths. An efficient novel decod-
ing method, called modified SPA (MSPA), a variation to 
the original SPA algorithm is introduced for this purpose 
to decode PG-LDPC codes that not only shortens the crit-
ical-path delay, but also improves the hardware utilization 
and throughput of the decoder while maintaining the error 
performance of SPA. Three different fully-parallel LDPC 
decoder designs are implemented based on PG struc-
ture, PG(2,GF( 2s )) [25] of LDPC codes with fixed-point, 

9-bit quantization scheme. These decoder designs differ 
in their bit-node (BN) and check-node (CN) architectures, 
and are further pipelined in order to enhance the overall 
throughput. The proposed parallel and pipelined designs 
are implemented for 73-bit (rate 0.616) and 1057-bit (rate 
0.769) regular-structured PG-LDPC codes, on Xilinx 
Virtex-6 LX760 FPGA [26] and on 0.18μm CMOS tech-
nology for ASIC that provides a throughput of 6.5 Gbps 
comparable with existing IEEE 802.11 ac/ad/ax WLAN [8] 
and IEEE 10GBase-T [13] standards.

The organization of the paper is as follows – Section 2 
introduces the structured property of LDPC codes, the SPA 
algorithm, PG structure of LDPC codes and the message 
quantization. Section 3 presents the hardware architecture 
of various functional units used in the decoder designs. 
Section 4 introduces the efficient novel MSPA decoding 
method and its hardware implementation. It also describes 
the architectures of fully-parallel and pipelined SPA and 
MSPA decoders. Section 5 presents the hardware imple-
mentation results targeted to both FPGA and ASIC. 
Section 6 concludes the paper.

2 Structured PG based LDPC codes
LDPC code is fully described by an M × N sparse pari-
ty-check matrix H, where M rows represent – the pari-
ty-check constraints and N columns each corresponds to 
a specific codeword bit. A codeword of length N bits has K 
message bits and M check bits. The code rate R is

R K N M N= = −1 . 	 (1)

In a regular LDPC code, matrix H contains exactly 
wc 1's in every column (column-weight) and exactly wr 
1's in every row (row-weight); otherwise, it is said to be 
an  irregular code. For example, Fig. 1 (a) shows LDPC 
matrix H, for a (2, 3) regular code with wc = 2 and wr = 3 
of length 6-bit.

2.1 Graphical representation of LDPC codes
A bipartite Tanner graph can be used to graphically repre-
sent the LDPC codes [27]. The graph consists of two types 
of nodes – bit-nodes (BNs) and check-nodes (CNs), and 
two nodes of different type can only connect to each other 
through an edge. The edges of a Tanner graph can be repre-
sented by non-zero entries "1" in matrix H. There are N BNs, 
one for every codeword bit ci and M CNs, one for every 
set-of parity-check constraints. Tanner graph correspond-
ing to matrix H in Fig. 1 (a) is illustrated in Fig. 1 (b), where 
N BNs are represented by circles and M CNs by squares.



Mitra et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(2), pp. 179–191, 2020 |181

2.2 Sum-product decoding algorithm (SPA)
The aim of SPA is to evaluate the a posteriori probability 
(APP) Pi of every codeword bit c C c c c ci n∈ = [ ]1 2 3

 ; 
given the received word Y y y y yn= [ ]1 2 3

 .

P P c yi r i= =( )1 	 (2)

In log-likelihood-ratio (LLR) form, Eq. (2) can be rep-
resented as

L c
P c
P ci
r i

r i

y
y

( ) =
=( )
=( )









log .

0

1
	 (3)

The SPA computes an approximation of the APP value 
for every codeword bit iteratively, based on the code's 
Tanner graph as follows:

•	 BN Update Stage – In the first half of the iteration, 
every BN processes its input messages (intrinsic 
channel information un

∼  plus extrinsic messages 
received from all its neighbor CNs except CN m) and 
computes the resulting bit-to-check message for the 
desired neighbor CN m. BN updates can be repre-
sented in LLR form as 

u u vn m n m n
m n m

, , ,= +∼
′

′∈ ( )∼
∑
µ

	 (4)

where un,m as the message passed from BN n to CN m 
and ′∈ ( ) ∼m n mµ , as the set of all CNs connected 
to BN n except CN m itself. It has to be noted that 
initial message passed by BN n to respective CN m, 
in the first iteration is the intrinsic probability only.

•	 CN Update Stage – In the other half iteration, based on 
the messages received from the BNs, each  CN pro-
cesses its input messages as (here the sign and the mag-
nitude part has been separated to aid the understand-
ing of its hardware realization) follows:

v u

u

m n n m
m

n m n

n m
n m

, ,

,

sgn= ( )∗ −( )









∗ ( )

′

( )

′∈ ( )∼

−
′

′∈ (

∏ 1

1

σ

σ

σ

φ φ
))∼

∑



















n
,

	 (5)

where sgn x x x( ) =  and φ φx x( ) = ( )−1  
= − ( )log tanh x 2 . vm,n as the message passed from 
CN m to BN n and ′∈ ( ) ∼n m nσ , as the set of all 
BNs connected to CN m except BN n itself. It has to 
be noted that in the first iteration, message passed 
by every CN m to respective BN n, should be zero.

•	 Parity Check – For the correctness of the code-
word, an estimate is performed by guessing a value 
for every bit at the BN as follows:

u u vn n m n
m n

= +∼
′

′∈ ( )
∑ ,

.

µ
	 (6)

This is the accumulated sum (total-sum) obtained 
from the accumulation-scan during the bit-update 
process. A hard-estimate about the bit value is made 
using the following conditions:
c u cn n n= ≤ =1 0 0, if or , otherwise. 	 (7)

The algorithm terminates, if H ∙ CT = 0 or if the number 
of permissible iterations are completed; otherwise, it pro-
ceeds to the next iteration starting from Eq. (4).

2.3 Message quantization of LDPC code over PG( 2,2s )
The Tanner graph for our work is same as the point-
line incidence graph of a dimension-m projective 
plane over  PG(m,GF( 2s )) [28]; where, m = 2 and s = 3. 
Here, BNs / CNs represents the points / lines of the geom-
etry respectively, and correspondingly the columns / rows 
of the parity-check matrix H. A codeword of LDPC 
code over GF( 2s ) contain symbols from the Galois field 
GF(p  =  2) – {0,1}; where constraints are defined over 
modulo-2 arithmetic [29] and p denotes a prime number.

Message quantization choices affect not only on the 
complexity and performance of the design but also on the 
throughput. However, it depends on the resources avail-
able for storage and computation on the FPGA [26]. 
We are considering 9-bit(9-5) quantization scheme in fixed 
point sign-magnitude (SM) format for better perfor-
mance, where the most-significant bit (MSB) represents 
the sign and the rest of 8-bits, the magnitude. In the mag-
nitude part, the most significant 3-bits represent the inte-
ger and the remaining 5-bits, the fractional part. In order 
to accommodate additional bits for sign-extensions and 
overflows due to accumulation, the internal datapath is 
made 13-bit wide for BNs and 12-bit wide for CNs.

                    
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

                                              
(a) 

   
 
                                 
                                                                                              
                     
 
 
 
 
                               

(b) 

 1     1     0     1     0     0 
0     1     1     0     1     0 
1     0     0     0     1     1 
0     0     1     1     0     1       

H = 

f0 

C1 C2 C3 C4 C5 C0 

f1 f2 f3 

Check Nodes 

Bit Nodes 

Fig. 1 Matrix H and its Tanner graph for a (2, 3) regular code



182|Mitra et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(2), pp. 179–191, 2020

3 Functional units of proposed LDPC decoder
The LDPC decoder has three fundamental components– 
the Processing Elements (BNs / CNs) comprising the datap-
ath, the Memory Modules to store bit / check-updates during 
iterations, and the Interconnection Network for routing of 
updates between different kind of nodes.

For the proposed designs, we are considering the 73-bit 
(rate 0.616) and 1057-bit (rate 0.769) regular-structured 
LDPC codes based on PG(2,GF( 2s )) [25]. The main com-
putational blocks in BNs and CNs are multi-input multi-bit 
adders, subtractors and multipliers / LUTs. Bit / check-up-
dates are computed using total-sum-first method [30]. 
The total-sum-first calculations (for BN / CN updates) are 
implemented using unfolded parallel architecture [31] 
for accumulation-scan rather than folded one; as it offers 
higher degree of parallelism and thus, suited for  high 
throughput applications. The two types of memories 
involved in the decoder designs are – bit-memories (BMs) 
and check-memories (CMs). BMs and CMs will be dis-
cussed in detail in Subsection 3.3.

3.1 Bit-node architecture
Fig. 2 shows the architecture of a fully-parallel BN. 
The  BNs compute bit-to-check messages (bit-updates) 
according to Eq. (4). BNs read check-to-bit messages 
from the CMs and intrinsic data from Intrinsic-memory; 
perform SM to 2's complement (SM–2's) transformation 
on the received inputs; perform accumulation-scan using 

multibit adder tree along with individual input messages 
are stored separately on corresponding L-Regs; perform 
output-scan (residue calculation) by subtracting the indi-
vidual inputs from the accumulated sum using multibit 
full subtractors and finally the outputs (bit-updates) are 
saturated to 9-bit SM format and written back into BMs.

3.2 Check-node architecture
The CNs compute check-to-bit messages in the same way 
as  their bit counterparts, but with two significant differ-
ences  – The CN computations are done in the logarith-
mic and hyperbolic tangent domain as stated in Eq.  (5). 
Further, the magnitude and sign part of the updates are com-
puted through different data-subpaths. In the magnitude 
subpath, the 9-bit SM inputs received from BMs undergo 
through ϕ(x) transformation, before the magnitude's resi-
dues are calculated using the same total-sum-first approach 
as used in bit-updates. Finally, the  residues are recon-
verted back by applying the  inverse function ϕ−1(x) (ϕ(x) 
is self-inverse) on them. A  piece-wise linear approxima-
tion method can be used as suggested by Masera et al. [32] 
to implement ϕ(x). The  one of the  direct way to imple-
ment ϕ(x) is by using LUTs [16, 33]. As the function ϕ(x) 
is highly non-linear, a  large performance loss will be 
induced by  its quantization. Therefore,  to achieve proper 
decoding performance direct implementation using LUTs 
would require much large amount of memory, specifically 
for  codes having higher node degrees and quantization 

 

 

 

 

SM–2’s 

SM–2’s 

SM–2’s 

SM–2’s 

SM–2’s 

SM–2’s 

SM–2’s 

SM–2’s 

V0, n 

V1, n 

V2, n 

V3, n 

V4, n 

V5, n 

V8, n 

L-Reg 

V6, n 

V7, n 

L-Reg 

L-Reg 

L-Reg 

L-Reg 

L-Reg 

L-Reg 

L-Reg 

L-Reg 

 
Accumulation 

Scan 

 
∑ 

 
 
 
 
 

output 

─ 

─ 

─ 

─ 

─ 

─ 

─ 

─ 

─ 

2’s–SM 

2’s–SM 

2’s–SM 

2’s–SM 

2’s–SM 

2’s–SM 

2’s–SM 

2’s–SM 

2’s–SM 

Un
~

 

B-Reg 

B-Reg 

B-Reg 

B-Reg 

B-Reg 

B-Reg 

B-Reg 

B-Reg 

B-Reg 

Un, 0 

Un, 1 

Un, 2 

Un, 3 

Un, 4 

Un, 5 

Un, 6 

Un, 7 

Un, 8 

SM–2’s 

SM–2’s 

Fig. 2 Fully-parallel BN architecture



Mitra et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(2), pp. 179–191, 2020 |183

bits. Again, for fully-parallel design, each CN will require 
its own LUT in order to speed up the operation and to avoid 
memory access conflicts. This  in turn makes the  design 
comparatively expensive and hence, we  have not used 
this method in our proposed designs.

Some other implementations as stated in [24, 34]; used 
DSP slices available on FPGA to compute ϕ(x). The main 
disadvantages in using DSP slices are – First, the resources 
are limited on FPGA. For fully-parallel and pipelined 
LDPC decoder designs, we need atleast 657 (73*9) DSP 
slices for 73-bit code. If the number of nodes is increased, 
we  require more DSP slices which makes it difficult to 
accommodate on latest FPGAs [26]. Secondly, this increases 
the hardware complexity, area and cost for the design, com-
paratively. Finally, DSP slices are FPGA specific macros, 
these slices are not portable and synthesizable on ASIC 
tools for ASIC design. So, to overcome these problems and 
for the implementation of proposed decoder designs on both 
FPGA and ASIC, we are used our own VHDL constructs 
array-multipliers and adders as suggested in [31] to compute 
ϕ(x) function. For  simplicity and clarity, codeword testing 
part is not shown here. Again, two different approaches are 
discussed here for the fully-parallel CN design:

•	 The first design (CN_A) consists of 2wr MAC units 
as shown in Fig. 3. These are termed as – PH-MACs 
and IN-MACs. The wr PH-MACs are used to com-
pute the function ϕ(x), whereas other wr IN-MACs 

are used to compute the function ϕ−1(x). The outputs 
from PH-MACs are scaled down into 12-bits for mag-
nitude calculation in total-sum-first block in the simi-
lar way as in BN computation, using unfolded parallel 
architecture. After magnitude's ϕ−1(x) transforma-
tion – outputs are saturated, combined with their sign 
counterpart and finally stored in CMs. The sign logic 
is implemented by using an XOR-gate tree that works 
concurrently with magnitude processing.

•	 The second design (CN_B) is similar to first – except 
MAC and saturation units are reused through a feed-
back path vide Fig. 4. However, one multiplexer 
(MUX) at the input to every MAC unit in order to 
select between ϕ(x) and ϕ−1(x) operations; and one 
de-multiplexer (De-MUX) at the output to every sat-
uration unit are introduced in the design.

3.3 Memory organization
Memory is used for preserving the bit-to-check and check-
to-bit updates during every iteration in the Sum-Product 
decoding. As stated earlier, there are two types of memo-
ries used in the decoder designs – BMs and CMs. For writ-
ing back results, every BN (CN) is associated with a mem-
ory of its own type. The memories of other kind that 
each node reads data from, are determined by the projec-
tive geometry space PG( 2,2s ) [25]. Data stored in memo-
ries are in 9-bit sign-magnitude form.

 

PH –
MAC 

(0) 

PH –
MAC 

(8) 

PH –
MAC 

(1) 

Scale 
& 

Sat 
(0) 

Scale 
& 

Sat 
(8) 

Scale 
& 

Sat 
(1) 

 
 

S/M 
 

 
 

S/M 
 

XOR 
TOTAL SUM 

FIRST 
 

SIGN 
CALCULATION 

 

 

S/M 

Sign/ Mag. 
Separation 

Sign/ Mag.  
Combination 

 
 

S/M 
 

 

 

 

TOTAL 
SUM 

FIRST 
 
 
 
 

MAGNITUDE 
CALCULATION 
 

U0, m 

U8, m 

U1, m 
Vm, 1 

Vm, 8 

Scale 
& 

Sat 
(0) 

IN –
MAC 

(0) 

IN –
MAC 

(1) 

IN –
MAC 

(8) 

Scale 
& 

Sat 
(8) 

Scale 
& 

Sat 
(1) 

 

S/M 

 

S/M 

Vm, 0 

 

 
Fig. 3 Fully-parallel CN architecture without Feedback (CN_A)



184|Mitra et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(2), pp. 179–191, 2020

Most of the existing memory-shared partial-parallel 
decoder designs reported in literature have used true dual-
port Block-RAM (BRAM) blocks with fixed sized mem-
ory primitives. For example, Gajare [24] used 146 dual-
port BRAM blocks, one for each type of node with 2k x 9, 
fixed memory primitives. Another architecture introduced 
by Chandrasetty and Aziz [23] – for 2304-bit, 1/2-rate, 
(3,6)-regular LDPC code were used 232 such memory 
blocks. However, Chen et al. [21] pointed out that for an 
8-bit message quantization, in this way upto 78 % of avail-
able memory bandwidth will not be used. The main disad-
vantages in these decoder designs are:

•	 For the proposed 73-bit (rate 0.616) regular LDPC 
decoder design, nine-coefficients (inputs) have to be 
accessed in parallel per cycle per node. This figure 
is much higher for codes having relatively higher 
node degrees and block lengths. However, due to the 
port limiting architecture, BRAM blocks are able to 
access only two-coefficients concurrently per cycle. 
This in turn increase the number of cycles required 
and hence lowers the overall throughput significantly.

•	 As stated above, each BRAM block was configured 
in a fixed size memory primitive (like 2k x 9) as per 
the need of message quantization. Hence, a  signif-
icant amount of every BRAM block locations were 

left unused which results in poor utilization of 
available memory bandwidth. This also increases 
the  complexity and chip area when implementing 
physical-layout floorplan.

•	 Large memory bandwidth also results in significant 
power dissipation.

•	 For collision free dual-port BRAM blocks access, 
separate address generation units are required that 
will further increase the chip-area and complexity.

•	 BRAM blocks are FPGA specific macros, these 
are not portable and synthesizable on ASIC tools 
for ASIC design.

Hence, in order to eliminate these problems and for the 
implementation of proposed decoder designs on both 
FPGA and ASIC, we are using distributed memory ele-
ments as suggested in [31] to store bit / check updates 
instead of BRAM blocks. These are named as B-Regs and 
C-Regs respectively.

3.4 Interconnect architecture
Interconnects consume most of the floor space in the lay-
out of a design [35]. Therefore, efficient implementation of 
interconnects is required for the decoder design to reduce 
the complexity and hence routing congestion.

PH 
(0) 

PH 
(1) 

PH 
(8) 

MAC 
(0) 

MAC 
(8) 

 

MAC 
(1) 

 

Scale 
& 

Sat 
(0) 

Scale 
& 

Sat 
(8) 

Scale 
& 

Sat 
(1) 

RC 
(0) 

RC 
(1) 

RC 
(8) 

 
S/M 
 

 
S/M 
 

XOR 
TOTAL SUM 

FIRST 
 

SIGN 
CALCULATION 

 

 

S/M  
 

 

S/M 

 

S/M 

Sign/ Mag. 
Separation 

Sign/ Mag.  
Combination 

 
S/M 
 

 

 
 

 
TOTAL 

SUM 
FIRST 

 
 
 
 

MAGNITUDE 
CALCULATION 

 

U0, m 

U8, m 

U1, m 

Vm, 0 

Vm, 1 

Vm, 8 

 

 
Fig. 4 Fully-parallel CN architecture with Feedback (CN_B)



Mitra et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(2), pp. 179–191, 2020 |185

As PG is a point-to-point interconnect with high node 
degrees, Bus Architecture is not suitable for our imple-
mentation. This is because in a particular cycle, large 
number of nodes will try to access the bus simultane-
ously, leading to widespread congestion in interconnect. 
Further, some of the designs as stated in [9, 17, 36-38] used 
routing (permutation) networks for the implementation of 
interconnects. Routing networks are suitable for designs 
having relatively small node degrees. For PG-LDPC codes 
with relatively higher degrees, hardware and routing com-
plexity of such networks will be much high. For such 
designs, dedicated wiring reduces hardware complexity 
comparatively and increases the flexibility for both reg-
ular and irregular parity check matrices. Hence, we have 
adopted direct fixed network of wires between the nodes 
and memories for our implementations.

For the interconnection between C-Regs and the BNs, 
and the other one between B-Regs and the CNs global wir-
ing is used, as per geometry of Tanner graph. Dedicated 
wiring is used to implement these connections. The wires 
between the nodes (BN / CN) and the memory-units 
(B-Regs / C-Regs) of the same type are expected to be local, 
due to the proximity in their placement. However, broad-
casting technique [35] can be used to reduce the number 
of interconnect wires and connection lengths between BNs 
and CNs, further by more than 40 %.

4 Decoder architecture
In Section 4, first we discuss about the architecture of ful-
ly-parallel LDPC decoder and then introduce the MSPA 
decoding, a novel variation of the original SPA algo-
rithm, that not only shorten the processing latency but 
also improve the hardware utilization and throughput of 
the decoder. Finally, we discuss pipelined decoder archi-
tecture to further enhance the overall throughput.

4.1 Parallel decoder architecture
Two different versions of fully-parallel LDPC decoder 
designs are discussed here. These designs differ in their 
CN architectures, and are implemented using the original 
iterative SPA algorithm in LLR form for 73-bit (rate 0.616) 
and 1057-bit (rate 0.769) PG-LDPC codes, separately. 
These decoders are termed as decoder-1 (comprising of 
BN_A and CN_A architectures) and decoder-2 (compris-
ing of BN_A and CN_B architectures), respectively.

A parallel decoder can be implemented by using p copies 
of BNs(CNs) and the corresponding interconnects in parallel 

as a group; where p represents parallel factor. This permits 
to update all the p BNs(CNs) concurrently with in a group 
where each BN(CN) group requires one clock cycle to com-
plete its computation. There are a total of 2 N p   such 
groups. Hence, total 2 N p   cycles are needed to com-
plete all BNs and CNs computations in a single iteration. 
It is obvious that the throughput, hardware complexity and 
power consumption increases as p increases where as time 
required for completing a single iteration decreases.

For the 73-bit (rate 0.616) PG-LDPC decoder designs, 
we have used p = 73. Hence, these designs are fully-parallel, 
having single group for BNs(CNs) and total 2 N p   = 2 
cycles are needed to complete all BNs and CNs updates 
in  an iteration. For the 1057-bit (rate 0.769) PG-LDPC 
decoder designs using SPA, it is impractical to use p = 1057 
because of the severity of interconnects complexity, rout-
ing congestion and power consumption. Hence, in order to 
maintain the design feasibility and high throughput, in the 
proposed designs we have used two different parallel fac-
tors −p = 73 and p = 151. Besides of using different parallel 
factors, these designs are also made flexible in terms of dif-
ferent node degrees, quantization and codeword lengths.

4.2 Modified SPA (MSPA) decoder architecture
The two SPA based parallel decoder designs as stated 
above, have unbalanced computation complexities and 
unbalanced datapaths between BNs and CNs. This in turn 
effects on the critical-path delay and number of cycles 
required per iteration. These effects can be minimized 
by  using the MSPA decoding method that modifies the 
BN / CN update stages of SPA to achieve the hardware 
balancing between BNs and CNs. The MSPA decoding 
method is described in the following steps:

•	 BN Update Stage – For the MSPA decoding method, 
Eq. (4) of BN computations can be modified as follows:

u u vn m n
m µ n m

m n,

~

,
= + ( )∼ −

′∈ ( )
′∑ φ 1

	 (8)

where all the incoming messages to BN n from all 
its neighbor CNs are first ϕ−1(x) transformed before 
accumulation-scan.

•	 CN Update Stage – Equation (5) of CN computations 
can be modified as follows:

v u

u

m n n m
m

n m n

n m
n m n

, ,

~

,

~

sgn= ( )∗ −( )









∗ ( )

′

( )

′∈ ( )

′
′∈ ( )

∏ 1
σ

σ

σ

φ∑∑

















 .

	 (9)



186|Mitra et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(2), pp. 179–191, 2020

Let vm,n = P * S; where P is the magnitude part and 
S is the sign part. The magnitude part P can be 
re-written as:

P u

u u

n m
n m n

n m
n m

= ( )



















= ( )







 −

′
′∈ ( )

′
′∈ ( )

∑

∑

φ

φ φ

σ

σ

,

~

, nn m, .( )









	 (10)

In the MSPA decoder design, termed it as decoder-3, 
we are introducing hardware balancing between BNs and 
CNs for slack minimization using Eqs. (8) and (9) respec-
tively. For its hardware implementation, consider the Fig. 3 
of a fully-parallel CN without feedback (CN_A). If all the 
output side IN-MACs (ϕ−1(x)) and saturate units of this CN 
are removed and placed to input side of corresponding BN, 
then we obtain optimized BN (BN_C) and optimized CN 
(CN_C) as shown in Figs. 5 and 6, respectively. This indeed 
provides us hardware balancing among BNs and CNs with-
out affecting the performance of original SPA decoder. 
The MSPA decoding has the following advantages:

•	 As per the largest latency in a pipeline, critical-path can 
be determined that will limit the overall throughput. 
However, in decoder-3 design, after critical-path bal-
ancing, the optimized BNs and CNs will have similar 
path delay. This in turn reduces the slack time, improves 
the clock frequency and hence the throughput.

•	 In CN_A design, output side IN-MACs (ϕ−1(x)) and 
saturate units remain idle till the last time-slot of CN 
computation; so moving these units into a BN will 
definitely provide us effective hardware utilization 
without affecting on the decoder performance.

•	 For high-rate codes, where wr >> wc MSPA decoding 
will be more beneficial in terms of hardware reduc-
tion (e.g., number of IN-MACs, level of adder tree).

A complete throughput and timing statistics for these 
decoder designs are shown in implementation results.

4.3 Pipelined decoder architecture
In the Subsection 4.1, it is observed that during the first 
half iteration of BNs processing, CNs remain idle and vice 
versa, in the next half. This in turn effects on hardware 
utilization and increases (almost doubles) the overall time 
required to complete single iteration; assuming that BNs 
and CNs processing takes same amount of time to com-
plete. Fig. 7 (a) shows the above non-pipelined sequential 
timing structure for decoder-1 / decoder-3 implementations 
between BNs and CNs update stages.

As stated earlier, our designs are based on 
PG(2,GF( 2s )) [25]. The structured property of PG-LDPC 
codes and the use of distributed memory elements to 
store BN(CN) updates allow BN and CN groups to oper-
ate in pipelined manner. Two pipelined LDPC decoder 
designs are discussed in Subsection 4.3. These designs 
are obtained by overlapping the BN and CN update stages 
for  decoder-1 / decoder-3 implementations in order to 
enhance the overall throughput. Fig. 7 (b) shows, pipe-
line timing structure for decoder-1p based on decoder-1 
architecture with unbalanced computation complexities 
between BNs and CNs. Here, dashed portion in BN update 
stages shows the slack period. Fig. 7 (c) shows, pipeline 
timing for decoder-3p based on decoder-3 architecture 
with balanced data paths between BNs and CNs.

 

SM–2’s 

SM–2’s 

SM–2’s 

SM–2’s 

SM–2’s 

SM–2’s 

SM–2’s 

SM–2’s 

SM–2’s 

SM–2’s 

V0, n 

V1, n 

V2, n 

V3, n 

V4, n 

V5, n 

V8, n 

L-Reg 

V6, n 

V7, n 

L-Reg 

L-Reg 

L-Reg 

L-Reg 

L-Reg 

L-Reg 

L-Reg 

L-Reg 

 
Accumulation 

Scan 

 
 

∑ 
 

 

 
 

output 

─ 

─ 

─ 

─ 

─ 

─ 

─ 

─ 

─ 

2’s–SM 

2’s–SM 

2’s–SM 

2’s–SM 

2’s–SM 

2’s–SM 

2’s–SM 

2’s–SM 

2’s–SM 

Un
~

 

IN-MAC(0)  

IN-MAC(1) 

IN-MAC(2) 

IN-MAC(3) 

Saturate(0) 

IN-MAC(4) 

IN-MAC(6) 

IN-MAC(5) 

IN-MAC(7) 

Saturate(1) 

Saturate(2) 

Saturate(3) 

IN-MAC(8) 

Saturate(6) 

Saturate(5) 

Saturate(4) 

Saturate(7) 
 (7) 

Saturate(8) 
 (8) 

Un, 0 

Un, 1 

Un, 2 

Un, 3 

Un, 4 

Un, 5 

Un, 6 

Un, 7 

Un, 8 

 

 

 

 
 

Fig. 5 Optimized BN architecture using MSPA decoding



Mitra et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(2), pp. 179–191, 2020 |187

For the above two cases illustrated in Figs. 7 (b) and 
7 (c), the first BN group completes its computation in the 
first clock cycle and in the subsequent N p   − 1 clock 
cycles of the same iteration, the remaining BN groups are 

processed, consecutively. The CN groups start their com-
putations just after first clock cycle of BNs computation, 
in consecutive manner. In this way, the last CN group will 
finish its computation, one cycle after all the BNs compu-
tation ends. Hence, clock latency between BN / CN update 
stages is now reduced to one clock only and therefore, total 
N p   + 1 clock cycles are needed for one decoding iter-

ation. Here, computations of BNs and CNs are overlapped 
for N p   − 1 cycles. In the next iteration BNs can start 
their computations just after CNs ends their computations 
in the current iteration. Hence, the throughput gain is

Gain =     +( ) ≈2 1 2N p N p .

A complete throughput and timing statistics are shown 
in implementation results.

5 Implementation results
The proposed fully-parallel and pipelined LDPC decoder 
designs have been implemented and targeted on the Xilinx 
Virtex-6 LX760 FPGA and on 0.18 µm CMOS technology 
for ASIC. These designs are based on PG(2,GF( 2s )) [25].

PG codes converge very fast under SPA decod-
ing [25]. Faster convergence is one of the important fac-
tors to achieve higher throughput. It has been observed 
that the  proposed designs can be able to decode errors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PH -
MAC 

(0) 

PH -
MAC 

(8) 

PH -
MAC 

(1) 

Scale 
& 

Sat 
(0) 

Scale 
& 

Sat 
 (8) 

Scale 
& 

Sat 
(1) 

S/M 

S/M  

XOR  
TOTAL SUM 

FIRST 
 

SIGN 
CALCULATION 

S/M 
 

Sign/ Mag. 
Separation 

Sign/ Mag.  
Combination 

S/M  

 

 

TOTAL 
SUM 

FIRST 
 

 

MAGNITUDE 
CALCULATION 

 

U0, m 

U8, m 

U1, m 

Vm, 0 

Vm, 1 

Vm, 8 

S/M 

 

S/M 

Fig. 6 Optimized CN architecture using MSPA decoding

 

(a) 
 

(b) 
 

(c) 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 
 
 

 
 
 

 

1st  Itr. 2nd  Itr. 

CN 

BN BN 
 

CN 

BN 

CN 
 

BN 

CN 
 

CN 
 

BN BN 

CN 

1st  3rd  nth  2nd  

CN 

BN BN 

CN 

BN 

CN 

BN 

CN 

2nd nth 1st 3rd 

Fig. 7 Pipeline Timing Structure: (a) Non-Pipelined Timing 
Structure for Decoder-1 / 2; (b) Unbalanced Pipeline Timing 
Structure for Decoder-1p / 2p; (c) Balanced Pipeline Timing 

Structure for Decoder-3p



188|Mitra et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(2), pp. 179–191, 2020

on an average in less than eight iterations at practical 
SNRs(> 2). The entire simulation was carried out assum-
ing AWGN channel with BPSK modulation scheme. As all 
the three designs (that belong to same codeword length) 
use the same quantization scheme and based on SPA algo-
rithm; their performance measures in terms of bit-error 
rate (BER) versus signal-to-noise-ratio (SNR) were found 
to be more likely. Fig. 8 presents BER versus SNR perfor-
mance for the two distinct codeword lengths. It is clear 
from Fig. 8 that the BER performance improves signifi-
cantly with larger codeword lengths.

5.1 FPGA Synthesis results
The Synplify Pro and Xilinx synthesis tools have been used 
for Synthesis. For the 73-bit (rate 0.616) regular-structured 
PG-LDPC code; Table 1 shows the comparative analy-
sis between the three parallel designs as per the synthe-
sis report in terms of utilization of various resources, post 
placement route timing analysis and throughput. Similarly, 
for the 1057-bit (rate 0.769) regular-structured PG-LDPC 
code with parallel factor –73; Table 2 shows comparative 
analysis for proposed parallel and pipelined designs using 

the same parameters discussed as above. As decoder-1p 
and decoder-3p are the pipelined versions of decoder-1 and 
decoder-3, respectively; they have the same resource uti-
lization as decoder-1 and decoder-3, respectively. Table 3 
shows the comparative analysis for the 1057-bit PG-LDPC 
code with parallel factor –151.

5.2 ASIC Synthesis results
The functional units of the proposed decoders have been syn-
thesized using high-speed standard cell library on 0.18 µm 
CMOS technology with operating conditions 1.8  V and 
85 °C. Table 4 shows performance analysis for the three BNs 
and CNs designs in terms of area, power and cell used.

5.3 Comparison with other LDPC decoders
Table 5 shows the comparison between our 73-bit (rate 
0.616) / 1057-bit (rate 0.769) PG-based optimized, pipe-
lined MSPA LDPC decoder and other state-of-the-art 
decoders. Our work shows better error performance, 
even with the 1057-bit regular-structured PG-LDPC code 
as  compared to the other well-known structured LDPC 
code decoders listed in Table 5 having larger codeword 
lengths. The error performance is measured at a BER of 
10−5. The  proposed decoders are implemented for both 
FPGA and ASIC. The achievable throughput is 6.5 Gbps 
much higher than decoders listed in  Table 5. A shift-
LDPC decoder with 8192-bit codeword length, based on 
min-sum (MS) decoding was proposed in [20], which can 
achieve a comparable throughput of 5.1 Gbps. However, 
the MS algorithm is an approximation to SPA that has 
lower computational complexities (for CNs) but exhibits 
much worse error performance than the proposed MSPA. 
The performance loss of shift-LDPC decoder [20] is about 
0.8 dB as compared with the proposed 1057-bit optimi-
zed MSPA decoder. Again, in [20], the codeword length is 
approximately 8 times larger than our proposed designs. 
Further,  analysis shows that for the similar codeword 
lengths, proposed designs especially decoder-3p would 
provide much higher throughput that crosses the require-
ment of IEEE 10GBase-T standard.

A hybrid SBF (Soft bit-flipping) LDPC decoder was 
introduced in [15] that can acquire a throughput of 
1.05  Gbps at  16 iterations. As it is based on bit-flipping 
decoding, the performance loss is more and convergence 
is very slow as compared with proposed MSPA decoding. 
We want to point out that, our work demonstrates the fea-
sibility of LDPC decoder designs using large number of 
quantization bits (i.e., nine) and node degrees, for  better 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

SNR(dB)
1.5 2 2.5 3 3.5 4 4.5

10-6

10-5

10-4

10-3

10-2

10-1

73-bit
1057-bit

Fig. 8 BER versus SNR performance for different codeword length

Table 1 FPGA implementation results for 73-bit (Rate 0.616) code

Parameters Decoder-1 Decoder-2 Decoder-3

Flip-Flops / 
Latches 72851 (7.7 %) 70828 (7.5 %) 73294 (7.73 %)

6-input LUTs 66585 (14 %) 61283 (13 %) 66585 (14 %)

Parallel Factor 73

Clock Freq. 
(MHz) 151.55 145.8 170.3

No. of Cycles 2 2 2

Throughput 
(Gbps) 1.84 1.77 2



Mitra et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(2), pp. 179–191, 2020 |189

Table 2 FPGA implementation results for 1057-bit (Rate 0.769) code with Parallel Factor – 73

Parameters Decoder-1 Decoder-2 Decoder-3 Decoder-1p Decoder-3p

Flip-Flops / Latches 72851 (7.7 %) 70828 (7.5 %) 73294 (7.73 %) 72851 (7.7 %) 73294 (7.73 %)

6-input LUTs 66585 (14 %) 61283 (13 %) 66585 (14 %) 66585 (14 %) 66585 (14 %)

Clock Freq. (MHz) 151.55 145.8 170.3 151.55 170.3

No. of Cycles 30 30 30 16 16

Throughput (Gbps) 1.8 1.71 2 3.34 3.75

Table 3 FPGA implementation results for 1057-bit (Rate 0.769) code with Parallel Factor – 151

Parameters Decoder-1 Decoder-2 Decoder-3 Decoder-1p Decoder-3p

Flip-Flops / Latches 148003 (15.6 %) 143775 (15.2 %) 148948 (15.7 %) 148003 (15.6 %) 148948 (15.7 %)

6-input LUTs 134211 (28.3 %) 123590 (26 %) 134211 (28.3 %) 134211 (28.3 %) 134211 (28.3 %)

Clock Freq. (MHz) 130.4 125.3 148.2 130.4 148.2

No. of Cycles 14 14 14 8 8

Throughput(Gbps) 3.3 3.15 3.73 5.74 6.5

Table 4 ASIC analysis in Terms of Area, Power and Cell Used

Node Type Area (µm2) Power (mW) Cell Used

BN_A 99214.000 5.9787 2531

BN_B 97914.000 5.7415 2395

BN_C 115138.000 6.9865 3281

CN_A 154047.000 7.8951 3685

CN_B 132835.000 7.2545 3478

CN_C 108914.000 6.6974 3102

Table 5 Comparison with other LDPC Decoders

Parameters This work [15] [17] [20] [23] [24] [38]

Class PG-LDPC PG-LDPC AA-LDPC Shift-LDPC 3L-HQC PG-LDPC CC-QC-LDPC

Algorithm MSPA SBF TDMP Min-sum LP SPA QSPA

Code length 
(bits) 73 1057 1057 2048 8192 2304 73 1024

Code rate 0.616 0.769 0.769 0.5 7/8 = 0.875 0.5 0.6 5/6 = 0.833

Quantization 9 bits (9-5) 9 bits (9-5) 4 bits (4-2) 4 bits (4-2) 6 bits - 9 bits (9-5) 4 bits (4-2)

Parallel Factor 73 73 151 64 24 256 144 - -

Eb / N0 for BER 
of 10−5 4.3 dB 3.2 dB 4.1 dB 2.0 dB 4.0 dB 3.75 dB - 3.5 dB

Technology FPGA and 
180 nm CMOS

FPGA and 
180 nm CMOS

180 nm 
CMOS

180 nm 
CMOS

180 nm 
CMOS FPGA FPGA FPGA

Clock Freq. 
(MHz) 170.3 170.3 148.2 345 125 317 114 155 100

Iterations 10 10 16 10 15 7.5 10 10

Throughput 2.0 Gbps 3.75 
Gbps

6.5 
Gbps 1.05 Gbps 640 Mbps 5.1 Gbps 548 Mbps 89 Mbps 3.0 Gbps

Processing 
Latency (ns) 36.5 282 163 1007 3200 1606 4204 820 341

error performance while other listed decoders have used 
small number of quantization bits (≤ 6) for limiting the chip 
size, hardware complexity and improving the  through-
put but this results in  significant performance loss. 
Finally, in most of the implementations, the time required 
for I / O operations (storing the decoded messages / updates 

into memories / registers and fetching the inputs from mem-
ories / registers) has not been incorporated while evaluating 
the decoder throughput. Hence the practical throughput is 
much less than the evaluated one. In our designs, we have 
considered the I / O time while computing the throughput.



190|Mitra et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(2), pp. 179–191, 2020

References
[1]	 Gallager, R. G. "Low-density parity-check codes", 

IRE Transactions on Information Theory, 8(1), pp. 21–28, 1962.
	 https://doi.org/10.1109/TIT.1962.1057683
[2]	 MacKay, D. J. C., Neal, R. M. "Good codes based on very 

sparse matrices", In: Boyd, C. (ed.) Cryptography and Coding. 
Cryptography and Coding 1995, Lecture Notes in Computer 
Science, vol. 1025, Springer, Berlin, Heidelberg, Germany, 1995, 
pp. 100–111.

	 https://doi.org/10.1007/3-540-60693-9_13
[3]	 Berrou, C., Glavieux, A., Thitimajshima, P. "Near Shannon 

limit error-correcting coding and decoding: Turbo-codes (1)", 
In: ICC '93 – IEEE International Conference of Communications, 
Geneva, Switzerland, 1993, pp. 1064–1070.

	 http://doi.org/10.1109/ICC.1993.397441
[4]	 MacKay, D. J. C., Neal, R. M. "Near Shannon limit performance 

of low-density parity-check codes", Electronics Letters, 32(18), 
pp. 1645–1646, 1996.

	 http://doi.org/10.1049/el:19961141
[5]	 Chung, S. Y., Forney, G. D., Richardson, T. J., Urbanke, R. "On the 

design of low-density parity-check codes within 0.0045  dB 
of the Shannon limit", IEEE Communications Letters, 5(2), 
pp. 58–60, 2001.

	 https://doi.org/10.1109/4234.905935
[6]	 Digital Video Broadcasting "Part I (DVB-S2) Digital Video 

Broadcasting (DVB); DVB Document A171-1", [online] Available 
at: https://www.dvb.org/resources/public/standards/a171-1_s2_
guide.pdf [Accessed: 16 May 2019]

[7]	 Kienle, F., Brack, T., When, N. "A synthesizable IP core for DVB-
S2 LDPC code decoding", In: Design, Automation and Test 
in  Europe Conference and Exhibition (DATE'05), Munich, 
Germany, 2005, pp. 100–105.

[8]	 Bangerter, B., Jacobsen, E., Ho, M., Stephens, A., Maltsev, A., 
Rubtsov, A., Sadri, A. "High-Throughput Wireless LAN Air 
Interface", Intel Technology Journal, 7(3), pp. 47–57, 2003. [online] 
Available at: https://pdfs.semanticscholar.org/71de/7359ce-
79745d4a3748e9454abfde0be8f1c5.pdf [Accessed: 15 July 2019]

[9]	 Zhao, X., Chen, Z., Peng, X., Zhou, D., Goto, S. "High-parallel perfor-
mance-aware LDPC decoder IP core design for WiMAX", In: 2013 
IEEE 56th International Midwest Symposium on  Circuits and 
Systems (MWSCAS), Columbus, OH, USA, 2013, pp. 1136–1139.

	 https://doi.org/10.1109/MWSCAS.2013.6674853
[10]	 Hu, X., Kumar, B. V. K. V., Sun, L., Xie, J. "Decoding behavior study 

of LDPC codes under a realistic magnetic recording channel model", 
IEEE Transactions on Magnetics, 42(10), pp. 2606–2608, 2006.

	 https://doi.org/10.1109/TMAG.2006.878652
[11]	 Kavcic, A., Patapoutian, A. "The Read Channel", Proceedings of 

the IEEE, 96(11), pp. 1761–1774, 2008.
	 https://doi.org/10.1109/JPROC.2008.2004310
[12]	 Yang, L., Liu, H., Shi, C. J. R. "Code construction and FPGA 

implementation of a low-error-floor multi-rate low-density par-
ity-check code decoder", IEEE Transactions on Circuits and 
Systems-I, Regular Papers, 53(4), pp. 892–904, 2006.

	 https://doi.org/10.1109/TCSI.2005.862074
[13]	 IEEE "IEEE P802.3an (10GBase-T) Task Force", [online] 

Available at: http://grouper.ieee.org/groups/802/3/an/index.html 
[Accessed: 05 May 2019]

[14]	 Selvarathinam, A., Kim, E., Choi, G. "Low-density parity-check 
decoder architecture for high throughput optical fiber channels", 
In: 21st International Conference on Computer Design (ICCD'03), 
San Jose, CA, USA, 2003, pp. 520–525.

	 https://doi.org/10.1109/ICCD.2003.1240949
[15]	 Cho, J., Kim, J., Sung, W. "VLSI implementation of a high-through-

put Soft-Bit-Flipping decoder for geometric LDPC codes", 
IEEE  Transactions on Circuits and Systems-I, Regular Papers, 
57(5), pp. 1083–1094, 2010.

	 https://doi.org/10.1109/TCSI.2010.2047743
[16]	 Mansour, M. M., Shanbhag, N. R. "High-throughput LDPC decod-

ers", IEEE Transactions on Very Large Scale Integration (VLSI) 
Systems, 11(6), pp. 976–996, 2003.

	 https://doi.org/10.1109/TVLSI.2003.817545

6 Conclusion
In this paper, we have presented an efficient novel decod-
ing method, the MSPA, to decode PG-LDPC codes that not 
only shortens the critical path delay, optimizes the decoder 
functional units but also improves the throughput of 
the decoder. Parallel LDPC decoder designs have been 
implemented for 73-bit and 1057-bit regular-structured 
PG-LDPC codes using the traditional SPA and the pro-
posed MSPA decoding, separately. From  these designs, 
we analyzed that the MSPA decoding minimizes the effects 
of unbalanced computation complexities between BNs 
and CNs that exists in the SPA decoder by introducing 
the hardware balancing. The proposed designs are further 
pipelined by overlapping the  BN and CN update stages 

in order to achieve near-optimal throughput and effective 
hardware utilization. These optimized, pipelined decoder 
designs on an average saves 45 % of the number of cycles 
required per iteration.

With 9-bit quantization using MSPA decoding method 
and pipelining the maximum achievable throughput is 
6.5 Gbps which is two times larger than when compared to 
traditional SPA decoding, and also comparable with exist-
ing IEEE 802.11 ac / ad / ax WLAN and IEEE 10GBase-T 
standards. Our implementations also outperform in terms 
of processing latency, and error performance at a BER of 
10−5 as compared to the other state-of-the-art decoders. 
The proposed designs are also flexible in terms of quanti-
zation, node degree, parallel factor and codeword length.

https://doi.org/10.1109/TIT.1962.1057683
https://doi.org/10.1007/3-540-60693-9_13
http://doi.org/10.1109/ICC.1993.397441 
http://doi.org/10.1049/el:19961141 
https://doi.org/10.1109/4234.905935 
https://www.dvb.org/resources/public/standards/a171-1_s2_guide.pdf
https://www.dvb.org/resources/public/standards/a171-1_s2_guide.pdf
https://pdfs.semanticscholar.org/71de/7359ce79745d4a3748e9454abfde0be8f1c5.pdf
https://pdfs.semanticscholar.org/71de/7359ce79745d4a3748e9454abfde0be8f1c5.pdf
https://doi.org/10.1109/MWSCAS.2013.6674853 
https://doi.org/10.1109/TMAG.2006.878652 
https://doi.org/10.1109/JPROC.2008.2004310 
https://doi.org/10.1109/TCSI.2005.862074 
http://grouper.ieee.org/groups/802/3/an/index.html
https://doi.org/10.1109/ICCD.2003.1240949 
https://doi.org/10.1109/TCSI.2010.2047743 
https://doi.org/10.1109/TVLSI.2003.817545 


Mitra et al.
Period. Polytech. Elec. Eng. Comp. Sci., 64(2), pp. 179–191, 2020 |191

[17]	 Mansour, M. M., Shanbhag, N. R. "A 640-Mb/s 2048-bit program-
mable LDPC decoder chip", IEEE Journal of Solid-State Circuits, 
41(3), pp. 684–698, 2006.

	 https://doi.org/10.1109/JSSC.2005.864133
[18]	 Chen, J., Dholakia, A., Eleftheriou, E., Fossorier, M.  P.  C., 

Hu, X. Y. "Reduced-complexity decoding of LDPC codes", IEEE 
Transactions on Communications, 53(8), pp. 1288–1299, 2005.

	 https://doi.org/10.1109/TCOMM.2005.852852
[19]	 Zhao, J., Zarkeshvari, F., Banihashemi, A. H. "On implementa-

tion of min-sum algorithm and its modifications for decoding 
low-density parity-check (LDPC) codes", IEEE Transactions 
on Communications, 53(4), pp. 549–554, 2005.

	 https://doi.org/10.1109/TCOMM.2004.836563
[20]	 Sha, J., Wang, Z., Gao, M., Li, L. "Multi-Gb/s LDPC code design 

and implementation", IEEE Transactions on Very Large Scale 
Integration (VLSI) Systems, 17(2), pp. 262–268, 2009.

	 https://doi.org/10.1109/TVLSI.2008.2002487
[21]	 Chen, X., Kang, J., Lin, S., Akella, V. "Memory system optimiza-

tion for FPGA based implementation of Quasi-Cyclic LDPC codes 
decoders", IEEE Transactions on Circuits and Systems-I, Regular 
Papers, 58(1), pp. 98–111, 2011.

	 https://doi.org/10.1109/TCSI.2010.2055250
[22]	 Chen, J., Fossorier, M. P. C. "Near optimum universal belief 

propagation based decoding of low-density parity check codes", 
IEEE Transactions on Communications, 50(3), pp. 406–414, 2002.

	 https://doi.org/10.1109/26.990903
[23]	 Chandrasetty, V. A., Aziz, S. M. "Resource efficient LDPC decod-

ers for multimedia communication", Integration, the VLSI Journal, 
48, pp. 213–220, 2015.

	 https://doi.org/10.1016/j.vlsi.2014.09.002
[24]	 Gajare, N. "FPGA-based decoding of Projective Geometry (PG) 

Low Density Parity Check (LDPC) codes", Dual-Degree Thesis, 
IIT Bombay, Mumbai, India, 2009.

[25]	 Kou, Y., Lin, S., Fossorier, M. P. C. "Low-density parity-check codes 
based on finite geometries: A rediscovery and new results", IEEE 
Transactions on Information Theory, 47(7), pp. 2711–2736, 2001.

	 https://doi.org/10.1109/18.959255
[26]	 Xilinx "Virtex-6 Family Overview Data Sheet - DS150 (v2.5)", 

[online] Available at: https://www.xilinx.com/support/documenta-
tion/data_sheets/ds150.pdf [Accessed: 01 July 2019]

[27]	 Tanner, R. M. "A recursive approach to low complexity codes", 
IEEE Transactions on Information Theory, 27(5), pp. 533–547, 1981.

	 https://doi.org/10.1109/TIT.1981.1056404
[28]	 Karmarkar, N. "A new parallel architecture for sparse matrix com-

putation based on finite projective geometries", In: 1991 ACM/
IEEE Conference on Supercomputing, Albuquerque, NM, USA, 
1991, pp. 358–369.

	 https://doi.org/10.1145/125826.126029

[29]	 Lin, S. "On the number of information symbols in polyno-
mial codes", IEEE Transactions on Information Theory, 18(6), 
pp. 785–794, 1972.

	 https://doi.org/10.1109/TIT.1972.1054900
[30]	 Crockett, J. S. "A Hardware Implementation of Low-density 

Parity-check Coding for the Digital Video Broadcast-Satellite 
Version-2 Standard", Master's Thesis, Utah State University, 2006.

[31]	 Mitra, V., Govil, M. C., Singh, G. "High throughput and fully parallel 
PG-LDPC decoder for FPGA and ASIC", In: Seventh International 
Conference on Advances in Computer Science and Application 
(CSA'2018), Cochin, India, 2018, pp. 83–99.

[32]	 Masera, G., Quaglio, F., Vacca, F. "Finite precision implementa-
tion of LDPC decoders", IEE Proceedings on Communications, 
152(6), pp. 1098–1102, 2005.

	 https://doi.org/10.1049/ip-com:20050205
[33]	 Clevorn, T., Vary, P. "Low-complexity belief propagation decoding 

by approximations with Lookup-Tables", In: 5th International ITG 
Conference on Source and Channel Coding (SCC'04), Erlangen, 
Germany, 2004, pp. 211–215.

[34]	 Mhaske, S., Kee, H., Ly, T., Aziz, A., Spasojevic, P. 
"High-throughput FPGA-based QC-LDPC decoder architecture", 
In: 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-
Fall), Boston, MA, USA, 2015, pp. 1–5.

	 https://doi.org/10.1109/VTCFall.2015.7390967
[35]	 Darabiha, A., Carusone, A. C., Kschischang, F. R. "Multi-Gbit/sec 

low density parity check decoders with reduced interconnect com-
plexity", In: 2005 IEEE International Symposium on Circuits and 
Systems (ISCAS), Kobe, Japan, 2005, 5, pp. 5194–5197.

	 https://doi.org/10.1109/ISCAS.2005.1465805
[36]	 Awais, M., Singh, A., Boutillon, E., Masera, G. "A novel architec-

ture for scalable, high throughput, multi-standard LDPC decoder", 
In: 2011 14th Euromicro Conference on Digital System Design 
(DSD), Oulu, Finland, 2011, 31, pp. 340–347.

	 https://doi.org/10.1109/DSD.2011.112
[37]	 Sham, C. W., Chen, X., Lau, F. C. M., Zhao, Y., Tam, W. M. 

"A  2.0  Gb/s throughput decoder for QC-LDPC convolutional 
codes", IEEE Transactions on Circuits and Systems-I, Regular 
Papers, 60(7), pp. 1857–1869, 2013.

	 https://doi.org/10.1109/TCSI.2012.2230506
[38]	 Lu, Q., Fan, J., Sham, C. W., Tam, W. M., Lau, F. C. M. "A 3.0 Gb/s 

throughput hardware-efficient decoder for cyclically-coupled 
QC-LDPC codes", IEEE Transactions on Circuits and Systems-I, 
Regular Papers, 63(1), pp. 134–145, 2016.

	 https://doi.org/10.1109/TCSI.2015.2510619

https://doi.org/10.1109/JSSC.2005.864133 
https://doi.org/10.1109/TCOMM.2005.852852 
https://doi.org/10.1109/TCOMM.2004.836563 
https://doi.org/10.1109/TVLSI.2008.2002487 
https://doi.org/10.1109/TCSI.2010.2055250 
https://doi.org/10.1109/26.990903 
https://doi.org/10.1016/j.vlsi.2014.09.002 
https://doi.org/10.1109/18.959255 
https://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
https://doi.org/10.1109/TIT.1981.1056404 
https://doi.org/10.1145/125826.126029 
https://doi.org/10.1109/TIT.1972.1054900 
https://doi.org/10.1049/ip-com:20050205 
https://doi.org/10.1109/VTCFall.2015.7390967 
https://doi.org/10.1109/ISCAS.2005.1465805 
https://doi.org/10.1109/DSD.2011.112 
https://doi.org/10.1109/TCSI.2012.2230506 
https://doi.org/10.1109/TCSI.2015.2510619

	1 Introduction 
	2 Structured PG based LDPC codes 
	2.1 Graphical representation of LDPC codes 
	2.2 Sum-product decoding algorithm (SPA) 
	2.3 Message quantization of LDPC code over PG( 2,2s ) 

	3 Functional units of proposed LDPC decoder 
	3.1 Bit-node architecture 
	3.2 Check-node architecture 
	3.3 Memory organization 
	3.4 Interconnect architecture 

	4 Decoder architecture 
	4.1 Parallel decoder architecture 
	4.2 Modified SPA (MSPA) decoder architecture 
	4.3 Pipelined decoder architecture 

	5 Implementation results 
	5.1 FPGA Synthesis Results 
	5.2 ASIC Synthesis results 
	5.3 Comparison with other LDPC decoders 

	6 Conclusion 
	References 

